微晶白云母/PP/PA6复合材料的制备及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)是一种广泛应用的通用塑料,结构规整而易于结晶,生成的球晶较大,使PP易于产生裂纹,冲击强度较低,限制了其应用范围。因此,对PP进行增强、增韧改性显得尤为重要。
     论文利用微晶白云母和尼龙6(PA6)对聚丙烯进行增强、增韧改性。在对微晶白云母改性的基础上,采用熔融共混法制备了微晶白云母/PP、PP/PA6/PE-g-MAH、微晶白云母/PP/PA6/PE-g-MAH复合材料,研究了复合材料的力学性能,探讨了微晶白云母与PA6增强增韧PP机理。论文取得的主要成果包括:
     1.利用硅烷KH-550偶联剂对微晶白云母进行了表面改性,改善微晶白云母与PP的界面性能。表征结果表明,硅烷KH-550改性微晶白云母的较佳用量为0.9%,硅烷KH-550可能与微晶白云母之间形成了化学键合。
     2.制备了微晶白云母/PP复合材料,力学性能分析表明,当添加改性微晶白云母用量为PP质量10%时,复合材料综合力学性能最优,其拉伸强度为36.94 MPa ,缺口冲击强度为6.25 KJ/m2,分别较纯PP提高了13%和10%。
     3.通过对PP/PA6/PE-g-MAH复合材料力学性能研究,优化了相容剂PE-g-MAH的较佳用量为PP质量的4%。
     4.微晶白云母/PP/PA6/PE-g-MAH复合材料力学性能研究表明,当微晶白云母和PE-g-MAH添加量分别为PP质量的12%和4%时,体系综合力学性能最优,其拉伸强度为40.1 MPa,缺口冲击强度为8.46 KJ/m2。力学性能明显优于纯PP、微晶白云母/PP、PP/PA6/PE-g-MAH体系。
     5.聚丙烯增强增韧机理分析表明,微晶白云母、PP、PA6熔融共混后,PA6和微晶白云母分散在基体PP中。当材料受到冲击时,PP、PA6内部产生的空洞和银纹吸收能量,提高了材料韧性;PP/PA6界面变形、微晶白云母/PP界面变形缓冲能量,提高了材料强度。
Polypropylene (PP) is a widely used universal plastic which hold regular structures, it is easy to crystallize, and the polymer spherulites make it cracks as well as low impact resistance, all defects limit its further application. Reinforcing and toughening is meaningful to PP .
     The paper is aimed at using micro-crystal muscovite and nylon6(PA6) to modify polypropylene. Microcrystal muscovite/PP, PP/PA6/PE-g-MAH, microcrystal muscovite/PP/PA6 / PE-g-MAH composites were prepared through melting blend method based on the modification of micro-crystal muscovite. The mechanical properties of the material was studied, and the toughening mechanism was discussed either. The main research contents and acquisition results in this paper was listed below:
     1 KH550 was used as a coupling agent to modify the surface of micro-crystal muscovite on the purposes of improving the interface properties between micro-crystal muscovite and PP. The results showed that there should be some chemical bonding when KH-550 was added about 0.9%.
     2 Microcrystal-muscovite/PP composite was prepared. The analysis of mechanical performance showed that the composite displayed a best comprehensive mechanical performance when micro-crystal muscovite was used about 10% to PP. The results followed as: The tensile strength was 36.94 MPa and the impact strength was 6.25 KJ/m2, which were increased 13% and 10% respectively than PP.
     3 The amount of compatibilizer PE-g-MAH was optimized through the tests of mechanical properties of PP/PA6 / PE-MAH composite which was about 4% to PP.
     4 The mechanical performance tests of micro-crystal muscovite/PP/PA6 / PE-g-MAH composite showed that the composite displayed a best comprehensive mechanical performance when micro-crystal muscovite and PE-g-MAH were used about 12% , 4% to PP respectively. The results followed as: The tensile strength was 40.1MPa and the impact strength was 8.46 KJ/m2 that was obviously better than PP, micro-crystal muscovite/PP as well as PP/PA6/PE-g-MAH.
     5 The toughened mechanism analysis of Polypropylene showed that after molten blend of micro-crystal muscovite, PP and PA6 , micro-crystal muscovite was dispersed in the matrix of PP. When impacts happened, the cavities and silver lines that caused by PP and PA6 could absorb energy which manifested as an enhancement of toughness. The interface deformation of PP/PA6 and micro-crystal muscovite/PP could buffer energy which showed an improvement of material strength.
引文
[1]蒋丽娟,赖礼汇,邓聪,等. PP/PE-HD共混体系在压力振动注射成型中的形态与性能研究[J].中国塑料,2007,21(9):57-62.
    [2]贺燕,张辉平,徐端夫,等. PE/PP共混物卷绕丝微观结构的研究[J].合成纤维工业,2003,26(2):6-8.
    [3] Mitsuyoshi Fujiyama, Tetsuo Wakino. Crystallization behavior of polypropylene filled with surface-modified calcium carbonate[J]. J.Appl. Polym. Sci., 1991(42):9.
    [4] Rybnikar F. Orientation in composite of polypropylene and Talc[J]. J.Appl.Polym.Sci., 1989, 38:1479.
    [5]李东明,漆宗能.碳酸钙增强聚丙烯复合材料的断裂韧性[J].高分子材料科学与工程,1991(2):18-21.
    [6]张云灿,陈瑞珠,郑海宁,等. PP/EPDM/CaCO3三元共混体系的脆韧转变研究[J].高分子材料科学与工程,1998(5):128-130.
    [7]贺昌城,任石荣.硅灰石对PP力学性能的影响[J].工程塑料应用,1999(4):9.
    [8]吴永刚,马懿,李敬泽,等.无机刚性粒子增韧PP的研究[J].中国塑料,1999(4):29.
    [9]王旭,黄锐. PP/纳米级CaCO3复合材料性能研究[J].中国塑料,1999(10):22-25.
    [10]陶国良,侯寅,任明.纳米TiO2/PP复合材料的研究[J].塑料工业,2002(1):21-22.
    [11]李海东,程凤梅,罗靖.聚丙烯的官能化及其与尼龙6相容性[J].长春工业大学学报, 2005,26(3),184-186.
    [12]刘长生,王琪.尼龙6/聚丙烯共混改性研究[J].湖北化工,2001,(3):1-3.
    [13]林金辉,汪灵,邓苗,等.川西地区微晶白云母的矿床学特征研究[J].矿物岩石,2005, 25(3):14-17.
    [14]周世一.微晶白云母的表面修饰及其与核-壳型ACR共同改性PVC材料的研究[D].成都理工大学博士论文,2011.
    [15]汪灵,刘箐,叶巧明,等.铝酸酯表面改性微晶白云母活性填料及其制备方法.国家发明专利,ZL200410040808.9.
    [16]汪灵,刘菁,叶巧明,等.一种钛酸酯KR-38S表面改性微晶白云母活性填料的制备方法.国家发明专利,ZL200410021764.5.
    [17]解原.微晶白云母氨基硅烷[C3H6(NH2)Si(OC2H5)3]表面改性研究[D].成都理工大学,2005.
    [18]沈上越,范力仁,夏开胜,等.微晶白云母/聚丙烯酸钠超强吸水性复合材料制备研究[J].矿物岩石,2005,25(3):63-66.
    [19]汪灵,罗柯,李自强,等.矿物粉体电阻率测试方法初步研究---以微晶白云母为例[J].矿物学报,2010:113-115.
    [20]汪灵,罗柯,李自强,等.矿物及固体绝缘材料小块样品电阻率测试方法初步研究[J].矿物学报,2010:116-117.
    [21]罗柯,汪灵,雷燕,等.微晶白云母对绝缘灌注胶电阻率和强度的影响初步研究[J].矿物学报,2010:118-119.
    [22]关淞云.基于微晶白云母制备新型绝缘灌注胶的基础研究[D].成都理工大学,2009:23.
    [23]韩璐,陈善华,闽世俊.有机插层微晶白云母作环境矿物材料的探索综述[J].化工新型材料,2009,37(2):9-11.
    [24]喻茹,林金辉,王晓艳.纳米SiO2改性PP/微晶白云母复合材料的研究[J].中国非金属矿工业导刊,2009,(6):34-36.
    [25]毛玉元,范良明.中国沉积微晶白云母矿的发现及开发前景[J].成都理工学院学报,2000,(27)(增刊):98-102.
    [26]毛玉元,候立玮.新的微晶白云母资源的开发及其粉体材料的应用[J].中国粉体技术,2002,8(4):42-45.
    [27]郑水林,钱柏太,卢寿慈.重质碳酸钙/硅灰石复合填料表面改性研究[J].中国粉体技术,1999,5(5):24-27.
    [28]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[J].硅酸盐学报,2007,35(3):373-376.
    [29]赵若飞,刘兵,戴干策,等.一种大分子偶联剂对云母的表面处理[J].高分子材料科学与工程,2002,18(6):115-118.
    [30]廖俊,陈圣云,康宇峰,等.硅烷偶联剂及其在复合材料中的应用[J].化工新型材料,2001,29(9):26-29.
    [31]闻轲.矿物红外光谱学[M].重庆:重庆大学出版社,1988
    [32]于铨林.红外光谱学的实验方法[M].北京:机械工业出版社,1985.
    [33]王国全.聚合物共混改性原理与应用[M].中国轻工业出版社,2007:216-219.
    [34]伍玉娇,杨红军,骆丁胜等. PP/PA6复合材料结构与力学性能研究[J].塑料科技,2008,36(2):30-33.
    [35]伍玉娇,杨红军,骆丁胜,等. POE-g-MAH对PP /PA6共混体系形态结构与力学性能的影响[J].塑料,2007,36(5):30-34.
    [36]肖卫东,何本桥等.聚合物材料用化学助剂[M].化学工业出版社.2003, 7.
    [37]王国全.聚合物共混改性原理与应用[M].中国轻工业出版,2006,10:216-219.
    [38] Bucknall C B.Rubber-toughening of Plastics: Part 1, Creep Mechanisms in HIPS.Mater. SCI.1972 (7):202~210.
    [39]冯继云.共混增韧机理的新进展[J].塑料,1992,21(2):7.
    [40]单桂芳.聚合物空化效应研究[J].高分子通报,2005(5):36~45.
    [41]傅政.高分子材料强度及破坏行为[M].北京:化学工业出版社,2005.81~85,59~61.
    [42]李东明,漆宗能.非弹性体增韧—聚合物增韧新途径[M].高分子通报,1989(3):32.
    [43]温变英,李振中.增韧理论概说[J].塑料,1999,28(4):7~11.
    [44]邓本诚,李俊山.橡胶塑料共混改性[M].北京:中国石化出版社,1996.224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700