弹性体的结构设计及其共聚氯乙烯的接枝与增韧机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用丙烯酸正丁酯(nBA)与苯乙烯(St)为核层单体、氯乙烯(VC)为壳层单体,通过两步乳液聚合法合成了PnBA、P(nBA-co-St)和PSt三类具有窄粒径分布的共聚或均聚乳液,并以该乳液为种子与氯乙烯(VC)单体进行乳液接枝共聚,制备了P(nBA-co-St)/PVC系列不同形态的复合粒子。
     通过激光粒度分析仪(LPSA)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态热机械分析仪(DMA)、差示扫描量热分析法(DSC)与简支梁冲击试验机等测试手段对复合粒子的微观形态结构、材料冲击性能、冲击断面形貌等进行了测试和表征。通过索氏抽提、凝胶渗透色谱仪(GPC)、傅里叶红外光谱仪(FTIR)、核磁共振波谱仪(1H-NMR)等表征了复合粒子的接枝情况。着重考查了不同核层单体配比对复合树脂的粒子形态、接枝情况、玻璃化转变温度、冲击性能等的影响。
     研究结果表明:P(nBA-co-St)/PVC复合粒子具有与接枝前相似的粒径分布,乳液粒径在接枝前后有明显增长,证明了PVC已成功地包覆在P(nBA-co-St)乳胶粒上;SEM照片与TEM照片显示,复合粒子粒径大小均匀,与粒径分析结果相吻合。并且从TEM照片能清楚分辨出,复合粒子具有明显的核壳结构;采用索氏抽提的方法分离出了复合树脂中的接枝共聚物P(nBA-co-St)-g-PVC,通过FTIR与1H-NMR对该接枝共聚物的结构进行了表征;并很好地解释了在VC接枝P(nBA-co-St)过程中显现的缓聚现象:核层共聚单体中苯乙烯含量的增加,使得接枝VC过程变得困难,并且PVC的接枝率也随之降低,索氏抽提结果与GPC结果也证实了这一观点;DSC和DMA结果表明,随着核层共聚物中聚苯乙烯组分含量的增加,复合材料在低温区的力学损耗峰逐渐移向高温方向。比较PSt组分,因纯PnBA核更易于接枝VC,从而显著地影响了复合树脂低温转变区的Tg值;当核层单体投料比nBA/PSt为75/25(wt/wt)时,所制材料缺口冲击强度为纯乳液PVC材料的10倍。从材料缺口冲击断面的扫描电镜照片分析可知:该材料断裂为典型的的韧性断裂,P(nBA-co-St)原位增韧PVC机理源于基体的剪切屈服。
P(nBA-co-St)/PVC composite resins were prepared via two-step seeded emulsion copolymerization. Firstly, P(nBA-co-St) copolymer latex was synthesized using n-butyl acrylate (nBA) and styrene (St) through semicontinuous seeded emulsion copolymerization, then the P(nBA-co-St) copolymer latexes were copolymerized with vinyl chloride monomer (VCM). Morphological structure of the composite particles and blending materials were characterized by Laser particle size analyzer (LPSA), scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimeter (DSC), dynamic mechanical analyzer (DMA) and Charpy impact test machine. And the grafting situation of the P(nBA-co-St)/PVC composite particles was characterized by Soxhlet solvent extraction, Gel penetration chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and Nuclear Magnetic Resonance (1H-NMR). Effects of different monomer feed ratios on the particle morphology, grafting ratios (GR) of the composite particles, and the glass transition temperatures (Tgs), mechanical properties of the composite materials were investigated in detail.
     The LPSA result demonstrated that the PVC chains were successfully coated onto the surface of the P(nBA-co-St) latex particles, as growth in sizes of the composite particles after the P(nBA-co-St) grafted by PVC. The SEM graphs also corroborated this result, and the composite particles presented clearly core-shell morphology in TEM graphs. The P(nBA-co-St)-g-PVC was separated from the P(nBA-co-St)/PVC composite resins via Soxhlet solvent extraction technology. FTIR and 1H-NMR study results showed that the PVC reasonably grafted onto the P(nBA-co-St) chains. The phenomenon of retardation polymerization appeared in VC grafting P(nBA-co-St) copolymerization was well explained, the more the content of styrene in core layer, the greater the difficulty of VC grafting onto P(nBA-co-St) chain, and the graft ratio decreased along with it. Influence of PnBA to PSt feed ratios in the core layer on glass transition temperatures (Tgs) of the P(nBA-co-St) copolymers and the composite resins was investigated via DSC and DMA, respectively. DMA results showed that with an increasing content of the polystyrene segments in the core layer, the mechanical loss peak of the materials in low-temperature transition range gradually shift towards high-temperature transition region. Compared with the Tg value change before and after VC grafting, it was found that pure PnBA core greatly influences the Tg of the composite resin in the low-temperature transition region. With much incorporation of the PSt composition, the influence becomed little. This result should stem from different degree of the PnBA- and PSt-grafted-PVC to cause the change of the graft copolymer content in the composite resin. When nBA to St ratio in the P(nBA-co-St) was 75/25 (wt/wt), the Charpy notched impact strength of the material was 10 times as high as that of pure emulsion PVC materials. The SEM graphs of fractured surfaces for the P(nBA-co-St)/PVC samples showed a“root or beard”morphology, and confirmed that toughening mechanism in the P(nBA-co-St)/PVC materials derived from shear yielding of the matrix.
引文
[1]张仁武.国内PVC市场分析及发展趋势.齐鲁石油化工,2009,37(3):247~251
    [2] Braun D. Poly(vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science, Part A: Polymer Chemistry, 2004, 42: 578~586
    [3]邴涓林,李承志. 2008年中国PVC产业动态及分析.聚氯乙烯,2009,37(5):1~14
    [4]李明,李玉芳.我国PVC树脂的市场现状及2009年展望.江苏氯碱,2009,(3):8~14
    [5]曹文鑫.聚氯乙烯工业技术进展概述.聚氯乙烯,2004,(1):7~10
    [6]孙可华.汽车密封条用改性PVC专用料亟待发展.国内化石油化工快报,2005,35(10):30
    [7]赵季芝.世界PVC工业现状及我国PVC行业分析.聚氯乙烯,2003,(6):4~6
    [8]张旻,王新. PLC在PVC生产监控系统中的应用.自动化仪表,2010,31(2):58~61
    [9]邴涓林.中国PVC工业现状与发展分析.中国氯碱,2004,(5):1~4
    [10]王友印. PVC树脂应用于发展现状.合成树脂及塑料,2005,22(1):80~83
    [11]张克惠,张广成,焦剑.塑料材料学.西安:西北工业大学出版社,2000. 47~50
    [12] L I纳斯.聚氯乙烯大全.第一卷,北京:化学工业出版社,1987. 237~251
    [13] Starnes W H. Structural defects in poly(vinyl chloride). Journal of Polymer Science, Part A: Polymer Chemistry. 2005, 43(12): 2451~2467
    [14] Purmova J, Pauwels K F D, Van Zoelen W, et al. New insight into the formation of structural defects in poly(vinyl chloride). Macromolecules, 2005, 38: 6352~6366
    [15] Si Q B, Zhou C, Yang H D, Zhang H X. Toughening of polyvinylchloride by core-shell rubber particles: Influence of the internal structure of core-shell particles. European Polymer Journal, 2007, 43(7): 3060~3067
    [16] Pan M W, Zhang L C, Wan L Z, et al. Preparation and characterization of composite resin by vinyl chloride grafted onto poly(BA-EHA)/poly(MMA-St). Polymer, 2003, 44(5): 7121~7129
    [17]潘明旺,张留成,袁金凤,等. ACR-g-VC复合粒子结构与对PVC的增韧效率.高分子学报,2005,(1):47~52
    [18] Pan M W, Zhang L C, Yuan J F, et al. Rheological behavior and thermal properties of poly(butyl acrylate-co-2-ethylhexyl acrylate)-grafted vinyl chloride resin. Journal of Applied Polymer Science, 2005, 95: 419~426
    [19] Moulay S. Chemical modification of poly (vinyl chloride)-still on the run. Progress in Polymer Science, 2010, 35(3): 303~331
    [20]朱新生,石小丽,周正华,等. PVC化学改性研究进展,聚氯乙烯,2008,36(6):1~9
    [21]王宝星,万耿平,赵季若,等. PVC氯化原位接枝丙烯酸的合成和表征.塑料工业,2008,36(5):13~15
    [22] Zhao J R, Li J Y, Feng Y,et a1. A new approach to synthesize graft copolymers of CPVC and CPE-in-situ chlorinating graft copolymerization. Polymer Advanced Technology, 2007, 18(10): 822~828
    [23]张润鑫,王玉玲,冯莺,等.苯乙烯氯化原位接枝改性氯化聚氯乙烯的研究.工程塑料应用,2006,34(6):5~8
    [24]刘诚,李杨,张春庆,等.接枝共聚物分子设计及合成方法研究进展.高分子通报,2009,(5):36~41
    [25]孙载坚,周普,刘启澄,等.接枝共聚合.北京:化学工业出版社,1992. 4
    [26] Martínez G, De Santos E, Luis Millán J. Synthesis of PVC-graft-PMMA Through Stereoselective Nucleophilic Substitution on PVC. Macromolecular Chemistry and Physics, 2001, 202: 2377~2386
    [27]王文俊,董宇平.通过原子转移自由基聚合对聚氯乙烯进行化学改性.材料工程. 2002,(4):6~8
    [28]樊文静,唐晓朝,揣成智.熔融接枝改性PVC树脂的研究.塑料科技,2009,37(11):36~38
    [29] García-Casta?eda C, Benavides R, Martínez-Pardo M E. Crosslinking of rigid PVC by ionizing radiation to improve its thermal properties. Radiation Physics and Chemistry, 2010, 79(3): 335~338
    [30]聂积,吉玉碧,徐国敏,等.交联软质PVC的制备及表征.塑料工业,37(12):48~51
    [31]齐锴亮,张广成,史爱华,等.异氰酸酯交联聚氯乙烯泡沫塑料的制备研究.应用化工,2010,39(1):56~60
    [32]郑辉林,李志君,赵红磊.物理增韧改性PVC的机理与研究进展.热带农业科学,2007,27(3):74~78
    [33] Yee A F, Pearson R A. Toughening mechanisms in elastomer-modified epoxies, Part 1: Mechanical studies. Journal of materials science, 1986, 21(7): 2462~2474
    [34] Donald A M, Kramer E J. The competition between shear deformation and crazing in glassy polymers. Journal of Materials Science, 1982, 17(7): 1871~1879
    [35] Wu S. A generalized criterion for rubber toughening: The critical matrix ligament thickness. Journal of Applied Polymer Science, 1988, 35(2): 549~561
    [36] Margolina A, Wu S H. Percolation model for brittle-tough transition in nylon/rubber blends. Polymer, 1988, 29(12): 2170~2173
    [37] Margolina A. Toughening mechanism for nylon/rubber blends: the effect of temperature. Polymer Communication, 1990, 31(3): 95~96
    [38] Wu S H. Control of intrinsic brittleness and toughness of polymers and blends by chemical structure: a review. Polymer international, 1992, 29(3): 229~247
    [39] Dompas D, Groeninckx G. Toughening behavior of rubber-modified thermoplastic polymers involving very small rubber particles. Polymer, 1994, 35(22): 4743~4765
    [40]冯霞.聚氯乙烯增韧改性的研究现状.山东化工,2007,36(4):21~24
    [41]彭静,乔金梁,魏根栓.橡胶增韧塑料机理.高分子通报,2001,(5):13~24
    [42]刘国才,于淑娟,陈龙.聚氯乙烯冲击改性剂的研究现状及发展趋势.塑料科技,2006,34(3):50~53
    [43]左建东,龚攀.核壳型粒子改性聚氯乙烯的发展.现代塑料加工应用,2006,18(5):61~64
    [44]许鹏,张宇. CPE、抗冲ACR在PVC中的热老化和光老化性能研究.聚氯乙烯,2007,5:19~21
    [45]晓铭. PVC加工助剂ACR的生产应用及发展前景.精细化工原料及中间体,2009,10:18~21
    [46]温绍国,包永忠,黄志明. ACR-g-VC共聚物的合成与性能研究.中国塑料,2001,15(3):47~50
    [47] Pan M W, Xing S N, Yuan J F, et al. Synthesis and Characterization of poly(butyl acrylate-co-ethylhexyl acrylate)/poly(vinyl chloride) P(BA-EHA)/PVC novel core-shell modifier and its impact modification for a poly(vinyl chloride)-based blend. Polymer Engineering & Science. 2010, 50(6): 1085~1094
    [48]沈辉,张德震,唐颂超,等.新抗冲型ACR的合成与研究.塑料工业,2007,35:124~126
    [49] Wu G F, Zhao J F, Ji H T, et al. The influence of core-shell structured modifiers on the toughness of poly(vinyl chloride). European Polymer Journal, 2004, 40: 2451~2456
    [50] Chen X D, Wang J S, Shen J R. Effect of the shell thickness of methacrylate-butadiene-styrene core-shell impact modifier on toughening polyvinyl chloride. Journal of Polymer Research, 2006, 13: 335~341
    [51] Chen X D, Wang J S, Shen J R. Effect of UV-irradiation on poly(vinyl chloride) modified by methyl methacrylate butadiene styrene copolymer. Polymer Degradation and Stability, 2005, 87(3): 527~533
    [52]景晨丽,陈立新,宋家乐,等. PVC增韧改性新进展.国外塑料,2006,24(8):35~39
    [53]聂颖.我国PVC加工和抗冲击改性剂的生产现状及发展前景.精细化工原料及中间体,2009,(8):37~41
    [54]白艳,林金辉,周世一.无机刚性粒子增韧PVC研究进展,中国非金属矿工业导刊,2009,(1):23~25
    [55]刘希荣,朱德钦,生瑜,等. PVC/木粉复合材料抗冲改性研究.聚氯乙烯,2009,37(1):25~29
    [56]熊英,陈光顺,郭少云.聚氯乙烯增韧改性研究进展.聚氯乙烯,2004,2:1~5
    [57] Imren D. Compatibilization of immiscible poly(vinyl chloride)(PVC)/polystyrene(PS) blends with maleic anhydride-styrene-vinyl acetate terpolymer(MAStVA). Journal of Molecular Structure, 2010, 963(2): 245~249
    [58] Peng J, Wei G S, Zhang Y D. Studies on mechanical and rheological properties of poly(vinyl chloride) modified with elastomers and rigid organic paticle. Journal of Applied Polymer Science. 2003, 88(10): 2478~2483
    [59]高凤芹,宁荣昌. PVC共混增韧改性研究进展.塑料工业,2006,34:65~68
    [60]司小燕,郑水蓉,王熙.聚氯乙烯增韧改性的研究进展.合成材料老化与应用,2007,36(3):37~41
    [61]黄润波,钟司,杨科,王洪.苯丙乳液的制备及其稳定性的研究.绵阳师范学院学报. 2010,29(8):40~43
    [62]燕冲,张心亚,黄洪等.苯丙乳液最新研究进展.粘结,2007,28(5):45~48
    [63]接瑜,张毅民,王虹,等.苯丙乳液聚合稳定性研究.化学工业与工程,2007,24(1):40~43
    [64]邓宝祥,于瑞香,赵梅仙.苯丙乳液的合成及其性能研究.天津工业大学学报,2005,23(3):32~34
    [65] Lee C F. Kinetcics of the emulsion copolymerization of styrene and butylacylate. Polymer Journal, 2000, 32(8): 642~650
    [66]徐小波,邓宝祥,郑海涛,等.反应性乳化剂对苯丙乳液合成及性能的影响.中国胶粘剂,2008,17(12):5~8
    [67] Gu S J, Wang Y P, Zhang F A. Study on acrylic emulsion with core-shell structure containing high hydroxyl content. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2005, 42(6): 771~781
    [68] Tang L S, Yang J W, Yin Y B. Effect of water-soluble monomers on emulsifier-minor emulsion polymerization of butylacrylate-methacrylic acid-styrene and properties of the latices. Journal of Applied Polymer Science, 2006, 99(3): 796~801
    [69] Julthongpiput D, Lin Y H, Teng J, et al. Y-shaped amphiphilic brushes with switchable micellar surface structures. Journal of the American Chemical Society, 2003, 125(51): 15912~15921
    [70] Sherman R L, Ford W T. Small core/thick shell polystyrene/poly(methyl methacrylate) latexes. Industrial & Engineering Chemistry Research, 2005, 44(23), 8538~8541
    [71] Herrera V, Pirri R, Leiza J R, et al. Effect of in-situ-produced block copolymer on latex particle morphology. Macromolecules, 2006, 39(20): 6969~6974
    [72] Wang J X, Wen Y Q, Hu J P, et al. Fine control of the wettability transition temperature of colloidal-crystal films: from superhydrophilic to superhydrophobic. Advanced Functional Materials, 2007, 17(2): 219~225
    [73] Wang T, Wang M Z, Zhang Z C, et al. Preparation of core(PBA/layered silicate)-shell(PS) structured complex viaγ-ray radiation seeded emulsion polymerization. Materials Letters, 2006, 60(20): 2544~2548
    [74] Mu Y C, Qiu T, Li X Y. Monodisperse and multilayer core-shell latex via surface cross-linking emulsion polymerization. Materials Letters, 2009, 63(18-19): 1614~1617
    [75] Zhang Y W, Jiang J Q, Liang Q H, et al. Modification of halloysite nanotubes with poly(styrene-butyl acrylate-acrylic acid) via in situ soap-free graft polymerization. Journal of Applied Polymer Science, 2010, 117(5): 3054~3059
    [76] Pan M W, Zhang L C. Preparation and characterization of poly(butyl acrylate-co -2-ethylhexyl acrylate) grafting of vinyl chloride resin with good impact resistance. Journal of Applied Polymer Science, 2003, 90(3): 643~649
    [77]邢胜男,潘明旺,张晓蕾,等. P(BA-EHA)/PDCPA/PVC改性剂的合成与共混改性聚氯乙烯研究.河北师范大学学报自然科学版,2007,31(1):77~80
    [78]武佳韦,潘明旺,袁金凤,等. SBA/PVC复合树脂的制备与表征.高分子学报,2009,(7):613~619
    [79]曹同玉,刘庆普.胡金生.聚合物乳液合成原理性能应用.第二版,北京:化学工业出版社,2007:406
    [80]卢素敏,王洪卫.苯丙乳液聚合粒度影响因素的研究.化工时刊,2004,18(12):47~48
    [81]张洪涛,黄锦霞.乳液聚合新技术及应用.北京:化学工业出版社,2006. 49~56
    [82]邵谦,王成国,郑衡,等.种子乳液聚合的研究进展.高分子通报,2007,(10):57~61
    [83]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学.第三版,北京:高等教育出版社,2005:245~246
    [84]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能应用.第二版,北京:化学工业出版社,2007. 74
    [85] Pretsch E, Bühlmann P, Affolter C.波谱数据表:有机化合物的结构解析.第三版.上海:华东理工大学出版社,2002. 221~222
    [86] Fulmer G R, Miller A J M, Sherden N H, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 2010, 29(9): 2176~2179
    [87] Cruz-Rivera A, Rios-Guerrero L, Monnet C, et al. Structure-property relationships in styrene-butyl acrylate emulsion copolymers: 1. Preparation and characterization of latexes. Polymer, 1989, 30(10): 1872~1882
    [88]潘祖仁.高分子化学.第三版.北京:化学工业出版社,2002. 78
    [89]袁金凤.聚丙烯酸酯类纳米微粒与乙烯基单体接枝共聚复合及其对PVC改性的研究:[博士学位论文].天津:河北工业大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700