数据驱动的故障诊断与容错控制系统设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态系统的安全性和可靠性越来越多地受到人们的重视,这些要求不仅局限于核反应堆、化工过程和航天、航空飞行器等安全性要求高的大型工业生产和军用系统,而且己经扩展到诸如车辆控制、人工智能机器人等新型系统。有效的故障诊断与容错控制技术能够为现代控制系统长寿命、可靠运行提供有力保障。因此,深入研究故障诊断与容错控制技术,具有重要的理论意义和实际应用价值。
     目前,基于机理建模的故障诊断与容错控制系统设计理论己经比较完善,但是将实际系统抽象为机理模型并且确定模型参数仍然需要工程师花费大量的时间与精力。另一方面,实际系统存在大量离线和在线的输入、输出数据,这启发人们思考如何使用数据取代机理模型,设计故障诊断与容错控制系统。
     本论文针对离散线性时不变系统,从理论上深入研究数据驱动的故障诊断与容错控制系统设计方法,主要内容如下:
     针对离散线性时不变系统,提出一种数据驱动的鲁棒故障诊断系统设计方法。该方法基于离线数据辨识等价空间,根据H2性能指标,分别针对传感器和执行器故障,设计鲁棒故障检测、降阶鲁棒故障检测、鲁棒故障隔离和鲁棒故障识别的残差生成器。与现有的数据驱动的故障诊断系统设计方法相比,本文方法设计的残差信号对故障灵敏度高,对干扰鲁棒性强,提高了故障诊断系统的有效性。
     针对离散线性时不变系统,提出一种数据驱动的参数化控制器设计方法。该方法基于己辨识的等价空间,在数据驱动的残差生成器基础上,设计数据驱动的扩展内模控制器;在降阶等价空间设计算法基础上,设计SISO系统的Youla参数化控制器;在全状态观测器基础上,进一步设计MIMO系统的Youla参数化控制器,实现基本的控制性能。
     针对Youla参数化控制器,提出一种数据驱动的控制器优化方法,残差整定法(RbT)。该方法利用残差数据估计二次性能指标的梯度值,采用梯度下降法整定Youla参数,实现扰动抑制。本文理论上给出RbT算法的收敛性条件、全局最优条件和精度分析,工程上设计扩展RbT (ERbT)算法,在线优化控制器参数。
     针对二自由度的Youla参数化控制器,提出一种数据驱动的容错控制器设计方法,残差迭代反馈整定法(RIFT)。该方法采用残差数据设计闭环实验并估计二次性能指标的梯度值,基于梯度下降法重构Youla参数矩阵和前馈增益,实现容错控制目的。本文分别给出单入单出(SISO)和多入多出(MIMO)系统的RIFT算法,并进一步讨论了RIFT的实验次数问题。
The increasing demands on safety and reliability of dynamic systems have receivedmuch attention from people. These requirements have extended from those nuclear re-actor, chemical industry process, aerospace vehicle systems, etc. to new systems such asautonomous vehicles or intelligent robots. An efective fault diagnosis and fault-tolerantcontrol is of prime importance for the strong support on safety and reliability. Hence,the study on fault diagnosis and fault-tolerant control technology has both theoretical andpractical importance.
     Although the model-based fault diagnosis and fault-tolerant control theory has beenwell-established, it is still difcult to establish mathematical models by means of the frstprinciple for complicated plants. On the other hand, a large amount of historical datafrom regular sensor measurements, event-logs and records are often available. Motivatedby this observation, it is of great interest to design fault diagnosis and fault-tolerant con-trol schemes based on efcient data-driven design methods of fault diagnosis and fault-tolerant schemes instead of model-based methods.
     This dissertation focuses on the data-driven design of fault diagnosis and fault-tolerant control systems for discrete linear time-invariant (LTI) systems. The main contri-butions of this dissertation can be summarized as follows:
     For discrete LTI systems, a data-driven design method of robust fault diagnosissystems is proposed, in which the well-established parity space and parity vectors areidentifed directly by of-line data. Based on the H2performance index, residual genera-tions for robust fault detection, robust reduced order fault detection, robust fault isolationand robust fault identifcation are constructed for sensor and actuator faults, respectively.Compared with the existing data-driven design method of fault diagnosis, the proposedmethod in this dissertation generates residuals keeping sensitivity to faults and robustnessto disturbances, and thus improves the robustness of fault diagnosis systems.
     For discrete LTI systems, this dissertation proposes a data-driven design methodof parametrization controllers. The proposed method studies the data-driven design ofthe extended Internal Model Controllers (EIMC) based on the identifed parity space andthe residual generation, the data-driven design of observer-based Youla parametrization controllers for SISO and MIMO systems based on the reduced order parity space and fullstate observers, respectively.
     Based on Youla parametrization, a residual data-based tuning method for Youla pa-rameters, denoted as residual-based tuning (RbT), is proposed. This method exploitsresidual signals for estimating the gradient of the cost function and based on an iterativedescent algorithm to tune Youla parameters for disturbance rejection. In the theoreticalview, the convergence issue, the global optimum condition and the asymptotic accuracyare given. In the view of engineering, an extended RbT (ERbT) algorithm is proposed tooptimize Youla parameters online.
     Based on a two degrees-of-freedom (2-DOF) Youla parametrization structure, thisdissertation proposes a novel residual-based iterative feedback tuning method, denotedas residual iterative feedback tuning (RIFT). This method feeds back residuals into theclosed loop, estimates the gradient of the cost function via set of experiments and thenachieves a fault-tolerant control based on the iterative descent algorithm. For single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) plants, two RIFTalgorithms are developed, respectively. The number of experiments of MIMO plants isfurther discussed.
引文
[1]Niederlinski A. A heuristic approach to the design of interacting multivariable systems[J]. Automatica,1971,7(6):691-701.
    [2]Isermann R, Balle P. Trends in the application of model-based fault detection and diagnosis of technical processes[J]. Control Engineering Practice,1997,5(5):709-719.
    [3]VanSchrick D. Remarks on terminology in the field of supervision, fault detec-tion and diagnosis[C]//Proc. of the IFAC Symposium on Fault Detection, Supervi-sion and Safety for Technical Processes (SAFEPROCESS'97). Hull, UK:[s.n.],1997:959-964.
    [4]崔平.LPV系统的鲁棒故障估计与主动容错控制[D].[S.1.]:上海交通大学,2008.
    [5]周东华,王贵增.故障诊断技术综述[J].化工自动化及仪表,1998,25(1):58-62.
    [6]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results[J]. Automatica,1990,26(3):459-474.
    [7]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
    [8]Venkatasubramanian V, Rengaswamy R, Yin K. A review of process fault detec-tion and diagnosis, part I:Quantitative model-based methods[J]. Computers and Chemical Engineering,2003,27(3):293-311.
    [9]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758.
    [10]Chen J, Patton R J. Robust model-based fault diagnosis for dynamic systems[M]. Boston:Kluwer Academic Press,1999.
    [11]Huber R, McCulloch B. Self-repairing flight control system[R].[S.I.]:Society of Automotive Engineers,400Commonwealth Dr. Warrendale, PA, USA,1984.
    [12]Edwards C, Lombaerts T, Smaili H. Fault tolerant flight control:A benchmark challenge[M]. Berlin:Springer Verlag,2010.
    [13]Beard R. Failure accommodation in linear systems through self-reorganization[D].[S.1.]:Massachusetts Institute of Technology,1971.
    [14]Mehra R K, Peschon J. An innovation approach to fault detection and diagnosis in dynamics[J]. Automatica,1971,7(5):637-640.
    [15]Willsky A S. A survey of design methods for failure detection in dynamic system-s[J]. Automatica,1976,12(6):601-611.
    [16]Himmelblau D M. Fault detection and diagnosis in chemical and petrochemical process[M]. Amsterdam:Elsevier Press,1978.
    [17]Patton R J, Frank P M. Fault diagnosis in dynamic systems, theory and applica-tions[J]. NJ:Prentice-Hall:Englewood Cliffs,1989.
    [18]Basseville M, Nikiforov I. Detection of abrupt changes-theory and applica-tion[M]. New York:Prentice-Hall,1993.
    [19]Gertler J. Fault detection and diagnosis in engineering systems[M]. New York: Marcel Dekker,1998.
    [20]Blanke M, Kinnaert M, Lunze J, et al. Diagnosis and fault-tolerant Control[M]. Berlin:Springer,2003.
    [21]Patton R J, Frank P M, Clark R N. Issues of fault diagnosis for dynamic system-s[M]. London:Springer,2000.
    [22]Isermann R. Fault diagnosis systems[M]. Berlin:Springer-Verlag,2006.
    [23]Ding S X. Model-based fault diagnosis techniques:Design schemes, algorithms and tools[M]. Berlin:Springer-Verlag,2008.
    [24]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制,1985,15(6):27-34.
    [25]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社,1994.
    [26]张育林,李东旭.动态系统故障诊断理论与应用[M].长沙:国防科技大学出版社,1997.
    [27]闻新,张洪起等.控制系统的故障诊断和容错控制[M].北京:机械工业出版社,2000.
    [28]胡昌华,许化龙.控制系统故障诊断与容错控制的分析和设计[M].北京:国防工业出版,2000.
    [29]王仲生.智能故障诊断与容错控制[M].西安:西北工业大学出版社,2005.
    [30]姜斌,冒泽慧等.控制系统的故障诊断与故障调节[M].北京:国防工业出版社,2009.
    [31]Patton R J. Robustness in model-based fault diagnosis:1995situation[J]. Annual Reviews in Control,1997,21:103-123.
    [32]Frank P M, Ding X. Survey of robust residual generation and evaluation methods in observer-based fault detection systems[J]. Journal of Process Control,1997,7(6):403-424.
    [33]Chow E Y, Willsky A S. Analytic redundancy and the design of robust fault detec-tion systems[J]. IEEE Transaction on Automatic Control,1984,29(7):603-614.
    [34]Isermann R. Process fault diagnosis based on modeling and estimation methods-A survey [J]. Automatica,1984,20(4):387-404.
    [35]Isermann R, Freyermuth B. Process fault diagnosis based on process model knowledge-Part I:Principles for fault diagnosis with parameter estimation[J]. Jour-nal of Dynamic Systems, Measurement, and Control,1991,113(4):620-626.
    [36]Isermann R, Freyermuth B. Process fault diagnosis based on process model knowledge-Part II:Case-study experiments [J]. Journal of Dynamic Systems, Mea-surement, and Control,1991,113(4):627-633.
    [37]Isermann R. Supervision, fault-detection and fault-diagnosis methods-an introduc-tion[J]. Control Engineering Practice,1997,5(5):639-652.
    [38]Willsky A S, Jones H L. A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems[J]. IEEE Transactions on Automatic Control,1976,21(1):108-121.
    [39]Clark R N, Fosth D C, Walton V M. Detecting instrument malfunctions in control systems[J]. IEEE Transactions on Aerospace and Electronic Systems,1975, AES-11(4):465-473.
    [40]Clark R N. Instrument fault detection[J]. IEEE Transactions on Aerospace and Electronic Systems,1978, AES-14(3):456-465.
    [41]Clark R N. A simplified instrument failure detection scheme[J]. IEEE Transactions on Aerospace and Electronic Systems,1978, AES-14(4):558-563.
    [42]Frank P M. Fault diagnosis in dynamic system via state estimation-a survey [J]. System Fault Diagnostics, Reliability&Related Knowledge-based Approaches,1987,1:35-98.
    [43] Bolivar A R, Garcia G, Szigeti F, et al. A fault detection and isolation flter for lin-ear systems with perturbations[C]//Proc. of the IFAC14th world congress. Beijing,China:[s.n.],1999:563–568.
    [44] Duan G R, Patton R J. Robust fault detection in linear systems using Luenbergerobservers[C]//Proc. of’98. UKACC International Conference. Swansea, UK:[s.n.],1998:1468–1473.
    [45] Tarantino R, Szigeti F, ColinaMorles E. Generalized Luenberger observer-basedfault detection flter design: an industrial application[J]. Control Engineering Prac-tice,2000,8(6):665–671.
    [46] Theilliol D, M M M, Sauter D, et al. Actuator fault detection, isolation methodand state estimator design for hot rolling mill monitoring[C]//Proc. of the6th I-FAC Symposium on Fault Detection, Supervision and Safety of Technical Process.Beijing, China:[s.n.],2006:895–900.
    [47] Wang H, Daley S. Actuator fault diagnosis: An adaptive observer-based tech-nique[J]. IEEE Transaction on Automatic Control,2000,47(1):1073–1078.
    [48] Zhang K, Jiang B, Cocquempot V. Adaptive observer-based fast fault estimation[J].International Journal of Control Automation and Systems,2008,6(3):320–326.
    [49] Zhang K, Jiang B, Shi P. Fast fault estimation and accommodation for dynamicalsystems[J]. IET Control Theory and Applications,2009,3(2):189–199.
    [50] Chen J, Patton R J, Zhang H. Design of unknown input observers and robust de-tection flters[J]. International Journal of Control,1996,63(1):85–105.
    [51] Martinez-Guerra R, Diop S. Diagnosis of nonlinear systems using an unknown-input observer: an algebraic and diferential approach[J]. IEE Proceedings-controlTheory and Applications,2004,151(1):130–135.
    [52] Duan G R, Patton R J. Robust fault detection using Luenberger-type unknown inputobservers-a parametric approach[J]. International Journal of Systems Science,2004,32(4):533–540.
    [53] Zheng Y, Fang H, Wang H. Takagi-Sugeno fuzzy-model-based fault detection fornetworked control systems with Markov delays[J]. IEEE Transactions on SystemsMan and Cybernetics Part B-Cybernetics,2006,36(4):924–929.
    [54] Wu L, Daniel W C. Fuzzy flter design for stochastic systems with application tosensor fault detection[J]. IEEE Transactions on Fuzzy Systems,2009,17(1):924–929.
    [55] Edwards C, Spurgeon S K, Patton R J. Sliding mode observers for fault detectionand isolation[J]. Automatica,2000,36(4):541–553.
    [56] Tan C P, Edwards C. Sliding mode observers for detection and reconstruction ofsensor faults[J]. Automatica,2002,38(10):1815–1821.
    [57] Edwards C, Tan C P. Sensor fault tolerant control using sliding mode observers[J].Control Engineering Practice,2006,14(8):897–908.
    [58] Medvedev A. Fault detection and isolation by a continuous parity space method[J].Automatica,1995,31(7):1039–1044.
    [59] Gertler J, Monajemy R. Generating directional residuals with dynamic parity rela-tions[J]. Automatica,1995,31(4):627–635.
    [60] Gertler J, Kunwer M K. Optimal residual decoupling for robust fault diagnosis[J].International Journal of Control,1995,61(2):395–421.
    [61] Patton R J, Chen J. Review of parity space application to fault-diagnosisfor aerospace systems[J]. Journal of Guidance Control and Dynamics,1994,17(2):278–285.
    [62] Ding X, Guo L, Jeinsch T. A characterization of parity space and its applica-tion to robust fault detection[J]. IEEE Transactions on Automatic Control,1999,44(2):337–343.
    [63] Ye H, Wang G Z, Ding S X. A new parity space approach for vault detectionbased on stationary wavelet transform[J]. IEEE Transactions on Automatic Con-trol,2004,49(2):281–287.
    [64] Zhang P, Ye H, Ding S X. On the relationship between parity space and H-2ap-proaches to fault detection[J]. System&Control Letters,2006,55(2):94–100.
    [65] Zhong M, Ding Q, Shi P. Parity space-based fault detection for Markovian jumpsystems[J]. International Journal of Systems Science,2009,40(4):421–428.
    [66] Magni J F, Mouyon P. On the residual generation by observer and parity spaceapproaches to fault detection[J]. IEEE Transaction on Automatic Control,1994,39(2):441–447.
    [67] Gertler J. Diagnosing parametric faults: from parameter estimation to pari-ty relation[C]//Proc. of the America Control Conference. Seattle, USA:[s.n.],1995:1615–1620.
    [68] Garcia E A,, Frank P M. On the relationship between observer and parameter iden-tifcation based approaches to fault detection[C]//Proc. of the IFAC world congress.San Francisco, USA:[s.n.],1996:25–29.
    [69] Ding S X, Ding E L, Jeinsch T. An approach to analysis and design of observerand parity relation based FDI systems[C]//Proc. of the14th IFAC world congress.Beijing, China:[s.n.],1999:37–42.
    [70] Patton R J, Chen J. Observer-based fault detection and isolation: robustness andapplications[J]. Control Engineering Practice,1997,5(5):671–682.
    [71] J J C, Zhang H Y. Robust detection of faulty actuators via unknown input observer-s[J]. International Journal of Systems Science,1991,22(10):1829–1839.
    [72] Hou M, Mueller P C. Disturbance decoupled observer design: A unifed view-point[J]. IEEE Transactions on Automatic Control,1994,39(6):1338–1341.
    [73] Chen J, Patton R J. Optimal fltering and robust fault-diagnosis of stochastic-systems with unknown disturbances[J]. IEE Proceedings-D: Control Theory andApplication,1996,143(1):31–36.
    [74] Lou X, Willsky A S, Verghese G C. Optimally robust redundancy relations forfailure detection in uncertain systems[J]. Automatica,1986,22(3):333–344.
    [75] Gertler J, Singer D. A new structural framework for parity equation-based failuredetection and isolation[J]. Automatica,1990,26(2):381–388.
    [76] Ding X, Guo L, Jeinsch T. An approach to time domain optimization of observer-based fault detection systems[J]. International Journal of Control,1998,69(3):419–442.
    [77] Patton R J, Willcox S W, Winter S J. A parameter insensitive technique for air-craft sensor fault analysis[J]. Journal of Guidance, Control and Dynamics,1987,10(3):359–367.
    [78] Patton R J, Chen J. Robust fault detection using eigenstructure assignment: Atutorial consideration and some new results[C]//30th IEEE Conference on Decisionand Control. Brighton, UK:[s.n.],1991:2242–2247.
    [79] Chung W H, Speyer J L. A game theoretic fault detection flter[J]. IEEE Transac-tions on Automatic Control,1998,43(2):143–161.
    [80] Rank M L, Niemann H. Norm based design of fault detectors[J]. InternationalJournal of Control,1999,72(9):773–783.
    [81] Ding S X, Jeinsch T, Frank P M, et al. A unifed approach to the optimization offault detection systems[J]. International Journal of Adaptive Control and SignalProcessing,2000,14(7):725–745.
    [82] Edelmayer A, Bokor J. Optimal H∞scaling for sensitivity optimization of detectionflters[J]. International Journal of Robust and Nonlinear Control,2002,12(8):749–760.
    [83] Zhong M, Ding S X, Lam J, et al. An LMI approach to design robust fault detectionflters for uncertain LTI systems[J]. Automatica,2003,39(3):543–550.
    [84] Khosrowjerdi M J, Nikoukhah R, Safari-Shad N. A mixed H2/H∞approach tosimultaneous fault detection and control[J]. Automatica,2004,40(2):261–267.
    [85] Henry D, Zolghadri A. Design and analysis of robust residual generators for sys-tems under feedback control[J]. Automatica,2005,41(2):251–264.
    [86] Liu J, Wang J L, Yang G H. An LMI approach to minimum sensitivity analysiswith application to fault detection[J]. Automatica,2005,41(11):1995–2004.
    [87] Khosrowjerdi M J, Nikoukhah R, Safari-Shad N. Fault detection in a mixed H2/H∞setting[J]. IEEE Transactions on Automatic Control,2005,50(7):1063–1068.
    [88] Jaimoukha I M, Li Z, Papakos V. A matrix factorization solution to the H/H∞fault detection problem[J]. Automatica,2006,42(11):1907–1912.
    [89] Zhang P, Ding S X. An integrated trade-of design of observer based fault detectionsystems[J]. Automatica,2008,44(7):1886–1894.
    [90] Emami-Naeini A, Akhter M, Rock S. Efect of model uncertainty on failure detec-tion: The threshold selector[J]. IEEE Transactions on Automatic Control,1988,33(12):1106–1115.
    [91] Frank P M, Ding X. Frequency domain approach to optimally robust residualgeneration and evaluation for model-based fault diagnosis[J]. Automatica,1994,30(5):789–904.
    [92] Johansson A, Bask M, Norlander T. Dynamic threshold generators for robustfault detection in linear systems with parameter uncertainty[J]. Automatica,2006,42(7):1095–1106.
    [93] Basseville M. Detecting changes in signals and systems-A survey[J]. Automatica,1988,24(3):309–326.
    [94] Zhang Q, Basseville M, Benveniste A. Early warning of slight changes in system-s[J]. Automatica,1994,30(1):95–114.
    [95]McDonough R N, Whalen A. Detection of signals in noise[M]. New York:Aca-demic Press Limited,1995.
    [96]Lai T L, Shan J Z. Efficient recursive algorithms for detection of abrupt changes in signals and control systems[J]. IEEE Transactions on Automatic Control,1999,44(5):952-966.
    [97]Basseville M, Abdelghani M, Benveniste A. Subspace-based fault detection algo-rithms for vibration monitoring [J]. Automatica,2000,36(1):101-109.
    [98]Gustafsson F. Adaptive Filtering and Change Detection[M]. New York:John Wiley and Sons,2000.
    [99]Qin S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control,2012,36(2):220-234.
    [100]李晗,萧德云.基于数据驱动的故障诊断方法综述[J].控制与决策,2011,26(1):1-9.
    [101]Doganaksoy N, Faltin F W, Tucker W T. Identification of out of control quality characteristics in a multivariate manufacturing environment[J]. Communications in Statistics-Theory and Methods,1991,20(9):2775-2790.
    [102]Fuchs C, Kenett R S. Multivariate quality control:Theory and application[M]. New York:Marcel Dekker,1998.
    [103]Jolliffe I T. Principal component analysis[M]. New York:Springer,2002.
    [104]Jackson J E. Quality control methods for several related variables [J]. Technomet-rics,1959,1(4):359-377.
    [105]Jackson J E, Mudholkar G S. Control procedures for residuals associated with principal component analysis[J]. Technometrics,1979,21(3):341-379.
    [106]Alcala C F, Qin S J. Reconstruction-based contribution for process monitoring [J]. Automatica,2009,45(7):1593-1600.
    [107]Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation,1998,10(5):1299-1319.
    [108]Gelada P, Kowalski B. Partial least-squares regression:a tutorial[J]. Analytica Chimica Acta,1986,185(11):1-17.
    [109]Naes T, Helland I. Relevant components in regression [J]. Scandinavian Journal of Statistics,1993,20(3):239-250.
    [110]Mehmood T, Liland K H, Snipen L, et al. A review of variable selection methods in partial least squares regression[J]. Chemometrics and Intelligent Laboratory Systems,2012,118:62-69.
    [111]Wang J, Qin S J. A new subspace identification approach based on principal com-ponent analysis [J]. Journal of Process Control,2002,12(8):841-885.
    [112]Li W, Qin S J. Consistent dynamic PCA based errors-in-variables subspace identi-fication[J]. Journal of Process Control,2001,11(6):661-678.
    [113]Wang J, Qin S J. Closed-loop subspace identification using the parity space[J]. Automatica,2006,42(2):315-320.
    [114]Ding S X, Zhang P, Naik A, et al. Subspace method aided data-driven design of fault detection and isolation systems[J]. Journal of Process Control,2009,19(9):1496-1510.
    [115]Dong J, Verhaegen M. Identification of fault estimation filter from I/O data for systems with stable inversion[J]. IEEE Transactions on Automatic Control,2012,57(6):1347-1361.
    [116]Steven S X, Yin S, Wang Y, et al. Data-driven design of observers and its ap-plications [C]//Proc. of the18th IFAC World Congress. Milano, Italy:[s.n.],2011:11441-11446.
    [117]Siljak D D. Reliable control using multiple control sy stems [J]. International Jour-nal of Control,1980,31(1):303-329.
    [118]Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control,2008,32(2):229-252.
    [119]Jiang J, Yu X. Fault-tolerant control systems:A comparative study between active and passive approaches [J]. Annual Reviews in Control,2012,36(1):60-72.
    [120]叶银忠,潘日芳,蒋慰孙.多变量稳定容错控制器的设计问题[M]//.[S.1.]:[s.n.],1987:203-209.
    [121]葛建华,孙优贤.容错控制系统的分析与综合[M].杭州:浙江大学出版社,1994.
    [122]周东华,Ding X.容错控制理论及其应用[J].自动化学报,2000,26(6):788-797.
    [123]Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration[J]. Automatica,1985,21(5):599-602.
    [124] Veillette R J, Medanic J V, Perkins W R. Design of reliable control systems[J].IEEE Transactions on Automatic Control,1992,37(3):290–304.
    [125] Murray J, Saeks R. Fractional representation, algebraic geometry, and the simul-taneous stabilization problem[J]. IEEE Transactions on Automatic Control,1982,24(4):895–903.
    [126] Olbrot A W. Robust stabilization of uncertain systems by periodic feedback[J].International Journal of Control,1987,45(3):747–758.
    [127] Kabamba P T, Yang C. Simultaneous controller design for linear time-invariantsystems[J]. IEEE Transactions on Automatic Control,1991,36(1):106–111.
    [128] Morari M. Robust stability of systems with integral control[J]. IEEE Transactionson Automatic Control,1985,30(6):574–577.
    [129] Morari D D, Halyo N, Broussard J R, et al. Application of precomputed controllaws in a reconfgurable aircraft flight control system[J]. Journal of Guidance,Control, and Dynamics,1989,12(3):325–333.
    [130] Zhang Y, Jiang J. Integrated active fault-tolerant control using IMM approach[J].IEEE Transactions on Aerospace and Electronic Systems,2002,37(4):1221–1235.
    [131] Yen G, Ho L. Online multiple-model-based fault diagnosis and accommodation[J].IEEE Transactions on Industrial Electronics,2003,50(2):296–312.
    [132] Ichtev A. Multiple fuzzy models for fault-tolerant control[J]. International Journalof Fuzzy Systems,2003,5(1):31–40.
    [133] Boskovic J D, Jackson J A, Mehra R K, et al. Multiple-model adaptive fault-tolerantcontrol of a planetary lander[J]. Journal of Guidance, Control, and Dynamics,2009,32(6):1812–1826.
    [134] Seron M, Zhuo X, DeDona J, et al. Multisensor switching control strategy withfault tolerance guarantees[J]. Automatica,2008,44(1):88–97.
    [135] Seron M, DeDona J. Actuator fault tolerant multi-controller scheme using set sep-aration based diagnosis[J]. International Journal of Control,2010,83(11):2328–2339.
    [136] Jiang B, Yang H, Shi P. Switching fault tolerant control design via global dissipa-tivity[J]. International Journal of Systems Science,2010,41(8):1003–1012.
    [137] Tao G, Joshi S, Ma X. Adaptive state feedback and tracking control of systems withactuator failures[J]. IEEE Transactions on Automatic Control,2001,46(1):78–95.
    [138] Chen S, Tao G, Joshi S. On matching conditions for adaptive state tracking controlof systems with actuator failures[J]. IEEE Transactions on Automatic Control,2002,47(3):473–478.
    [139] Tao G, Chen S, Joshi S. An adaptive actuator failure compensation controller usingoutput feedback[J]. IEEE Transactions on Automatic Control,2002,47(3):506–511.
    [140] Stoustrup J, Grimble M, Niemann H. Design of integrated systems for the controland detection of actuator/sensor faults[J]. Sensor Review,1997,17(2):138–149.
    [141] Zhou K, Ren Z. A new controller architecture for high performance, robustand fault-tolerant control[J]. IEEE Transactions on Automatic Control,2001,46(10):352–366.
    [142] Niemann H. A setup for active fault diagnosis[J]. IEEE Transactions on AutomaticControl,2006,51(9):1572–1578.
    [143] Ding S X. Integrated design of feedback Controllers and fault detectors[J]. Annualreviews in control,2009,33(2):124–135.
    [144] Ding S X, Yang G, Zhang P, et al. Feedback control structures, embedded residualsignals, and feedback control schemes with an integrated residual access[J]. IEEETransactions on Control Systems Technology,2010,18(2):352–366.
    [145] of reconfgurable control systems using eigenstructure assignments D. J. Jiang[J].International Journal of Control,1994,59(2):395–410.
    [146] Reconfgurable control system design using eigenstructure assignment: static d,robust approaches. A. Ashari and A. Sedigh and M. Yazdanpanah[J]. InternationalJournal of Control,2005,78(13):1005–1016.
    [147] Gao Z, Panos J. Stability of the pseudo-inverse method for reconfgurable controlsystems[J]. International Journal of Control,1991,53(3):717–729.
    [148] Prakash J, Narasimhan S, Patwardhan S C. Integrating model based fault diag-nosis with model predictive control[J]. International Journal of Control,2005,44(12):4344–4360.
    [149] Keviczky T, Balas G. Software-enabled receding horizon control for autonomousunmanned aerial vehicle guidance[J]. Journal of Guidance Control and Dynamics,2006,29(3):680–694.
    [150]Hallouzi R, Verhaegen M. Fault-tolerant subspace predictive control applied to a Boeing747model[J]. Journal of Guidance Control and Dynamics,2008,31(4):873-883.
    [151]Rong H, Sundararajan N, Saratchandran P, et al. Adaptive fuzzy fault-tolerant con-troller for aircraft autolanding under failures[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(4):1586-1603.
    [152]Jiang B, Zhang K, Shi P. Integrated fault estimation and accommodation design for discrete-time Takagi-Sugeno fuzzy systems with actuator faults[J]. IEEE Transac-tions on Fuzzy Systems,2011,19(1):291-304.
    [153]Diao Y, Passino K. Stable fault-tolerant adaptive fuzzy/neural control for a turbine engine[J]. IEEE Transactions on Control Systems Technology,2001,9(3):494-509.
    [154]Liu X, Sun L, Chen K, et al. A neural network-based direct adaptive fault tol-erance flight control for control surface damage[J]. Procedia Engineering,2011,15(1):147-151.
    [155]Kucera V. Stability of discrete linear feedback systems[C]//Proc. of the6th In-ternational Federation of Automatic Control (IFAC) proceedings. World Congress. Boston, USA:[s.n.],1975.
    [156]Youla D C, Jabri H A, Bongiorno J J. Modern Wiener-Hopf Design of Op-timal Controllers:Part Ⅱ[J]. IEEE Transactions on Automatic Control,1976,21(3):1613-1618.
    [157]Zhou K, Doyle J C, Glover K. Robust and Optimal Control[M]. Upper Saddle River, New Jersey:Prentice-Hall,1996.
    [158]Ljung L. System Identification:Theory for the User[M]. New York:Prentice Hall,1998.
    [159]Qin S J. An overview of subspace identification[J]. Computer and Chemical Engi-neering,2006,10-12(3):1502-1513.
    [160]李幼凤,苏宏业,褚健.子空间模型辨识方法综述[J].化工学报,2006,57(3):473-479.
    [161]Overschee P V, Moor B D. Subspace identification for linear systems:Theory-implementation-applications[M]. Dordrecht:Kluwer Academic Publishers,1996.
    [162]Verhaegen M, Dewilde P. Subspace model identification part1. The output-error state-space model identification class of algorithms[J]. International journal of control,1992,56(5):1187-1210.
    [163]Verhaegen M, Dewilde P. Subspace model identification part2. Analysis of the el-ementary output-error state-space model identification algorithm[J]. International journal of control,1992,56(5):1211-1241.
    [164]Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations from input-output data[J]. Automatica,1994,30(1):61-74.
    [165]Overschee P V, Moor B D. N4SID:subspace algorithms for the identification of combined deterministic-stochastic systems[J]. Automatica,1994,30(1):75-93.
    [166]Overschee P V, Moor B P. A unifying theorem for three subspace system identifi-cation algorithms [J]. Automatica,1995,31(12):1853-1864.
    [167]Larimore W E. Statistical optimality and canonical variate analysis system identi-fication[J]. Signal Processing,1996,52(2):131-144.
    [168]Jansson M, Wahlberg B. A linear regression approach to state-space subspace system identification[J]. Signal Processing,1996,52(2):103-129.
    [169]Katayama T, Picci G. Realization of stochastic systems with exogenous inputs and subspace identification methods [J]. Automatica,1999,35(10):1635-1652.
    [170]Favoreel W, Overschee P V, Moor B P. Subspace state space system identification for industrial processes[J]. Journal of Process Control,2000,10(2-3):149-155.
    [171]Gustafsson T. Subspace identification using instrumental variable techniques[J]. Automatica,2001,37(12):2005-2010.
    [172]李幼凤,苏宏业,褚健.工业过程的子空间模型辨识[J].控制理论与应用,2007,24(5):803-806.
    [173]吴平.基于子空间的系统辨识及应用[D].[S.l.]:浙江大学,2009.
    [174]李幼凤.闭环子空间辨识方法及其应用[D].[S.l.]:浙江大学,2010.
    [175]Overschee P V, Moor B D. Continuous-time frequency domain subspace system identification[J]. Signal Processing,1996,52(2):179-194.
    [176]Ohsumi A, Kameyama K, Yamaguchi K. Subspace identification for continuous-time stochastic systems via distribution-based approach[J]. Automatica,2002,38(1):63-79.
    [177]McKelvey T, Akcay H, Ljung L. Subspace-based multivariable system identifica-tion from frequency response data[J]. IEEE Transactions on Automatic Control,1996,41(7):960-979.
    [178]Yang Z J, Sanada S. Frequency domain subspace identification with the aid of the w-operator[J]. Electrical Engineering in Japan,2000,132(1):46-56.
    [179]Verhaegen M. Application of a subspace model identification technique to identify LTI systems operating on closed-loop[J]. Automatica,1993,29(4):1027-1040.
    [180]Ljung L, McKelvey T. Subspace identification from closed loop data[J]. Signal Processing,1996,52(2):209-215.
    [181]Chiuso A, Picci G. Consistency analysis of some closed-loop subspace identifica-tion methods[J]. Automatica,2005,41(3):337-391.
    [182]Huang B, Ding S X, Qin S J. Closed-loop subspace identification:An orthogonal projection approach[J]. Journal of Process,2005,15(1):53-66.
    [183]Westwick D, Verhaegen M. Identifying MIMO Wiener systems using subspace model identification methods[J]. Signal Processing,1996,22(2):235-258.
    [184]Favoreel W, Moor B D, Overschee P V. Subspace identification of bilinear sys-tems subject to white inputs[J]. IEEE Transactions on Automatic Control,1999,44(6):1157-1165.
    [185]Verdult V, Verhaegen M. Subspace identification of multivariable linear parameter-varying systems[J]. Automatica,2002,38(5):805-814.
    [186]Favoreel W, B De. Moor, Gevers M, et al. Close-loop model-free subspace-based LQG-design[C]//Proc. of the7th Mediterranean Conference on Control and Au-tomation. Haifa, Israel:[s.n.],1999:1926-1939.
    [187]Huang B, Kadali R. Dynamic Modeling, Predictive Control and Control Monitor-ing:A Data-driven Subspace Approach[M]. New York:Springer-Verlag,2008.
    [188]Dong J, Verhaegen M. On the equivalence of close-loop subspace predictive con-trol with LQG[C]//Proc. of the47th IEEE Conference on Decision and Control. Cancun, Mexico:[s.n.],2008:4085-4090.
    [189]Hjalmarsson H, Gunnarsson S, Gevers M. A convergent iterative restricted com-plexity control design scheme[C]//Proc. of the33rd IEEE Conference on Decision and Control. Lake Buena Vista, USA:[s.n.],1994:1735-1740.
    [190]王卫红,侯忠生,霍海波,et al.基于数据驱动方法的控制器设计及其参数整定[J].系统科学与数学,2010,30(6):792-805.
    [191]颜文俊,刘哲,王维锐,et al.基于IFT方法的主动隔振控制器设计[J].控制工程,2012,19(2):324-327.
    [192]Hjalmarsson H. Iterative feedback tuning-An overview[J]. International Journal on Adaptive Control and Signal Processing,2002,16(5):373-395.
    [193]侯忠生,许建新.数据驱动控制理论及方法的回顾与展望[J].自动化学报,2009,35(6):373-395.
    [194]Hjalmarsson H, Gevers M, Gunnarsson S, et al. Iterative feedback tuning:theory and applications[J]. IEEE Control Systems Magazine,1998,18(4):26-41.
    [195]Hjalmarsson H. Efficient tuning of linear multivariable controllers using iterative feedback tuning[J]. International Journal on Adaptive Control and Signal Process-ing,1999,13(7):553-572.
    [196]Jansson H, Hjalmarsson H. Gradient approximations in iterative feedback tuning for multivariable processes[J]. International Journal on Adaptive Control and Sig-nal Processing,2004,18(8):665-681.
    [197]Hildebrand R, Lecchini A, Solari G, et al. A convergence theorem for iterative feedback tuning[R].[S.1.]:CESAME, Universite Catholique de Louvain, Belgium,2003. Tech. Rep.2003/17.
    [198]Hildebrand R, Lecchini A, Solari G, et al. Asymptotic Accuracy of Iterative Feed-back Tuning[J]. IEEE Transactions on Automatic Control,2005,50(8):1182-1185.
    [199]Hildebrand R, Lecchini A, Solari G, et al. Optimal Prefiltering in Iterative Feed-back Tuning[J]. IEEE Transactions on Automatic Control,2005,50(8):1196-1200.
    [200]Huusom J K, Poulsen N K, Jorgensen S B. Improving convergence of iterative feedback tuning [J]. Journal of Process Control,2009,19(4):570-578.
    [201]Huusom J K, Hjalmarsson H, Poulsen N K, et al. A design algorithm using exter-nal perturbation to improve iterative feedback tuning convergence [J]. Automatica,2012,47(12):2665-2670.
    [202]Naik A S, Yin S, Ding S X, et al. Recursive identification algorithms to design fault detection systems[J]. Journal of Process Control,2010,20(8):62-69.
    [203]Golub G H, Van-Loan C F. Matrix Computations[M]. Maryland:Johns Hopkins University Press,1996.
    [204]Zhang P, Ye H, Ding S X, et al. On the relationship between parity space and H2approaches to fault detection[J]. Systems&Control Letters,2006,55(2):94-100.
    [205] Thornhill N, Patwardhan S, Shah S. A continuous stirred tank heater simulationmodel with applications[J]. Journal of Process Control,2008,18(3-4):347–360.
    [206] Chen C T. Linear System Theory and Design[M]. Winston: Holt Rinehart,1984.
    [207] Tay T T, Moore J B. Enhancement of fxed controllers via adaptive-q disturbanceestimate feedback[J]. Automatica,1991,27(1):39–53.
    [208] Tay T T, Moore J B, Horowitz R. Indirect adaptive techniques for fxed controllerperformance enhancement[J]. International Journal of Control,1989,50(5):1941–1959.
    [209] Sakuishi T, Yubai K, Hirai J. Direct design from input/output data of a fault-tolerantcontrol system based on GIMC structure[J]. Electrical Engineering in Japan,2010,171(4):53–62.
    [210] Campi M C, Lecchini A, Savaresi S M. Virtual reference feedback tuning: a directmethod for the design of feedback controllers[J]. Automatica,2002,38(8):1337–1346.
    [211] Robins H, Siegmund D. A convergence theorem for non-negative almost surmartin-gales and some applications[J]. Optimization Methods in Statistics,1971:235–237.
    [212] Anderson B D. From Youla-Kucera to identifcation, adaptive and nonlinear con-trol[J]. Automatica,1998,34(12):1485–1506.
    [213] Bottou L. Online Algorithms and Stochastic Approximations[M]. London: Cam-bridge University Press,1998.
    [214] Spall J C. Introduction to Stochastic Search and Optimization[M]. New Jersey:John Wiley&Sons,2003.
    [215] Boyd S P, VanDenberghe L. Convex Optimization[M]. London: Cambridge Uni-versity Press,2004.
    [216] Niemann H, Stourtrup J, Abrahamsen R B. Switching between multivariable con-trollers[J]. Optimal Control Applications and Methods,2004,25(2):51–66.
    [217] Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer,1999.
    [218] Eckhard D, Bazanella A S. Robust convergence of the steepest descent methodfor data-based control[J]. International Journal of Systems Science,2012,43(10):1969–1975.
    [219] Landau D, Rey D, Karimi A, et al. A flexible transmission system as a benchmarkfor robust digital control[J]. European Journal of Control,1995,43(2):77–96.
    [220] Tay T T, Mareels I M, Moore J B. High Performance Control[M]. Berlin:Birkhaeuser,1997.
    [221] Niemann H. A model-based approach for fault-tolerant control[C]//Proc. of the2010Control and Fault Tolerant control. Nice, France:[s.n.],2010:481–492.
    [222] Niemann H, Stoustrup J. An architecture for fault tolerant controllers[J]. Interna-tional Journal of Control,2005,78(14):1091–1110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700