稀土氧化物对氧化锌压敏阀片的作用效应及其微观组织结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了稀土氧化物Nd_2O_3、CeO_2、La_2O_3对氧化锌压敏阀片主要电性能的影响规律及作用机制。
     在传统配方的氧化锌压敏阀片原料中添加微量稀土氧化物Nd_2O_3、CeO_2、La_2O_3,研究各种稀土氧化物的添加量对氧化锌压敏阀片主要电性能的影响规律,优化氧化锌压敏阀片原料中各种稀土氧化物添加剂的成分。研究结果表明:微量的稀土氧化物在基本不影响压比的前提下能够显著提高氧化锌压敏阀片的电位梯度,减小漏电流。当Nd_2O_3含量为0.04mol%时,氧化锌压敏阀片的电位梯度达到极值,与不含Nd_2O_3的氧化锌压敏阀片相比提高约65%,且压比最低,漏电流最小,因此本实验Nd_2O_3添加量的最佳值为0.04mol%。当CeO_2含量为0.06mol%时,氧化锌压敏阀片的电位梯度达到极值,比添加CeO_2前的电位梯度提高约30%,且压比较低,漏电流最小,因此本实验CeO_2添加量的最佳值为0.06mol%。当La_2O_3含量为0.04mol%时,氧化锌压敏阀片的电位梯度达到极值,与不含La_2O_3的氧化锌压敏阀片相比提高约57%,且压比较小,漏电流最低。因此本实验La_2O_3添加量的最佳值为0.04mol%。综合分析,Nd_2O_3提高压敏电位梯度的作用最为显著,La_2O_3次之,CeO_2最弱,并且适量的Nd_2O_3在显著提高压敏电位梯度的同时,可降低漏电流和压比,使压敏阀片具有优良的综合性能。
     通过扫描电镜(SEM)、电子能谱仪(EPD)、X射线衍射仪(XRD)、显微图像分析系统进行显微组织结构分析后发现,添加微量稀土氧化物Nd_2O_3、CeO_2、La_2O_3使晶粒尺寸减小,原因在于含稀土元素的相-以原相形式独立存在的CeO_2和La_2O_3相、以及含Nd的新相Na_2Nd_2Sb_2(Zn_2AlO_(12)),钉扎在晶界,形成晶界电阻
    
     四川大学硕士学位论文
    层,与尖晶石相协同作用,阻碍晶界运动,减小氧化锌晶粒尺寸,使晶粒分布
    均匀致密。另外添加剂CeOZ和LaZ仇能够通过改变烧结过程中氧化锌晶粒的自由
    电子浓度,来改变填隙锌离子浓度〔Zni〕,从而控制氧化锌晶粒生长速度,提高
    电位梯度。添加微量稀土氧化物通过增大势垒高度和氧化锌晶粒电阻率来减小
    泄漏电流。
     总之,添加微量稀土氧化物能够显著提高氧化锌压敏阀片的电位梯度、降
    低漏电流,使其具有优良的综合性能。
The influences and mechanisms of rare-earths oxide additives La2O3 on the electrical performance of zinc oxide varistor were explored in this paper.
    Microadded rare-earths oxide in traditional raw materials of zinc oxide varistor, researched the influences of rare-earths oxide on the electrical performance of zinc oxide varistor , and selected the optium composition of various rare-earths oxide additives. The results of experiment indicated that adding a appropriate amount of rare-earths oxide in zinc oxide varistor led to increase potential gradient greatly, decrease leakage current with voltage ratio no changed. When the Nd2O3 content is 0.04mol%, potential gradient of zinc oxide varistor is maximum, improves about 65% compared with zinc oxide varistor no containing Nd2O3, voltage ratio and leakage current are the lowest. So the optium content of Nd203 is 0.04mol% in this study. When the CeO2 content is 0.06mol%, potential gradient is maximum, improves about 30%, voltage ratio is lower, and leakage current is the lowest. So the optium content of CeO2 is 0.06mol% in this study. When the La2O3 content is 0.04mol%, potential gradient is the highest, and improves about 57%, voltage ratio is lower, leakage current is minmum. So the optium content of La2O3 is 0.04mol% in this study. Synthetic analyze that effect of Nd2O3 on improving potential gradient is the most outstanding, effect of La2O3 is more outstanding and that of CeO2 is the
    
    
    
    inferior. Adding appropriate amout Nd2O3 improves remarkably potential gradient, at the same time decrease leakage current and voltage ratio, that results in zinc oxide varistor with excellent comprehensively performance.
    Microstruture of zinc oxide varistor was researed with the help of scanning electronic microscope(SEM), energy spectrum apparatus(EPD), X-ray diffraction(XRD), and microscopic image analyzing system. It is suggested that microadding rare-earths oxide Nd2O3,CeO2,La2O3 can reduce the grain size because the phases containing rare-earths element-both CeO2, La2O3, which are independent phases, and the new phase Na2Nd2Sb2(Zn2AlO12) containing neodymium all lie in the grain boundary, form the intergranular resistance layers with Zn2.33Sb0.67O4, hinder the movement of grain boundary, make growth rate of zinc oxide varistor grain slow during sintering, which reduce the grain size and make the grain well-distributed. Moreover, CeO2 and La2O3 can change the concentration of interstitial zinc [zni], and finally control growth rate of zinc oxide varistor grain, improve potential gradient through changing the concentration of free electrons of zinc oxide grain during sintering. Microadding a appropriate amount of rare-earths oxide can decrease leakage current by means of raising the height of barrier potential and increasing grain resistivity of zinc oxide.
    In short, adding appropriate amount rare-earths oxide can improve potential gradient greatly, decrease leakage current with voltage ratio no changed and make zinc oxide varistor with outstanding comprehensively performance.
引文
1.陈志清,谢恒.氧化锌压敏瓷及其在电力系统中的应用.北京:水力水电出版社.1992
    2.松冈道雄(日)著.张同发译.氧化锌陶瓷的非线性特性.JAPAN.J.Appl.Phys.1971;10(6):30-33
    3.稻田雅纪(日)著.严幼良译.氧化锌非线性陶瓷的形成机理.日本应用物理杂志.19(3):409-419
    4.松冈道雄(日)著.胡晓鸥译.氧化锌非线性电阻的结构分析.电瓷避雷器.1980;3:7-11
    5.莫以豪,李标荣等.半导体陶瓷及其敏感元件.上海:上海科技出版社.1983
    6. Gupta T K,Carlson W G. J Mater Sci. 1985;20:3487-3500
    7. Iga A,Matsuoka,Masuyama T. Jpn J Appl Phys. 1976;15(9):1847-1848
    8.黄可龙,彭斌,潘春跃.氧化锌压敏阀片的制备及电性.金属学报.1998;34(7):48-50
    9.张树高.季幼章.氧化锌压敏阀片的老化机理.功能材料.1993;24(6):23-24
    10.陈延吉,何晓明.提高氧化锌电阻片性能的研究.电瓷避雷器.1994;1:34-38
    11.郭亚平,艾利民,王建文,李晨,杨明.高压氧化锌压敏电阻器制造技术研究.电瓷避雷器.1993;3:48-50
    12. Ramanachalam M S,Rohatgi A,Schaffer J P, etal. J Appl Phys. 1991;69(12):8380-8386
    13. Rohatgi A,Pang S K,Cupta T K,etal. J Appl Phys. 1988;63(11):5375-5379
    14.李盛涛,刘辅宜,徐传骧.新型氧化锌陶瓷线性电阻材料.功能材料.1996;27(1):44-49
    15. Iga A,Matsuoka M,Masuyama T. Jpn Appl Phys. 1976;15(6):1161-1162
    16.袁方利,程杰,王克逸,季幼章.压敏阀片用氧化锌原料的研究.电瓷避雷器.1994;4:12-15
    17. Yan M F, Rhodes W W. Appl Plays Lett. 1982;40(6):536-537
    18. Wu J M,Lai C H. J Am Ceram Soc. 1991;74(12):3112-3115
    19.岳瑞峰.氧化锌压敏阀片器评述.电瓷避雷器.1991;6:47-50
    20. Yang S L, Wu J M. J Am Ceram soc. 1995;78(8):2203-2208
    21. Pennewiss J,Hoffmann B. Mater lett. 1990;9(5/6):216-219
    22.李盛涛.ZnO压敏阀片的基础研究和技术发展动态.电瓷避雷器.1998;163(3):42-46
    
    
    23. Yamaoka N,Masuyama M,Fukui M. Am Ceram Soc Bull. 1983;62(6):698-700
    24. Ravi V, Kutty T R N. J Mater Sci:Mater Electron. 1993;4:67-73
    25.章天金,王世敏,肖明,吴新明.高压ZnO避雷器的改性实验研究.湖北大学学报.1997;19(4):349-353
    26.黄国华.Sb_2O_3对高能氧化锌压敏阀片器性能的影响.广西师院学报.1997;14(3):30-34
    27. Kutty T R N,Ravi V. Mater Sci Eng. 1993;20:271-279
    28.李盛涛,刘辅仪,宋晓兰.ZnO压敏陶瓷的非线性功能添加剂.陶瓷学报. 1997;18(2):73-76
    29.纪士东,范福康.氧化锌压敏材料研究与发展进展.陶瓷学报.1997:18(1):52-55
    30.石康源,张绪礼,王筱珍,汤清华,陈秀珍.ZnO导电陶瓷的微观结构与导电机理.功能材料.1996;27(1):61-63
    31. H ironoris S,Richard C. Bradt, grain growth of ZnO in ZnO-Bi_2O_3 Ceramics with TiO_2 additions. J Am Ceram Soc. 1995;78(5): 1351-1360
    32.吴维韩,何金良,高明.金属氧化物非线性电阻特性和应用.北京:清华大学出版社.1998
    33.康雪雅.掺杂对低压ZnO压敏陶瓷材料显微结构及性能的影响.电子显微学报.1994;
    34.陈建勋,赵瑞荣,石西吕,蒋汉瀛.ZnO压敏陶瓷导电机理的发展与掺杂氧化物的作用.陶瓷工程.1997;31(6):34-39
    35. Verges M A,Mifsud A,Serna C J. J Chem Soc Faraday Trana. 1990;86(6):959-963
    36. Verges M A,Gallego M M. J Mater Sci. 1992;27(14):3756-3762
    37.陈洪存,陈玲,肖鸣山.SiO_2对ZnO压敏阀片器性能的影响.电子原件与材料.1994;13(4):36-39
    38.王雪文,郭亚平,贾广平,刘克源.添加剂对低压ZnO压敏陶瓷性能的影响.西北大学学报.1998;28(1):34-36
    39. Kazu E. Zinc Oxide Varistors. IEEE Electrial Insulation Magazine. 1989;5(6):1817-1840
    40.周亚栋,杨燕玫.低压ZnO变阻器的研究.北京工业大学学报。1994;20(1):111-117
    41.张连俊.ZnO压敏阀片器非欧姆特性的分析.传感技术学报.1999;1:64-66
    42.康雪雅,陶明德,涂铭旌.ZnO压敏陶瓷的晶界结构.材料研究学报.1996;10(3):301-303
    43. Hayshi S,Nakamori N,Kanamori H. J Phys Soc Jpn. 1979;46(1):176-183
    44. Verges M A, Serna C J M. J Mater Sci Let. 19887(9):970-972
    
    
    45.李青,赵日新,张旭苹.低压ZnO非线性电阻器.光电子技术.1998;18(3):197-202
    46.张树高,黄伯云,方勋华,季幼章.高能ZnO压敏阀片在能量脉冲下的动态老化.功能材料.1997:28(4):386-388
    47. Yamamoto K,Tran D C,Shimizu H,etal. J Phy Soc Jpn. 1977;42(2):587-590
    48. Homma H,Taniguchi T, Izumi K. Improvement of Energy Absorption Capability of ZnO Element-Thermal Properties of ZnO with Additives. Yokosuka Laboratoryt Rep.
    49.孙林,李冶,李学思.中国氧化锌避雷器的技术进步与发展.电瓷避雷器.1993;6:3-7
    50.马萍.国外金属氧化物避雷器发展动向.电瓷避雷器.1992;3:55-59
    51. Shunichi Hishita, Yao yao,Shin-ichi Schirasaki. Zinc Oxide Varistors Made from Powers Prepared by Amine Processing. J Am Ceram Soc. 1989;72(2):338-400
    52.张伟强,杨小平,李建英.浪涌保护器的发展动向.电瓷避雷器.2001;4:29-33
    53.孔令兵,张良莹,姚熹.低压压敏电阻器材料与技术.功能材料.1998;29(3):232-235
    54.Haile S M,Johnson D W, etal.J Am Ceram Soc.1989;72(10):2004-2008
    55.李建英,胡楠,李盛涛,刘辅宜.提高ZnO压敏阀片能量耐受能力的方法与途径.电瓷避雷器.1998;2:33-38
    56. G.S.Snow. Characterization of High Field Varistors in the System ZnO-CoO-PbO-Bi_2O_3. Am Ceram Soc Bull. 1980;59(6):25-27
    57.许颖.金属氧化物避雷器的发展.电瓷避雷器.1995;6:3-7
    58.霍建华,贾广平,何欣,高长安.同时提高ZnO压敏阀片器的静态性能及冲击性能的方法.电瓷避雷器.2001;5:28-31
    59. L.M.Levinson. Ceram.Bull. 1989;68(4):866
    60. M.Matsuoka, Edited by L.M.Levinson. Advances in ceramics. 1980;1:290
    61. R.Einzinger, Ann.Rer. Mater.Sci. 1987;17:299
    62. E.olsson ctal. J.Mater.Sci. 1985;20:4091
    63.李盛涛.氧化锌陶瓷品界性质与氧化物添加剂.西安交通大学.1990
    64. J.Wong. J.Appl.phys. 1975;46(4):1653
    65. A.T.Santhanam etal. J.Appl.phys. 1980;20:2150
    66.史荫庭.电子陶瓷工艺基础.上海:上海科技出版社.1982
    67.吴维韩,何金良,高玉明.非线性金属氧化物的特性及其应用.北京:清华大学出版社.1999
    
    
    68. Eed K, Iga A,Matsuoka M. Degradation mechanism of non-ohmic zinc oxide ceramics. Journrl of Applied Physics. 1980;51(5):2678-2684
    69. Gupta T K,Carlson W G, Hower P L. Current instability phenomena in ZnO varistors under a continuous AC stress. Journal of Applied Physics. 1981;52(6):4104-4111
    70. Eda K, Iga A,Matsuoka M. Current creep in non-ohmic ZnO ceramics. Japanese Journal of Applied Physics. 1979;18(5):997-998
    71.王兰义.日本氧化锌避雷器的发展动向.电瓷避雷器.1999;(3):27-32
    72. ANSI/IEEE C 62.11-1987. IEEE Standard for Metal Oxide Surge Arresters for A.C.Power Circuits
    73.孙林,李冶,李学思.中国氧化锌避雷器的技术进步与发展.电瓷避雷器.1993(6):25-28
    74.张孝骞,俞国梁,沈嘉禄.配电系统金属氧化物避雷器的开发与应用.1994金属氧化物避雷器学术讨论会论文集.1994
    75.王乘钧.金属氧化物避雷器.北京:水利水电出版社.1996
    76. Rene Rudolph. Dimensioning,testing and application of metal-oxide surge arresters in medium voltage networks. ABB High Voltage Technologies Ltd. Wettinggen. 1994;5:241-243
    77. L.Bisiach. Improvement of service quality by use of composite ZnO surge arresters on horn gaps. 8th International Symposium on High Voltage Engineering. 1978;4
    78.张南法.国外压敏阀片器简介.电子元件与材料.1990;9(1):8-12
    79.许颖.新型金属氧化物避雷器.电力科学研究院.1994;12:24-27
    80.洪德祥.ZnO非欧姆陶瓷元件导电均匀性的液晶显示及其不均匀性机理的研究.硕士学位论文.西安交通大学.1983
    81. Kharat DK,Dhami GS,Data SK. Improvement in the performance of ZnO based varistors with 10mo1% MgO. Solid State Commun. 1992;84(4):375
    82.李盛涛,刘辅宜,贾广平.氧化锌压敏陶瓷几何效应的统计法研究.无机材料学报.1997;12(4):525
    83.宋晓兰.ZnO压敏陶瓷中的次晶界、主晶界及其对电性能的作用.博士学位论文.西安交通大学.1993
    84. Henning DFK,Hartung R,Reijnen PJL. The grain size control in Low-voltage varistors. J
    
    Am Ceram Soc. 1990;73(3):645
    85.松岗道雄,江田和生.高压高能ZnO元件.电子材料.1977;16(2):57
    86.康雪雅,庄顺吕.硅酸盐学报.1994;22(2):202、406
    87.康雪雅,庄顺昌.材料研究学报.1994;8(2):155
    88. Santhanam A T, Gupta T K. J.AppI.Phys. 1979;50(2):852
    89. Clarke D R. J.AppI.Phys. 1979;50(11):6829
    90.李世琴,何增健.氧化锌电阻片原料热特性研究.电瓷避雷器.1992;1:46-55
    91. M.Matsuoka. Nonohmic Properties of Zinc Oxide Ceramics. Jpn. J.Appi.Phys. 1971; 10(6):726
    92.马萍.国外金属氧化物避雷器产品水平及发展动向.国外电瓷避雷器技术与发展动向.西安电瓷研究所.1992;112-125
    93. L.M.Levinson,H.R.Phlipp. GE Rep.75. CRD 175. 1975
    94. David R.Clarke. Microstructural Location of the Intergranular Metal Oxide phase in a ZnO Varistor. J.AppI.Phys. 1978;49(4):2407-2411
    95. G.D.Mahan,L.M.Levinson,H.R.Philipp. J.Appl.Phys. 1979;50(4):2799-2811
    96. G.E.Pikc. Electronic Properties of ZnO Varistor. A new Model.Mater.Res.Soc.Proc. 1982:5:309
    97.艾建红,夏维东,王川等.高能氧化锌压敏电阻片的性能研究.电瓷避雷器.1989;(6):1
    98. L.M.Levinson,H.R.Philipp. Intorface Effects in Zinc oxide Varistors. Proceedings of Ceramics Microstructure:Role of interface Conference. 1986;7:28-31
    99.李盛涛,刘辅宜,贾广平.氧化锌压敏陶瓷几何效应的统计法研究.无机材料学报. 1997;12(4):525
    100.谢峰.ZnO压敏阀片残压比与微观结构的关系.硕士学位论文.西安交通大学电气工程学院.1997,4
    101.李盛涛.氧化锌陶瓷晶界性质与氧化物添加剂.博士学位论文.西安交通大学.1990
    102.宋晓兰.非饱和过渡金属氧化物在ZnO压敏陶瓷中的作用.硕士学位论文.西安交通大学.1990
    103. Kazuo Eda. Discovery of ZnO Varistors and Their Progress for the Two Decades-Progress in Fabrication Technology of Zinc Oxide Varistors. Ceramic Transactions,Volume 3,Advances in Varistor Technology, ed.by L.M.Levinson
    
    
    104.周东祥.半导体陶瓷及应用.长沙:华中理工大学出版社.1991
    105. K.Eda,A.Iga,M.Matsuoka. Degradation Mechanism of Non-ohmic Zinc Ceramics. J.Appl.Phys. 1980;51(5):2678-2684
    106. W.Bruckner etal. Phys. Status Solide A. 1983;75:465
    107. Y.M.Chiang etal. J.Appl.Phys. 1982;53(3):1765
    108. E.Olsson,G.L.Duniop. High Tech Ceramics. ed.by P.Vinlenini,Printed in the Netherlands. 1987
    109. M.Hayashi etal. J.Appl. Phys. 1982;53(8):5754
    110. J.M.Wu etal. J.Mat.Sci. 1989;24:1881
    111. F.Stucki etal. Surface Sci. 1987;189/190:294
    112. T.K.Gupta etal. J.Appl.Phys. 1988;63(11):5375
    113. T.K.Gupta, W.D,Stranb. J.AppI.Phys. 1989;66(12):6132
    114. Atsushi Iga,Michio Matsuoka, Takeshi Masutama. Effect of Phase Transition of Intergranular Bi_2O_3 Layer in Nonohmic ZnO Ceramics. Jpn.J.Appl.Phys. 1976;15(6):1161-1162
    115. M.Inada. Effects of Heat-treatment on Crystal Phases. Microstructure and Electrical Properties of Nonohmic Zinc Oxide Ceramics. Jpn.J.Appl.Phys. 1979; 18(8): 1439-1446
    116. B.K.Avdeeko etal. Study of the Phase Composition of Zinc-oxide Ceramics. Jpn. J.Appl.Phys. 1985;21(6):932-933
    117. E.Olsson,G.L.Dunlop. Charateristics of Individual Interfacial Barrier in a ZnO Varistor Material. J.Appl. Phys. 1989;60(8):3666-3675
    118.宋晓兰,刘辅宜,李盛涛.ZnO压敏陶瓷次晶界及其对陶瓷性能的作用.西安交通大学学报.1995;29(3):52
    119. Homma H,Taniguchi T, Izuni K. Improvement of Energy Absorption Capability of ZnO Element-Thermal Properties of ZnO with Additives. Yokosuka Research Laboratory Rep.No.W94005
    120. S.Shirakawa (日本)等. Sparkover characteristics of tramsmission line arresters. 8th Internation Symposium on High Voltage Engineering 78.04论文
    121. T.Kawamora (日本)等. Development of metal-oxide transmission line arrester and its effectiveness. CIGRE, 1994;33-201 论文
    
    
    122. M.EVERMA (德国).Long-term performance of metal-oxide arrester at operating voltage.CIGRE, 1992;33-204 论文
    123.史荫庭.电子陶瓷工艺基础.上海:上海科技出版社.1982
    124. Matsuka M. Jpn J Appl Phys. 1971;10(6):736-746
    125. Selim F A, Gupta T K, Hower P L,etal. JAppl Phys, 1980;51(1):765-768
    126.周东祥,张绪礼,李标荣等.半导体陶瓷及应用.武汉:华中理工大学出版社.1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700