BaO-Nd_2O_3-TiO_2系统微波介质陶瓷低温烧结
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温烧结微波介质陶瓷材料研究近年受移动通信事业的推动,发展非常迅速,为了满足微波器件小型化的需要,迫切需要开发高介电常数的低温烧结微波介质材料。Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)(Ln为Sm、Nd、La等稀土元素)固溶体是典型的高介电常数微波介质陶瓷(ε>80),在微波通讯技术中有着重要的应用。
     根据陶瓷-银电极共烧要求,本文选用Bi_2O_3、BaCuO_2-CuO(简称BCC)、ZnO-B_2O_3-SiO_2(ZBS)、BaO-B2O_3-SiO_2(简称BBS),系统研究了烧结条件及成分变化对Ba_(6-3x)Yd_(8+2x)Ti_(18)O_(54)高介电常数微波介质陶瓷的烧结性能、相组成、显微结构和微波介电性能之间的关系。在此基础上,先利用Bi部分置换Nd,再掺加BCC/ZBS、BCC/BBS助剂,协同降低Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷的烧结温度并协调微波介电性能。
     (一)基础配方的选择及改性优化
     Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷在0.5≤x≤0.8范围内,随着x的增加,介电常数呈下降趋势,在x=2/3时出现异常增大现象;Q·f值则先增后减。x=2/3,陶瓷为纯净的单相固溶体,Q·f达到最大值,x>2/3,有第二相Nd_2Ti_2O_7出现,导致Q·f下降。在用Bi对Nd置换的陶瓷中,随着Bi置换量的增加,致密化烧结温度降低,介电常数增加,而Q·f保持在较高的数值。
     (二) 单一助剂BCC降低烧结温度
     Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷致密化温度先随BCC量的增加而下降,随之基本保持变化。掺加量2.5~15wt%时,烧结温度均在1150℃,这与BCC的低共熔点温度较高密切相关,单一掺加BCC助剂降低烧结温度效果有限。BCC相作为第2相分布在晶界或晶粒处,Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷介电常数和Q·f值随BCC添加量增加而下降。
     (三)复合助剂低温烧结研究
     采用ZBS/BCC、BBS/BCC复合助剂,促使Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷在较低温度下结晶充分,可以与Cu、Ag电极共烧。固定BCC添加量,随着ZBS、BBS添加量增加,介电常数先降低后上升,并保持良好的Q·f值。Ba_4(Nd_(0.85)Bi_(0.15))_(28/3)Ti_(18)O_(54)陶瓷在复合添加2.5wt%BaCuO_2-CuO和5wt%BaO-B_2O_3-SiO_2后可以在950℃烧结成致密瓷,在5.6GHz,介电常数ε为60.25,Q·f值为2577GHz,频率温度系数τ_f为+25.1ppm/℃。
     本研究通过对Ba_(6-3x)Nd_(8+2x)Ti_(18)O_(54)陶瓷体系的配方改性和复合添加烧结助剂,得到了一种性能优良、可用于多层片式微波频率器件的低温烧结微波介质陶瓷。
With the quick increasment of mobile telecommunication industry, low temperature cofirable ceramics are developed very quickly. In order to fulfil the need of LTCC design, not only the low- ε materials but also high- ε materials should be developed. Ba6-3xLn8+2xTi18O54 solution is the most important high- ε material and can be used as key materials in duplexer.
    In this thesis, effects of composition and sintering temperature upon the sintering characteristics, phase composition, microstructures and microwave dielectric characteristics of Ba6-3xNd8+2xTi18O54 high-ε microwave dielectric ceramics were investigated. Modification of microstructure and microwave dielectric properties were conducted by Bi substitution for Nd, add BCC, ZBS, BBS in the Ba6-3xNd8+2xTi18O54 ceramics.
    With increasing x of Ba6-3XNdg+2XTi18O54 ceramics(0.5 ≤ x≤ 0.8), dielectric constant decreased as a whole but at x=2/3 there was a break and got the maximum, while Q f factor increased first then decreased and at got the maximum at x=2/3.
    Effects of composition and sintering temperature upon the microwave dielectric characteristics of Ba6-3X(Nd1-y,Biy)8+2XTi18054(x=2/3) ceramics were investigated. With the increasing Bi content in the ceramics, sintering temperature decreased, dielectric constant increased and the Q f factor kept at a high level.
    Adding BCC as a sintering aid, with the increasing amount of BCC in Ba6-3XNd8+2XTi18O54, dielectric constant and Q f factor decreased, while sintering temperature decreased first then kept steady, this was close related to the high melting point.
    With the multiplex aids of ZBS/BCC BBS/BCC, Ba6-3xNd8+2xTi18O54 ceramics could be sintered at a low temperature, and could be cofired with Cu or Ag electrode. With invariable amount of BCC, with increasing amount of ZBS or BBS in Ba6-3xNd8+2xTi18O54, dielectric constant decreased first and then increased while the Q f factor kept a good value. When 2.5wt%BCC and 5wt%BBS were added,
    
    
    
    
    
    Ba4(Nd0.85Bi0.15)28/3Ti18O54 ceramics could be sintered at 950℃, and at 5.6GHz, ε = 60.25, Q f=2577GHz, τ f=+25.1ppm/℃
    Though modification of Ba6-3xNd8+2xTi18O54 and addition of multiplex sintering aids, a series of low-firing high- ε microwave dielectric ceramics used as multi-layer components can be achieved.
引文
1.李标荣,王莜珍,张绪礼:无机电介质[M],华中理工大学出版社,1995
    2. R. Ubic, I.M.Reaney, and W.E.Lee, [J],Intemational Materials Reviews, (1998)205
    3. R.Freer, [J],Silicates Industrials,9-10(1993)191
    4. R.D.Richtmyer,[J],J.Appl.Phys., 10(1939)391
    5. A.Okaya, [J],Proc. IRE,48(1960)1921
    6. S.B.Cohn, [J],IEEE Trans.Microwave Theory Tech.,MIT-16(1968)476
    7. W.Wersing, [J],Microwave Ceramics for Resonators and Filters
    8. D.J.Masse,R.A.Purcel,D.W.Ready, E.A.Maguire,and C.P.Hartwig, [J],Proc IEEE(1971) 1628
    9.李言荣,恽正中,曲喜新 电子材料导论[M],清华大学出版社,2001
    10. EZAKI K,TAKABASHI H,et al. [J],Microwave dielectric properties of CaO-Li_2O-Ln_2O_3-TiO_2 ceramics[J]. Jpn J Appl Phys Part 1,1993, 32(9B): 4319-4325
    11. CHEN Yingchung, CHENG Pingshou,. [J], Substitution of CaO by BaO to improve the microwave dielectric properties of CaO-Li_2O-Sm_2O_3-TiO_2 ceramics[J]. Ceram Int,2001,27:809-813
    12. KIM W S, YOON K H, KIM E S. [J], Far-infrared reflectivity spectra of CaTiO_3-Li_(1/2)Sm_(1/2)TiO_3 microwave dielectrics[J].Mater Res Bull, 1999,34:2309-2317
    13.张忱.日本微波介电陶瓷的发展现状和趋势[J].材料导报,1995 (5):46-48
    
    
    14.吕文中,张道礼,黎步银,姜胜林,周东祥,王红玲.高ε_r微波介质陶瓷的结构、介电性质及其研究进展[J].功能材料,2000,31(6):572-576
    15. Cheng-Liang Huang, Min-Hung Weng. The effect of PbO loss on microwave dielectric properties of (Pb,Ca)(Zr, Ti)O_3 ceramic[J]. Materials Research Bulletin, 2001:683-691
    16. HUANG Chengliang, CHEN Yaochung. Microwave dielectric properties and microstructure of Ba_(2-x)Sm_(4+2x/3)Ti_(8+y)O_(24+2y)[J].Mater Sci. Eng.,2003,A345:106-112
    17. WU Yongjun,CHEN Xiangming. Structures and microwave dielectric properties of Ba_(6-3x)(Nd,Bi)_(8+2x)Ti_(18)O_(54)[J]. J Mater Res,2001,16(6):1734-1738
    18. NOBORU, HIDEYUKI A. Preparation and microwave dielectric properties of BaO. (Sm_(1-x)La_x)_2·5TiO_2 ceramic system[J]. J Eur Ceram Soc, 2001, 2:2751-2753
    19. CHEN X M, ZHENG X H, WAND J. Structural and dielectric characterization of Ba_2Nd_2Ti_(4+x)Ta_(6+x)O_(30-x)[J]. J Mater Res, 2001, 16(10): 2859-2863
    20. LI J, CHEN X M. Modifed Ba_2Sm_3Ti_4Ta_5O_(30) dielectric ceramics[J]. J Eur Ceram Soc, 2001, 21:155-159
    21. R. L. Bolton PhD thesis, The University of Illlinois, 1968
    22. D. Kolar, S. Gaberscek, R. Wlavsek, H. S Parker and R. S. Roth, [J], J. Solid State Chem., 38 (1981) 158
    23. D. Kolar, S. Gaberscek, Z. Stadler and D. Suvorov,[J],Ferroelectrics, 27 (1980) 269
    24. A. M. Gens, M. B. Varfolomeev, V. S. Kostomarov and S. S. Korovin, Russ. [J],J Inorganic Chem., 26(1981)482
    25. T. Jaakola, A. Uusimaki, R. Rautioahu and S. Leppavuore, [J],J. Am. Ceram. Soc., 69 (1986) 234
    26. J. Takahashi, T. Ikegami and K. Kageyama, [J],J. Am. Ceram. Soc., 74 (1991) 1868
    27. J. Takahashi, T. Ikegami and K. Kageyama, [J],J. Am. Ceram. Soc., 74(1991)1873
    28. M. B. Varfolomeev, A. S. Mironov, V.S. Kostomarov, L. A. Golubtsova and T.A. Zolotova, Russ. [J],J Inorganic Chem., 33 (1988) 607
    29. H. Ohsato, [J],J.Eur:Ceram. Soc.,21(2001)2703
    30. S. Skapin, D. Kolar, D. Suvorovand and Z. Samardzija, [J], J. Mater. Res., 13 (1998)
    31. K. Fukuda, R.Kitoh and I. Awai, J. Mater. Res., 10(1995) 312
    32. H. Ohsato, T. Ohhashi, H. Kato, and S. Nishigaki, [J], Jpn. J. Appl. Phys., 34(1995) 187
    33. H. Ohsato, T. Ohhashi, H. Kato, and S. Nishigaki, [J],Jpn. J. Appl. Phys., 34(1995) 187
    34. T.Negas and P.K.Davies, [J],Ceram. Trans.,53(1995)179
    35. M.Valant, D. Suvorov and D. Kolar, [J], Jpn. J. Appl. Phys., 35(1996)144
    36. H. Ohsato, T. Ohhashi and T. Okuda, Ext. Abstr. AsCA'93 Conf., Singapore, Nov, 14U-15
    
    
    37. H. Ohsato, M. Imaeda, Y. Takagi, A. KomuraandT. Okuda, [J],Proceedings of the 11th IEEE International Symposium on Applications of Ferroelectrics, Montreux, Switzerland (1998) 509
    38. CHENG C M, LO S H, YAND C F. The effect of CuO on the sintering and properies of BiNbO_4 microwave ceramics[J]. Ceram Int, 2000, 26: 113-117.
    39. TZOU W C, YANG C F, CHEN Y C, et al. Improvements in the sintering and microwave Properties of BiNbO_4 microwave ceramics by V_2O_5 addition[J]. J Eur Ceram Soc, 2000, 20: 991-996.
    40.姚尧,赵梅瑜,王依琳,等.BiNbO_4微波介质陶瓷的研究[J].无机材料学报,1998,13(2):176-180.
    41. HUANG CL, WENG M H. Low fire BiNbO_4 microwave dielectric ceramics modified by Sm_2O_3 addition[J]. Mater ResBull, 2001, 35: 827-835.
    42. TZOU W C, YANG C F. Microwave dielectric characteristics of(Bi_(1-x)Sm_x) NbO_4[J]. Ceram Int, 2002, 28: 105-110.
    43. HUANG C L, WENG M H. The microwave dielectric properties and the microstructures of Bi (Nb, Ta) O_4 ceramics[J]. Jpn J Appl Phys Part Ⅰ, 1999, 38 (10): 5949-5952.
    44. HUANG CL, WENG M H. Low-fire BiTaO_4 dielectric ceramics for microwave applications[J]. Mater Lett, 2000, 43:32-35.
    45. HUANG C L, WENG M H. Low firable BiNbO_4 based microwave dielectric ceramics[J]. Ceram Int, 2001, 27: 343-350.
    46. KAGATA H, INONE T, KATO J, et al. Low fired bismuth-based dielectric ceramics[J]. Jpn J Appl Phys PartⅠ, 1992, 319B: 3152-3155
    47. CHEN S Y, LEE S Y, LIN Y J. Phase transformation, reaction and microwave characteristics of Bi_2O_3-ZnO-Nb_2O_5[J]. J Eur Ceram Soc, 2003, 23: 873-881.
    48. MATJATZ V, PETER K D. Crystal chemistry and dielectric properties of chemically substituted (Bi_(1.5)Zn_(1.0)Nb_(1.5)) O_7 and Bi_2 (Zn_(2/3)Nb_(4/3)) O_7[J]. JAm Ceram Soc, 2000, 83 (1): 147-153.
    49. KAGATA H, INONE T, KATO J, et al. Low fired bismuth-based dielectric ceramics[J]. Jpn J Appl Phys PartⅠ, 1992, 31 (9B): 3152-3155.
    50. KIM H T, BYUN J D, KIM Y. Microstruture and micorwave dielectric properties of modified zinc titanates (1) [J]. Mater Res Bull, 1998, 33 (6): 963-973.
    51. KIMHT, NAHM S, BYUNJD. Low-fired (Zn, Mg) TiO_3 microwave dielectrics [J]. J Am Ceram Soc, 1999, 82 (12): 3476-3480.
    52. TAKADA T, WANG S F, JANG S J, et al. Microwave dielectri properties of BaO-TiO_2-WO_3
    
    ceramics sintering with glasses[A]. 1995 IEEE MTT-S International Microwave Symposium[C]. Seattle, Washington, 1995. 626-629.
    53. HUANG C L, WENG M H. Low temperature sintering and microwave dielectric properties of Ba_2Ti_(19)O_(20) ceramics using glass additions[J]. Mater ResBull, 2000, 35: 2445-2456.
    54. KIM D W, LEE D G. Low-temperature firing and micorwave dielectric properties of BaTi_4O_9 With Zn-B-O glass system[J]. Mater Res Bull,2001, 36: 585—595.
    55. HUANG C L, WENG M H. Liquid Phase sintering of (Zr, Sn) TiO_4 microwaved dielectric ceramics[J]. Mater Res Bull, 2000, 35: 1881—1888.
    56. HOUIVET D, FALLAHJE, HAUSSONNE J M. Phases in La_2O_3 and NiO doped (Zr, Sn) TiO_4 microwave dielectric ceramics[J]. J Eur Ceram Soc, 1999, 19: 1095-1099.
    57. HUANG C L, WENG M H, CHEN H L. Effect of addtives on microstructures and microwave dielectric properties of (Zr, Sn) TiO_4 ceramics[J]. Mater Chem Phys, 2001, 71: 17-22.
    58. JEAN J H, LIN S C. Low-fired processing of ZrO_2-SnO_2-TiO_2 ceramics[J]. J Am Ceram Soc, 2000, 83 (6): 1417-1422.
    59. BORISEVICH A, DAVIES P K. Microwave dielectric properties of Li_(1+x)M_(1-x-3y)Ti_(x+4y)O_3 (M=Nb~(5+), Ta~(5+)) solid solutions[J]. J Eur Ceram Soc, 2001, 21: 1719-1722.
    60. CHOI J W, KANG C Y, YOON S J, et al. Microwave dielectric properties of B_2O_3 doped Ca[(Li_(1/3)Nb(2/3))_(0.9)Ti_(0.1)]O_(3-δ) ceramics[J]. Ferroelectr, 2001, 262: 167-172.
    61.童建喜,张启龙,朱玉良,等.低温烧结Ca[(Li_(1/3)Nb_(2/3))_(0.7)·Ti_(0.3)]O_(3-δ)陶瓷及其微波介电性能[J].材料科学与工程学报2003,10
    62. KIM D H, LIM S K, Hee Bum Hong, et al. Low temperature sintering ceramics in ZnO-RO_2-TiO_2-Nb_2O_5 (R=Sn, Zr, Ce) Ceramic system with FeVO_4 addition [A]. IEEE 7th International Conference on Solid Dieletrics[C]. Eindhoven, Netherlands, 2001. 195-198.
    63. KIM D W. Structural transition and microwave dielectric properties of ZnNb_2O_6-TiO_2 sintered at low temperatures[J]. Jpn J Appl Phys Part 1, 2002, 41 (3A): 1465-1469.
    64.张启龙,杨辉,王家邦,等.低温烧结ZnNb_2O_6/TiO_2复合陶瓷的制备及介电性能研究[J].材料科学与工程学报2003,10
    65. ZHANG Yingchun, YUE Zhenxin, GUI Zhilun, et al. Effects of CaF_2 addition on the microstructure and microwave dielectric properties of ZnNb_2O_6 ceramics[J]. Ceram Int, 2003, 9(5): 555-559.
    66. YANG Q H, KIM E S, KIM Y J, et al. Effect of PbO-B_2O_3-V_2O_5 glass on the microwave dielectric properties of ceramics[J]. Mater Chem Phys, 2003, 79: 236-238.
    
    
    67.周桃生,彭炜,苗君,等.低温侥结压电陶瓷材料及应用[J].湖北大学学报(自然科学版).2000,22(1):49-53.
    68. Quinn K Tong, Deanna L arkley, Gerry Fredrickson, et al. Conductive adhesive with stable contact resistance and superior impact performance [C].1999 Electronic Components and Technology Conference,347-352
    69.傅剑,李承恩,赵梅瑜,姚烈,周家光,陈建和,低温烷结PZT压电陶瓷研究进展[J],材料导报,2001 14 (1):38-39,49
    70. Y. J. Wu, X. M. [J]. J. Euro. Ceram. Soc., 1999, 19(6-7): 1123-1126.
    71. Li Yi, Chert Xiang Ming. [J]. J. Euro. Ceram. Soc., 2002, 22 (5): 715-719.
    72.杨辉,张启龙,王家邦,尤源,黄伟等.[J].硅酸盐学报,2003,31(10):965-973.
    73. Takashi O, Masaki I, Hitoshi O. [J]. Mat Sci Eng: B, 2002, 88(1): 58-61.
    74.黄雯雯,凌志远,欧瑞江,何新华,张庆秋.[J].电子元件与材料.2003,22(6):14-16.
    75. Chung-Chin Cheng, Tsung-Eong Hsieh, I-Nan Lin. [J]. Mat Chem Phys, 2003, 79: 2553-2558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700