等离子喷涂SiC/Al_2O_3纳米复相陶瓷涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作利用Al(OH)_3溶胶和聚乙烯醇做粘合剂,采用包覆方法和喷雾造粒制粉方法,成功制备出适宜喷涂纳米—微米、纳米—纳米SiC/Al_2O_3复合粉末。研究发现,n-SiC粒子含量及复合粉末烧结温度是影响SiC/Al_2O_3复合粉末及涂层微观结构均匀性的重要参数。通过对比试验,优化出纳米—微米n-SiC/Al_2O_3复合粉末最佳制备工艺,并采用等离子喷涂技术成功制备出SiC/Al_2O_3纳米复相陶瓷涂层。通过实验得到以下结论:
     1、以Al(OH)_3溶胶为粘合剂制备纳米—微米n-SiC/Al_2O_3包覆复合粉末工艺为:
     Al(OH)_3溶胶制备→加入μm-Al_2O_3→搅拌→加入n-SiC粒子→搅拌→过滤→干燥→800℃烧结→研磨→过筛。
     2、实验结果表明,利用Al(OH)_3溶胶粘合剂法制备的纳米—微米n-SiC/Al_2O_3复合粉末,采用P>40kW的功率喷涂,SiC会发生分解。喷涂功率<40kW,会得到n-SiC分布于μm-Al_2O_3晶内和晶界的纳米—微米n-SiC/Al_2O_3复相涂层。
     3、纳米—微米n-SiC/Al_2O_3复相陶瓷涂层中,n-SiC粒子有一最佳含量。当n-SiC粒子含量为3Vol%时,复合涂层结构致密,气孔率低,涂层硬度有较大提高,并且摩擦磨损性能优于其它n-SiC粒子含量复相涂层。
     4、提出了利用纳米一微米n-SiC/Al_2O_3包覆复合粉末所制的陶瓷涂层中n-SiC粒子分布于μm-Al_2O_3晶内的机理:在喷涂过程中微米级Al_2O_3完全熔化形成液滴,n-SiC粒子存于液滴表面,在液滴撞击基材平铺过程中n-SiC粒子进入液滴内部形成。
     5、采用喷雾造粒方法制备纳米—纳米SiC/Al_2O_3复合粉末最佳工艺参数为:固体物含量为25wt%;粘合剂比例为2.3wt%;干燥温度510~530℃;烧结温度1200℃;压缩空气压力为0.3±0.05MPa。
     6、纳米—纳米SiC/Al_2O_3复相陶瓷涂层形成过程为:干粉颗粒内外层在喷涂过程中受热历史不同,导致内层纳米粒子仅仅熔化而没有结晶长大,涂层中形成了许多呈烧结形态纳米粒子构成的团聚体。
In this paper, A1(OH)3 sol and Polyvinvl Alcohol were used as binder, nano-micrometer, nano-nano SiC/Al2O3 composite powder was prepared through wrapping and spraying granulation method. The content of n-SiC and the sinter temperature of composite powder greatly influence the coatings' microstructrural uniform. The preparation route of nano-micrometer n-SiC/Al2O3 composite powder were optimized by comparative investigation, and the nanocomposite SiC/Al2O3 ceramic coating was plasma sprayed. By experiments, conclusions were drawn as following:
    1 The technology of nano-micrometer n-SiC/Al2O3 wrapping composite powder was determined, prepared using A1(OH)3 sol as binder:
    Preparation of Al(OH)3 sol→Padded m-Al2O3→stirred→added n-SiC particle →filtered→dried→sintered at 800℃→ground→sifted
    2 The results indicate that, for the nano-micrometer n-SiC/Al2O3 composite powder, using A1(OH)3 sol as binder, SiC would decompose when spraying power is higher than 40kW; the nano-micrometer n-SiC/Al2O3 composite coating could be obtained when the power below 40kW, and n-SiC particles were located within m-Al2O3 grains and grain boundary.
    3, When 3Vol% n-SiC particle were added, the composite coating is quite dense ,with low porosity, and the hardness was greatly increased ,exhibiting relatively higher wear resistance than other composite coating with other n-SiC particle contents.
    4, The formation mechanism of the n-SiC particles in the ceramic coating prepared by the nano-micrometer n-SiC/Al2O3 composite powder located within m-Al2O3 grains is revealed:m-Al2O3 would be well melted during spraying and form droplet, the n-SiC particles existing on the surface of droplet, then the particle enter the droplet when it is impacted and flattened on the substrate.
    5 The best technical parameters of nano-nano SiC/Al2O3 composite powder prepared through spray granulation method: solids content 25wt%;binder content 2.3wt%;drying
    
    
    
    temperature 510~530℃ ;sinter temperature 1200℃ ; contract air pressure 0.3 + 0.05MPa.
    6 , The formation of nano-nano SiC/Al2O3 composite ceramic coating: The heating difference of the powder in-outer layer during spraying results in that the inner nanoparticles are only partially melted, without growing into larger grain, a lot of nanoparticle agglomerates with sintered shape were detected in the coating.
引文
[1]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景.材料工程,2000,37:42—48.
    [2]袁巨龙,刘盛辉,邢彤.纳米技术的应用及发展动向.浙江工业大学学报.2000,28(3):243-249.
    [3]高瑞平.纳米材料和技术的研究及展望[J].材料导报,2001,15(5):6-7.
    [4]丁星兆,柳襄怀.纳米材料的结构、性能及应用[J].材料导报,1997,11(4):1-5.
    [5]杨剑,滕凤恩.纳米材料综述[J].材料导报,1997,11(2):6-10.
    [6]张立德,牟季美.纳米材料和纳米结构.北京科学出版社.北京.2001.
    [7]文玉华,周富信.纳米材料研究进展[J].2001,31(1):47—61.
    [8]潘钰娴,樊.琳.纳米材料的研究和应用.苏州大学学报(工学版).2002,22(5):71-75.
    [9]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展.中国粉体技术[J].2002,8(3):22—27.
    [10]KEAR B H,SKANDANG.Thermal spray processing of nanoscal materials[J].Nanostruct Mater, 1997,8(6):765-769.
    [11]BERNDT C, LAREANIAEJ. Thermal spray processing of nanoscal materials-extended abstracts[J]. 3 Therm Spray Technol, 1998, 7(3) :411-440.
    [12]祝迎春,丁传贤.等离子喷涂氧化钛纳米涂层及其离子注入特性研究[J].硅酸盐学报,1999,27(5):520—526.
    [13]陈煌,丁传贤.等离子喷涂氧化锆纳米涂层显微结构研究.无机材料学报.2002,17(4):882—886.
    [14]陈煌,周霞明,黄民辉,陶顺衍,丁传贤.等离子喷涂ZrO2涂层的结构,性能和工艺特点.无机材料学报.200,184:911—916.
    [15]Ding C X, Huang b t, Lin H L. Plasma sprayed wear resistant ceramic and cermet coating materials. Thin Solid Films, 1984,118:485-493.
    [16]Schwetzke R, Kreye H. Microstructured and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems[J].Thermal Spray Technology,1999,8(3): 433—439.
    [17]Cernuschi F, Bianchi P, Leoni M. Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings[J].Thermal Spray Technology,1999,8(1):102-109.
    [18]马燕合,李克健,吴述尧.加快建设我国纳米材料科技创新体系.见:全国第二届纳米材料和技术应用会议,杭州:中国材料研究学会.2001.2—7.
    [19]ATIACR.Nanostructured ceramic coatings:engineering on an atomicscale[J].SurfEng, 1999,5(3): 195-204.
    [20]SKANDANG, FOSTERCM, FRASEH, etal. Phase characterization and stabilization due to grain size efffcts of nanostructured Y_2O_3[J]. Nanostruct Mater, 1992, 1 (4):313-322.
    [21]ZHU Y, HUANG M,HUANG J,etal.Vacuum-plasma sprayed nanostructured titanium oxide films[J].J Therm Spray Technol, 1999,8(2):219-222.
    [22]MCPHERSONR.The relationship between the mechanism of formation,microstructure and proper tie of plasma-sprayed coatings[J].Thin Solid Films, 1981,83:297-310.
    [23]MCPHERSONR.on the formation of thermally sprayed alumina coating[J].J Mater Sci, 1980,15:3141-3149.
    
    
    [24]AHMEDI, BERGMANTL. Thermal modeling of plasma spray deposition of nanostructured ceramics [J]. J Therm Spray rechnol, 1999, 8 (3) :315-322.
    [25]BERNDT C.Thermal spray processing of nanoscal materials Ⅱ-extended abstracts[J].J Therm Spray Technol,2001,7(3):147-181.
    [26]D.A.Srewart, P.H.Shipway,D.G.McCartney,Abrasive Wear behavior of conventional and nanocomposite HVOF-sprayed WC-Co coatings,Wear, 1999,225-229:789-798.
    [27]Y.Zhu,K.Yukimura, C.Ding,P.Zhang,Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying,Thin Solid Films,2001,388:277-282.
    [28]Jordan E H,Gell M,Sohn Y H, et al. Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties.Mater Sci Eng,2001,A301:80-89.
    [29]Zeng Y,Lee S W,Gao L,et al. Atmospheric plasma sprayed coatings of nanostructured zirconia.J Eur Ceram Soc,2002,22:347-351.
    [30]Chen H,Ding C X. nanostructured zirconia coatings prepared by atmospheric plasma spraying[J].Surface and Coatings Technology, 2002,150:31-36.
    [31]滕荣厚.纳米级材料的内涵、判据及其研究方向[J].钢铁研究学报,1998,10(2):61~65.
    [32]潘颐,吴希俊.纳米材料制备、结构及性能[J].材料科学与工程,1993,11(4:16
    [33]Gell.M,Jordan E H,Sohn Y H,Goberman D,et al Development and implementation of plasma sprayed nanostructured ceramic coatings [J].Surface and Coatings Technology. 2001,146-147:48-54.
    [34]Hong Luo,Daniel Goberman,Leon Shaw,Maurice Gell. Indentation facture behavior of plasma-sprayed nanostructured A1_2O_3-13%wtTiO_2 coatings[J]. Materials Science and Engineering.2003,A346:237-245.
    [35]KEAR B H, KALMANZ, SADANGIRK, etal. plasma sprayed nanostructured A1_2O_3/TiO_2 powders and coatings[J].J Therm Spray Technol,2000,9(4):483~487.
    [36]Kear B H,Sadangi R K,Jain M,et al.Thermal sprayed nanostructured WC/Co hardcoatings [J]. Them Spray Technol,2000,9(3):399-406.
    [37]Zhu Ying Chun,Ding Chuan Xian,Ken Yukimura, et al.deposition and characterization of nanostructured WC/Co coating.Ceramics International.2001,27:669-674.
    [38]R.S.Lima, J.Karthikeyan, C.M.Kay,J.Lindemann,C.C.Berndt.Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings.Thin Solid Films.2002,416:129-135.
    [39]Chen Huang,Zhang Yefan,Ding Chuanxian.Tribological properties of nanostructured zirconia coatings deposited by plasma spraying[J].Wear,2002,253:885-893.
    [40]Xu Binshi,Ou Zhongwen,Ma Shining etc. Nano-surface engi-neering[J].China Mechanical Engineering;,2000,11 (6):707
    [41]钱苗根,姚寿山,张少宗.现代表面技术.机械工业出版社.北京.1998.
    [42]Strutt P R,Boland R F, Kear B H. Nanostructured feeds for thermal spray systems methods of manufacyure and coatings formed thereform US Patent filed,Nov,1995.
    [43]章登宏,龚树萍,周东祥,姜胜林.喷雾造粒因素对粉体颗粒形成的影响[J].中国陶瓷,2000,36(6):7-9.
    
    
    [44]卢旭晨,袁启明,杨正方.氧化锆料浆性能对其喷雾造粒粉料性质的影响.中国陶瓷.1997,33(5):21-23
    [45]李金有,葛志平,蔡舒.粘结剂对喷雾造粒ZrO_2(Y_2O_3)粉末特性的影响.陶瓷学报.2003,24(1):8-11.
    [46]初小葵,许壮志,乔木.Al_2O_3陶瓷粉料的喷雾干燥工艺要点.中国陶瓷.2002,38(6):25-27.
    [47]Wang You,Jiang,Stephen,Wang Meidong,et al. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings[J].Wear.2000,237:176-185.
    [48]Lima R S,Kucuk A,Berndt C C.Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings [J].Surface and Coatings Technology,2001,135:166-172.
    [49]Shaw L L,Goberman Daniel,Ren Ruiming, et al. The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions [J].Surface and Coatings Technology.2000,130:1-8.
    [50]陈煌,丁传贤.等离子喷涂氧化锆纳米涂层显微结构研究[J].无机材料学报,2002,17(4):882-886.
    [51]T.D.Xiao,S.Jiang,D.M.Wang.Y.Wang, R.Zatorski,C.W.Strock,P.R.Strutt.Thermal spray of Nanostructured Ceramic Coatings for Improved Mechanical Properties, 12th Intl.surface modification Conference,ASM Intl. 1998,inpress.
    [52]S.Jiansirisomboon,K.J.D.Mackenzie,S.G.Roberts,P.S.Grant.Low pressure plasma-sprayed Al_2O_3/SiC nanocompesite coatings from different feedstock powders[J].Journal of the European Ceramic Society. 23(2003):961-976.
    [53]李凤生.超细粉体技术[M].北京:国防工业出版社,2000,7:277-288.
    [54]SUBEROJ, NINGZ, GHADIRIM, et al. Effect of interface energy on the impact strength of agglomerates[J].Powder Technology, 1999,105:66.
    [55]SINGHALA,SKANDANG,et al. On nanoparticle Aggregation during vapor phase synthesis[J]. Nanostructured Materials,1999,11(4):545.
    [56]胡传炘,张科,李晋炜,刘颖等.火焰喷涂法制备纳米改性陶瓷涂层[J].新技术新工艺,2001,8:44-46.
    [57]李炜,代明江.纳米涂层应用及主要制备方法.腐蚀与防护.2003,24(5):196-199.
    [58]张志坚.高温等离子喷涂应用进展综述.云南冶金,1997,26(4):40-46.
    [59]周静,韦云隆,张隆平,吴护林.等离子喷涂耐磨涂层及热障涂层的新进展.表面技术,2001,30(2):23-25.
    [60]胡传炘,宋幼慧.涂层技术原理及应用.化学工业出版社.北京.2000.
    [61]Goberman D, Sohn Y H, Shaw L, et al. Microstructure development of Al_2O_3—13%TiO_2 plasma sprayed coatings derived from nanocrystalline powders.Acta Materialia [J]. 2002, 50:1141-1152.
    [62]陈学定,韩文政.表面涂层技术.北京:机械工业出版社,1994.
    [63]赵文轸.超音速火焰喷涂—热喷涂领域的最新技术.材料保护,1997,30(12):19-21.
    [64]李长久,大森明.碳化钨颗粒尺寸对超音速火焰喷涂WC-Co涂层的影响.表面工程.1997,2:22-27.
    [65]Guile many J M,Nutting J,Dougan MJ J Thermal Spray Technology,1997,6(4):425-429.
    [66]Lovelock HL J Thermal Spray Technology.1998.7(3):357-368.
    [67]刘爱华.一种新型的电弧喷涂自结合材料[J]沈阳工业大学学报,1998,20(4):61-65.
    [68]Karthikeyan J,Kay CM,Lindeman J,etal Thermal Spray Surface Engineering Via Applied Research, 2000-05,8-11:255-262.
    
    
    [69] 徐滨士,张伟,梁秀兵.喷涂材料的应用与发展.材料工程,2001,12:3-7.
    [70] Dykhuizen R C,Smith M F.Gas dynamic principles of cold spray[J] . Thermal Spray Technology, 1998,7(2):205-212.
    [71] 熊天英,吴杰,金花子,李鸣.一种新喷涂技术—冷气动力喷涂.腐蚀科学与防护技术.2001,13(5):267-269.
    [72] Hongmei Jin,Yi Li,Hong liu,etal.Study on the behavior of additives insteel hot dip galvanizing by DFT calculations[J] .Chem Mater,2000,12:1879-1883.
    [73] 赵力东.热喷涂技术的新发展.中国表面工程,2002,3:5-9.
    [74] 温彩云.铁氧体材料底喷雾造粒.江苏陶瓷,2001,34(3):29-32.
    [75] DIN51056:Bestinmung des offenens Porenranines Sept.1959.
    [76] 姜荣超.制粒工艺在粉末冶金与金刚石工具中的应用.金刚石与磨料磨具工程,2003,134(2):74-76.
    [77] 上海医药公司上海化学试剂采购供应站.试剂手册.上海科学技术出版社.北京.1984:1001.
    [78] PAMPACH R, HABERKC K. Ceramic Powders[M] .Amsterdam:Elsevier Scientific Pub. Company, 1983:623-650.
    [79] 徐明霞,方洞浦,杨正方.高分子型表面活性剂在氧化锆粉末制备过程中的作用(二)[J] .无机材料学报,1991,6(1):39.
    [80] 冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制.微纳电子技术,2003,7/8,536-542.
    [81] 张志杰,苏达根.纳米—纳米复相陶瓷的制备.中国陶瓷,2003,39(1):12-14.
    [82] 罗电宏,马荣骏.对超细粉末团聚问题的探讨.湿法冶金,2002,21(2):57-61.
    [83] Mcpherson.R.Formation of metastable phases in flame and plasma prepared alumina.J.Mater.Sci. 1973.8:851-858.
    [84] 张存满,徐政,许业文.弥散SiC颗粒增韧Al_2O_3基陶瓷的增韧机制分析.硅酸盐通报,2001,5:47—51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700