羟基丙酸及其聚合物的生物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的不断枯竭,人们逐渐认识到作为众多化学中间体和终产物的生物基平台化合物的重要性。其中,羟基丙酸就是其中最重要的生物基平台化合物。羟基丙酸包括3-羟基丙酸和2-羟基丙酸(乳酸),二者均具有羟基和羧基两种官能团,是重要的化学中间体。3-羟基丙酸(3-HP)在工业上可以脱水生成丙烯酸,氧化生成丙二酸,与醇酯化作用生成酯,还可通过还原作用生成1,3-丙二醇等,是最具潜力的生物基平台化合物之一。目前,3-HP的生产方法主要是化学合成法,但其难度较大,且产品分离纯化复杂,生产成本相应较高,只有少量合成供实验室使用。而利用基因工程菌株生产3-羟基丙酸的方法主要包括两方面:Ⅰ、构建基因工程菌株,以葡萄糖为底物生产3-HP;Ⅱ、构建基因工程菌株,以甘油为底物生产3-HP。但上述两种方法的应用分别由于3-HP合成路径的构建存在较高难度和产量低、无法达到大规模生产的要求而受到限制。
     另一种羟基丙酸—乳酸是一种应用广泛的有机酸,可用于食品、医药、纺织业和化工等行业,自然界中产乳酸的微生物种类很多,与其它微生物相比,用大肠杆菌生产乳酸有培养周期短,易于控制乳酸的光学纯度,营养要求粗放等优势。随着基因工程的发展,通过改变菌株的代谢途径构建高产乳酸的重组大肠杆菌具有更加方便、实用的优点。而以乳酸为单体的聚合物—聚乳酸具有优良的生物可降解性和良好的生物相容性,被认为是最广泛和最有前景的高分子材料之一。目前,聚乳酸主要由乳酸经开环聚合法合成,但此类化学合成法通常需要添加有毒的金属催化剂,给人类和环境带来了危害。如何利用微生物进行聚乳酸的生物合成受到人们的广泛关注
     基于上述几个方面,本文对大肠杆菌中3-HP合成途径的构建,高产乳酸重组菌株的构建和发酵条件对乳酸产量的影响及PLA全生物合成的实现几方面进行了研究,主要的工作内容及结果如下:
     1.以葡萄糖为底物生产3-HP的重组大肠杆菌的构建及初步发酵研究
     橙色绿曲挠菌Chloroflexus aurantiacus中3-HP循环的第一步反应是由acetyl-CoA carboxylase催化acetyl-CoA同CO2羧化成malonyl-CoA,之后malonyl-CoA在malonyl-CoA reductase催化下被还原成3-HP。在E. coli中,同样的羧化反应是脂肪酸合成的第一步,由多组分的acetyl-CoA carboxylase (ACCase)催化。C. aurantiacus中的malonyl-CoA reductase是一个双功能酶,由mcr基因编码,含有N-端醇脱氢酶活性和C-端醛脱氢酶活性,催化malonyl-CoA经两步反应还原成3-HP。
     本论文从C. aurantiacus strain OK-70-fl (DSM636)基因组中经PCR扩增获得mcr基因,将其克隆到表达载体pET-28a上构建了重组质粒pET-28a-mcr,转化E. coli BL21(DE3)获得重组大肠杆菌DE3/pET-28a-mcr,并借助其自身脂肪酸合成的第一步反应,构建了一条发酵葡萄糖合成3-HP的代谢途径。重组大肠杆菌DE3/pET-28a-mcr及对照菌株BL21 (DE3)/pET-28a分别接种于50 ml LB(2%葡萄糖)液体培养基中好氧发酵60 h,用GC检测3-HP的生成。3-HP标准样品的保留时间是3.2 min,而重组菌DE3/pET-28a-mcr的发酵产物在相同位置也有一个产物峰,经计算其产量约为0.15g/L。
     上述代谢途径的构建在国内尚属首次,构建过程易于实现,并可进一步通过代谢工程技术来提高3-HP的产量,为实现高产3-HP奠定了坚实的理论基础。
     2.高产乳酸重组大肠杆菌的构建及其发酵研究
     厌氧条件下,大肠杆菌发酵葡萄糖产生乳酸、琥珀酸、乙酸、甲酸等一系列有机酸和乙醇。大肠杆菌代谢产物的分配主要由ldhA基因编码的D-乳酸脱氢酶基因,pfl基因编码的丙酮酸甲酸裂解酶,ppc基因编码的磷酸烯醇式丙酮酸羧化酶决定。为了维持氧化还原平衡,大肠杆菌中的乙酰辅酶A在乙酸激酶/磷酸转乙酰酶和乙醇脱氢酶(adhE)的催化下产生等量的乙酸和乙醇。
     本论文利用代谢工程技术将E. coli W3110葡萄糖发酵代谢途径中的pflB、adhE基因进行了敲除,获得了重组菌株SD2和SD4。两者在厌氧发酵中的乳酸产量分别达到了174.8 mM和178.3 mM/100 mM葡萄糖,接近2 mol乳酸/mol所消耗葡萄糖的最大理论产量。同时,对大肠杆菌中负责葡萄糖运输的磷酸转移酶系统(PTS)中的ptsG基因的进行改造,得到重组菌株SD6、SD8。这两株菌对葡萄糖的摄取速率变慢,生物量大大提高。琥珀酸的产量相比SD2、SD4提高了5.4倍以上,乳酸产量下降。
     培养基的不同对SD6和SD8发酵产物的组成也产生了较大的影响。SD6、SD8在LB培养基中发酵60 h时乳酸的产量低于16 mM,而在M9培养基中乳酸的产量可以达到100 mM以上。琥珀酸的产量则从LB培养基中的45.5 mM和42.5 mM分别下降到了M9培养基中的34.5 mM和31.4mM。推测M9培养基中K+的存在是促进乳酸产量提高的原因。用Na+取代M9培养基中的K+对SD4和SD8进行了培养,两者的乳酸产量均有所降低,琥珀酸产量相应升高。相比于LB培养基,M9培养基更有利于乳酸的产生。
     用甘油和山梨醇替代葡萄糖作为碳源、向M9培养基中添加还原剂L-Cysteine HCl和Na2S及对重组菌株SD4和SD8进行严格厌氧发酵均提高了两株重组菌株中乳酸的产量,并相应扩大了乳酸和琥珀酸之间的摩尔比。其中厌氧程度的控制起到了关键性的决定作用。
     本论文成功构建了两株高产乳酸菌株SD4、SD8,并从不同的方面对影响乳酸生产的因素进行了详细的研究,为更好地实现乳酸的可控性生产提供了重要的技术支撑。
     3.重组P (LA-co-HB)生产菌株的构建及初步发酵研究
     PHA合酶是PHAs(聚羟基脂肪酸酯)合成过程中的关键酶,具有广泛的底物特异性,其底物--羟基酸具有同乳酸类似的化学结构。以3HB为单体的PHB是最为常见的一种PHA。基于此,我们构建了一株重组大肠杆菌DH5a/pBBR1pctEC+pBHR69来合成PLA和PHB的共聚物P(LA-co-3-HB)。在重组菌株中,P(LA-co-3-HB)由三步反应催化获得:(i)乳酸在辅酶A转移酶PCT (Clostridium propionicum)的催化下被活化成lactyl-CoA, (ⅱ) acetyl-CoA经来源于Ralstonia eutropha的PhaA (β-ketothiolase)和PhaB (NADPH-dependent acetoacetyl-CoA reductase)的催化生成3-hydroxybutyryl-CoA (3HB-CoA), (ⅲ)来源于Allochromatium vinosum的PHA合酶PhaEC催化lactyl-CoA和3-hydroxybutyryl-Co A之间的聚合。重组大肠杆菌DH5α/pBBR1pctEC+pBHR69在添加1%乳酸的好氧发酵条件下能够合成P(LA-co-3-HB),其中的乳酸含量为0.22 mol%,3HB含量为99.78 mol%。厌氧发酵条件下合成的P(LA-co-3-HB)中,乳酸含量提高到了1.49 mol%。
     此代谢途径的构建在国内尚属首次,弥补了国内技术上的空白,在国际上亦属先进水平,突破了PLA一步法生物合成的难关,对于实现PLA的全生物合成具有重要的理论意义和应用价值。
Considering the limited deposits of fossil fuels, bio-based platform chemicals, building blocks for numerous chemical intermediates and end products, are recognized as a burning issue in the last decade. Hydroxypropionic acid, consisting of 3-hydroxypropionic acid (3-HP) and 2-hydroxypropionic acid (lactate), was identified as one of the most important platform chemicals. The presence of two functional groups with different properties makes both of them suitable precursor for the synthesis of many optically active substances.3-Hydroxypropionic acid is a chemical reagent well known for its simple structure and its high reactivity.3-HP has utility for specialty synthesis and can be converted to commercially important intermediates by known art in the chemical industry, e.g., acrylic acid by dehydration, malonic acid by oxidation, esters by esterification reactions with alcohols, and reduction to 1,3-propanediol.3-HP for commercial use is now commonly produced by chemical syntheses, its use has remained on a laboratory scale due to its insufficient production, complex separation/purification and higher production costs. At present, the production of 3-HP by genetic engineering and microbial fermentation consists mainly of two parts:I, The genetic engineering progress of producing 3-HP from glucose;Ⅱ, The genetic engineering progress of producing 3-HP from glycerol. However, it's certainly difficult to construct the certain former pathway mentioned above. And the production of 3-HP from glycerol was only 0.17 g/L and unable to meet the requirement for large-scale production.
     Lactate (2-hydroxypropionic acid) is the most widely occurring hydroxycarboxylic acid, having versatile applications in food, pharmaceutical, textile, and chemical industries. Although several lactic acid bacteria, such as Lactobacillus species, were able to produce lactic acid in a large quantity by fermentation of glucose and other renewable resources, Escherichia coli has many advantages as a host for production of lactic acid, including rapid growth under both aerobic and anaerobic conditions, the ability to produce optically pure lactate, and its simple nutritional requirements. Moreover, the ease of genetic manipulation of E. coli makes possible metabolic engineering strategies for improving lactate accumulation in E. coli. Polylactate (PLA), which is chemically synthesized by ring-opening polymerization of a cyclic diester (lactide) of lactate, has attracted considerable interest as a natural, biodegradable, and biocompatible plastic. However, as the chemo-process of PLA can be carried out via harmful metal catalysts, it often leaves chemical residues that are subject to health and safety concerns. The paradigm shift from the chemo-process to the bio-process for PLA production is thus preferable to overcome this problem.
     In this article, we constructed a genetic pathway for 3-HP production from glucose in E. coli. A series of recombinants defecting in competitive pathways aiming to produce lactate effectively were obtained. We also established a recombinant E. coli that allows the synthesis of LA-based polyester. The major results of the article are as follows:
     1. Construction of recombinant E. coli to accumulate 3-HP from glucose
     The initial step of 3-HP cycle in Chloroflexus aurantiacus is the acetyl-CoA carboxylation to malonyl-CoA catalyzed by acetyl-CoA carboxylase, followed by NADPH-dependent reduction of malonyl-CoA to 3-HP. In E. coli, the formation of malonyl-CoA from acetyl-CoA plus CO2 occurs as the first committed step of the fatty acid synthetic pathway catalyzed by the multi-component acetyl-CoA carboxylase (ACCase). The biofunctional malonyl-CoA reductase from C. aurantiacus, encoded by mcr gene, consists of an N-terminal short-chain alcohol dehydrogenase domain and a C-terminal aldehyde dehydrogenase domain and catalyzes two-step reduction.
     The mcr gene was PCR amplified from C. aurantiacus strain OK-70-fl (DSM636) and inserted into pET-28a to give plasmid pET-28a-mcr. Recombinant DE3/pET-28a-mcr for production of 3-HP was constructed by transforming E. coli BL21 (DE3) with plasmid pET-28a-mcr. Recombinant DE3/pET-28a-mcr, together with BL21 (DE3)/pET-28a, were inoculated into 50 ml LB medium with 2% glucose and incubated for 60 h. Samples were removed for GC analysis of 3-HP. The retention time of 3-HP by GC is 3.2 min. There is a detectable peak at the same location for the fermentation supernatant of DE3/pET-28a-mcr, corresponding approximately to 0.15 g/L 3-HP.
     This novel biosynthetic pathways allowed us to achieve the biosynthesis of 3-HP at both the domestic and international level. With the help of metabolism engineering technology, we envision that it will be the solid theoretical basis to make the high yield of 3-HP.
     2. Construction of a series of recombinants defecting in competitive pathways to produce lactate effectively
     Fermentation of sugars through native pathways in E. coli under anaerobic conditions produces a mixture of products consisting primarily of lactate, formate, acetate and ethanol, with smaller amounts of succinate. The relative proportions of these products varied with the relative in vivo enzyme activities such as lactate dehydrogenase (ldhA gene), pyruvate formate lyase (pfl gene) and phosphoenolpyruvate carboxylase (ppc gene). Meanwhile, this product ratio also changed with the growth conditions in order to balance the number of reducing equivalents generated during glycolytic breakdown of the substrate. Acetate and ethanol are typically produced from acetyl-CoA in approximately equimolar amounts, catalyzed by acetate kinase (ackA)/phosphostransacetylase (pta) and alcohol/aldehyde dehydrogenase (adhE) respectively, to provide redox balance.
     In this study, we constructed recombinant E. coli SD2 and SD4, defecting in pflB and adhE respectively, to improve the production of lactate. Anaerobic fermentation was performed in LB medium supplemented with 100 mM glucose. Deletion of pflB in SD2 obviously increased the lactate production to 174.8 mM, while inactivation of adhE led it to 178.3 mM, approaching the theoretical maximum of 2 mol of lactate per mol of glucose utilized. The mutation of ptsG in SD6 and SD8, derivatives of SD2 and SD4 respectively, altered the fermentative metabolism of E. coli and caused over five fold increase in the formation of succinate at the expense of lactate. Meanwhile, ptsG mutation led to reduced glucose uptake rate but improved biomass during the fermentation.
     The fermentation products of SD6 and SD8 varied with respect to the different composition of medium. Compared to no more than 16 mM in LB medium after 60 h fermentation, the formation of lactate in SD6 and SD8 with M9 medium largely improved to over 100 mM. Correspondingly, succiante produced by SD6 and SD8 dropped from 45.5 mM,42.5 mM with LB medium to 34.5 mM,31.4 mM with M9 medium, respectively. The existence of potassium ion in M9 was speculated to accounting for the increased lactate conversion. Replacement of potassium with sodium in M9 medium slightly reduced the accumulation of lactate in SD4 and SD8, accompanied by increased succinate production. It's suggested that M9 medium is more conducive to lactate formation than LB.
     Influences of carbon sources with high degree of reduction, reducing agents, and oxygen availability on the contribution of products were tested. All three approaches expanded the production ratio of lactate to succinate and the dissolved oxygen tension was a key constraint.
     Through genetic manipulation, high-yield accumulation of lactate was achieved in engineered E. coli SD4 and SD8. Influences of carbon flow and the availability of reducing equivalents on lactate production provided an important technical support for controllable lactate production.
     3. Construction of a bioprocess for the production of LA-based polyester P(LA-co-3HB)
     Based on the substrate specificity of PHA synthase, a key enzyme for polymerization of various monomers to polyhydroxyalkanoate (PHAs), which has monomeric constituents share the common chemical structure, hydroxy acid, with 2-hydroxypropionate (the same as LA), we succeeded in creating a microbial biosynthetic system for LA-based polyesters, P(LA-co-3-HB), copolymerized with 3-hydroxybutyrate (3HB), which is a typical constituent of polyhydroxyalkanoates (PHAs). P(LA-co-3HB) is intracellularly synthesized by successive enzymatic reaction steps, as follows:(i) generation of lactyl-coenzyme A (LA-CoA) by propionyl-CoA transferase (PCT) from Clostridium propionicum, (ii) supply of 3-hydroxybutyryl-CoA (3HB-CoA) via the dimerization pathway catalyzed by PhaA (β-ketothiolase) and PhaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, and (iii) copolymerization of the CoA esters by PhaEC, the PHA synthase from Allochromatium vinosum. In our work, a copolymer consisting of 0.22 mol% of LA and 99.78 mol% 3HB was produced in recombinant Escherichia coli DH5a/pBBRl1pcrEC+pBHR69 under aerobic conditions supplied with 1% lactate. Furthermore, LA fraction in the copolymer was increased up to 1.49 mol% by conducting anaerobic culture preferable for LA production.
     Construction of this engineered system is the first of its kind in this country to make up the domestic technology gap in PLA production. It plays an important role in helping to understand the bio-process synthesis of PLA, thus has important theoretical significance and application value.
引文
Aden A, Werpy T, Petersen G, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L (2004) Top Value Added Chemicals From Biomass. Volume 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas.29-31. U.S. Department of Energy
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835-864
    Chang DE, Jung HC, Rhee JS, Pan JG (1999) Homofermentative production of D-or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384-1389
    Chuakrut S, Arai H, Ishii M, Igarashi Y (2003) Characterization of a bifunctional archaeal acyl coenzyme A carboxylase. J Bacteriol 185:938-947
    Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 5:223-234
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640-6645
    de Graef MR, Alexeeva S, Snoep JL, Teixeira de Mattos MJ (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181: 2351-2357
    Dimroth P, Guchhait RB, Lane MD (1971) Crystallization of biotin carboxylase, a component enzyme of the acetyl-CoA carboxylase system from Escherichia coli. Hoppe Seylers Z Physiol Chem 352:351-354
    Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited GM (2006) Process for the biological production of 1,3-propanediol with high titer. US Patent 7067300
    Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63:3205-3210
    Friedmann S, Alber BE, Fuchs G (2006) Properties of succinyl-coenzyme A: D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. J Bacteriol 188: 6460-6468
    Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol 81:217-223
    Garlotta D (2001) A Literature Review of Poly(Lactic Acid). Journal of Polymers and the Environment 9:63-84
    Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria:trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234-245
    Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297: 803-807
    Guchhait RB, Polakis SE, Dimroth P, Stoll E, Moss J, Lane MD (1974) Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. JBiol Chem 249:6633-6645
    HuGler M, Fuchs G (2005) Assaying for the 3-hydroxypropionate cycle of carbon fixation. Methods in Enzymology 397:212-221
    Haas T, Meier M, Brossmer C, Arntz D, Freund A (1998) Process for the production of 3-hydroxy propionic acid or a salt thereof. US Patent 5817870
    Harada T, Hirabayashi T (1968) Utilization of alcohols by Hansenula miso. Agric Biol Chem32:1175-1180
    Hasegawa J, Ogura M, Kanema H, Kawaharada H, Watanabe K (1982) Production of beta-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid. J Ferment Technol 60:591-594
    Herter S, Busch A, Fuchs G (2002) L-Malyl-coenzyme A lyase/beta-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation. J Bacteriol 184: 5999-6006
    Herter S, Farfsing J, Gad'On N, Rieder C, Eisenreich W, Bacher A, Fuchs G (2001) Autotrophic CO2 fixation by Chloroflexus aurantiacus:study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J Bacteriol 183: 4305-4316
    Hong SH, Lee SY (2002) Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 58:286-290
    Hugler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160-173
    Hugler M, Menendez C, Schagger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404-2410
    Ishida H, Ueno E (2000) Manufacture of 3-hydroxypropionic acid with good selectivity and yield. JP Patent 2000159724A2
    Ishii M, Chuakrut S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64:605-610
    Kuchta RD, Abeles RH (1985) Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase. J Biol Chem 260: 13181-13189
    Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14: 98-105
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability 59:145-152
    Macis L, Daniel R, Gottschalk G (1998) Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of Clostridium pasteurianum.164:21-28
    Maeda H, Yamagata Y, Abe K, Hasegawa F, Machida M, Ishioka R, Gomi K, Nakajima T (2005) Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae. Appl Microbiol Biotechnol 67:778-788
    Miyoshi T, Harada T (1974) Utilization of 2-butane-1,4-diol by a strain of Fusarium merismoides. J Ferment Technol 52:196-199
    Muh U, Sinskey AJ, Kirby DP, Lane WS, Stubbe J (1999) PHA synthase from chromatium vinosum:cysteine 149 is involved in covalent catalysis. Biochemistry 38:826-837
    Perepelkin KE (2002) Polylactide Fibres:Fabrication, Properties, Use, Prospects.34: 85-100
    Picon A, Teixeira de Mattos MJ, Postma PW (2005) Reducing the glucose uptake rate in Escherichia coli affects growth rate but not protein production. Biotechnol Bioeng 90:191-200
    Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29: 765-794
    Selifonova OV, Jessen H, Gort SJ, Selmer T, Buckel W (2002) 3-Hydroxypropionic acid and other organic compounds.2:42418
    Selmer T, Willanzheimer A, Hetzel M (2002) Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site. Eur J Biochem 269:372-380
    Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii.178:5793-5796
    Shinzo T (2005) Process for producing 1,3-propanediol and/or 3-hydroxypropionic acid. WO Patent 2005/093060 Al
    Singh SK, Ahmed SU, Pandey A (2006) Metabolic engineering approaches for lactic acid production. Process Biochemistry 41:991-1000
    Soriano A, Radice AD, Herbitter AH, Langsdorf EF, Stafford JM, Chan S, Wang S, Liu YH, Black TA (2006) Escherichia coli acetyl-coenzyme A carboxylase: characterization and development of a high-throughput assay. Anal Biochem 349:268-276
    Suthers PF, Cameron DC (2005) Production of 3-hydroxypropionic acid in recombinant organisms. US Patent 6852517
    Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci US A 105:17323-17327
    Takamizawa K, Horitsu H, Ichikawa T, Kawai K, Suzuki T (1993) β-hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl Microbiol Biotechnol 40:196-200
    Thauer RK (2007) A fifth pathway of carbon fixation. Science 318:1732-1733
    Tsuji H (2005) Poly(lactide) stereocomplexes:formation, structure, properties, degradation, and applications. Macromol Biosci 5:569-597
    Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer blends of poly (1-lactide) s with different optical purity of the lactate units.287:116-121
    Vink ET, Rabago KR, Glassner DA, Springs B, O'Connor RP, Kolstad J, Gruber PR (2004) The sustainability of NatureWorks polylactide polymers and Ingeo polylactide fibers:an update of the future. Macromol Biosci 4:551-564
    Yamada M, Matsumoto K, Nakai T, Taguchi S (2009) Microbial production of lactate-enriched poly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties. Biomacromolecules 10:677-681
    Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO (2003) Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399-407
    陈伟,周建光,王鸣刚(2004)一种基于Red的在大肠杆菌中修饰染色体和BAC的新型重组工程系统.军事医学科学院院刊28:476-479
    崔文禹,李山虎,姜飞,吴洋,项勇,周建光(2006)应用Red重组工程技术建立asd基因缺失的大肠杆菌DH10B菌株.生物技术通讯17:493-495
    戈进杰(2002)生物降解高分子材料及其应用北京:化学工业出版社
    韩聪,张惟材,游松(2003)Red同源重组技术研究进展.中国生物工程杂志23:17-21
    韩聪,张惟材,游松,黄留玉(2004)大肠杆菌ptsG基因敲除及其缺陷株生长特性研究.生物工程学报20:16-20
    黄玉玲(1994)乳酸在化学工业中的应用.广西化工23:15-20
    李良,李国明(2001)聚乳酸的合成现状及在生物医学领域中的应用.安徽化工6:15-18
    李平兰,张篪(2000)乳酸菌及其生物工程研究新进展.中国乳品工业28:50-53
    李孝红,黄志镗(1999)聚乳酸及其共聚物的合成和在生物医学上的应用.高分子通报1:24-32
    刘冰,刘成,张鲲,邹少兰,吴经才,张敏华(2007)3-羟基丙酸途径研究进展.化学与生物工程.24:8-11
    刘俊(2001)聚乳酸的合成及应用.生物医学工程学杂志18:285-287
    吕九琢,徐亚贤(2004)乳酸应用,生产及需求的现状与预测.北京石油化工学院学报12:32-38
    穆守元(2001)国内外乳酸及其衍生品的应用和市场前景.化工技术经济19:10-14
    欧提库尔(2005)L-乳酸的研究进展及应用前景.新疆化工3:5-11
    邵敬伟(2004)微生物源甘油脱水酶的研究进展.郑州工程学院学报25:85-88
    沈长洲,游思慧(1995)p-羟基丙酸合成的新方法.河北化工1:10-11
    沈长洲,游思慧(1996)丙烯酸及甲基丙烯酸高温水合反应的研究.化学工程师3:12-14
    史铁钧,董智贤(2001)聚乳酸的性能,合成方法及应用.化工新型材料29:13-16
    土肥羲治,斯泰因比歇尔(2004)生物高分子(第4卷)聚酯Ⅲ-应用和商品.北京:化学工业出版社
    王芃,袁盛凌,郑继平,李淑琴,段海清,张兆山(2004)一种快速,精确构建大肠杆菌组氨酸营养缺陷型的方法.微生物学通报31:95-99
    王正岩,郝章来(2003)聚乳酸的生产和应用及市场前景.化工新型材料31:40-41
    吴世敏,印德麟(1999)简明精细化工大辞典:辽宁:辽宁科学技术出版社
    闫智慧,高静,周丽亚,赵学明(2004)乳酸的应用与发酵生产工艺.河北工业大学学报33:15-19
    逸名(2003)利用生物工程制备3-羟基丙酸
    张红(1999)乳酸菌的发酵性质和生物学功能.生物学通报34:18-20
    张鸿达,刘成,高卫华,邹少兰,张敏华(2007)微生物发酵法生产3-羟基丙酸的研究进展.化工进展26:33-36
    赵鑫,赵良启,谢红(2005)发酵生产L-乳酸的现状与展望.山西化工25:15-19
    赵永丰(1997)化工百科全书(第13册).北京:化学工业出版社
    周文广,黄日波(2003)构建基因工程菌生产1,3-丙二醇的研究进展.广西大学学报(自然科学版).4:304-308
    1) Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, and Zhou S, Biotechnol. Prog.,15,855-866 (1999).
    2) Sauer M, Porro D, Mattanovich D, and Branduardi P, Trends Biotechnol.,26, 100-108(2008).
    3) Hofvendahl K, and Hahn-Hagerdal B, Enzyme Microb. Technol.,26,87-107 (2000).
    4) Chang DE, Jung HC, Rhee JS, and Pan JG, Appl. Environ. Microbiol.,65, 1384-1389(1999).
    5) Okino S, Suda M, Fujikura K, Inui M, and Yukawa H, Appl. Microbiol. Biotechnol.,78,449-454 (2008).
    6) Levanon SS, San KY, and Bennett GN, Biotechnol. Bioeng.,89,556-564 (2005).
    7) Clark DP, FEMSMicrobiol. Rev.,5,223-234 (1989).
    8) Hong SH, and Lee SY, Biotechnol. Bioeng.,74,89-95 (2001).
    9) Zhou S, Yomano LP, Shanmugam KT, and Ingram LO, Biotechnol. Lett.,27, 1891-1896(2005).
    10) Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, and Ingram LO, Biotechnol. Bioeng.,101,881-893 (2008).
    11) Yun NR, San KY, and Bennett GN, J. Appl. Microbiol.,99,1404-1412 (2005).
    12) Datsenko KA, and Wanner BL, Proc. Natl. Acad. Sci. U.S.A.,97,6640-6645 (2000).
    13) Sauer U, and Eikmanns BJ, FEMS Microbiol. Rev.,29,765-794 (2005).
    14) Hong SH, and Lee SY, Appl. Microbiol. Biotechnol.,58,286-290 (2002).
    15) Gonzalez R, Murarka A, Dharmadi Y, and Yazdani SS, Metab. Eng.,10, 234-245 (2008).
    16) Sutherland P, and McAlister-Henn L, J. Bacteriol.,163,1074-1079 (1985).
    17) Gokarn RR, Eiteman MA, and Altman E, Appl. Environ. Microbiol.,66, 1844-1850(2000).
    Aden A, Werpy T, Petersen G, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L (2004) Top Value Added Chemicals From Biomass. Volume 1-Results of Screening for Potential Candidates From Sugars and Synthesis Gas.29-31. U.S. Department of Energy
    Davis MS, Solbiati J, Cronan JE, Jr. (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. JBiol Chem 275:28593-28598
    HuGler M, Fuchs G (2005) Assaying for the 3-hydroxypropionate cycle of carbon fixation. Methods in Enzymology 397:212-221
    Hugler M, Menendez C, Schagger H, Fuchs G (2002) Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. JBacteriol 184:2404-2410
    Kuchta RD, Abeles RH (1985) Lactate reduction in Clostridium propionicum. Purification and properties of lactyl-CoA dehydratase. J Biol Chem 260: 13181-13189
    Sambrook JaR, J.W. (2001) Molecular Cloning:a Laboratory Manual,3rd edn
    Selifonova OV, Jessen H, Gort SJ, Selmer T, Buckel W (2002) 3-Hydroxypropionic acid and other organic compounds. PCT WO 02/42418
    Selmer T, Willanzheimer A, Hetzel M (2002) Propionate CoA-transferase from Clostridium propionicum. Cloning of gene and identification of glutamate 324 at the active site. Eur JBiochem 269:372-380
    Soriano A, Radice AD, Herbitter AH, Langsdorf EF, Stafford JM, Chan S, Wang S, Liu YH, Black TA (2006) Escherichia coli acetyl-coenzyme A carboxylase: characterization and development of a high-throughput assay. Anal Biochem 349:268-276
    Subrahmanyam S, Cronan JE, Jr. (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596-4602
    Suthers PF, Cameron DC (2005) Production of 3-hydroxypropionic acid in recombinant organisms. US Patent 6852517
    Young AL (2003) Biotechnology for food, energy, and industrial products:new opportunities for bio-based products. Environ Sci Pollut Res Int 10:273-276
    Yun NR, San KY, Bennett GN (2005) Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli. JAppl Microbiol 99:1404-1412
    Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700