辣根过氧化物酶在双功能环氧载体和胺基载体上的固定化及固定化酶催化氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是一种高效、高度专一的生物催化剂。随着科学技术的发展,酶的应用越来越广泛。但是,酶的稳定性差,对高温、有机溶剂或极端pH敏感,限制了酶的利用。酶固定化技术的出现,为酶的应用开辟了广阔的应用前景。酶的固定化研究和应用在工业生产、化学分析、医药和环境工程等众多领域都备受关注。
     辣根过氧化物酶(HRP)是一种含有血红素辅基(铁原卟啉)的糖蛋白复合酶,具有特殊催化氧化性能,可以在较为宽泛的条件下催化氧化芳香类化合物,尤其对水介质中的酚类及苯胺类化合物的氧化反应具有良好的催化作用。含酚工业废水对水环境的生态平衡和人类的健康都造成严重的危害,采用固定化的辣根过氧化物酶来处理酚类废水,在环境保护和酶工程领域都是重要的研究课题。研究制备性能良好的载体,高效地固定辣根过氧化物酶,并将固定化辣根过氧化物酶应用于含酚废水的催化氧化降解处理,是重要的环境治理与环境保护技术。
     本课题通过分子设计,研究制备了两类新型的双功能环氧载体,深入研究了对辣根过氧化物酶的固定化特性与固定化机理,也采用胺基载体对辣根过氧化物酶实施了固定化,研究了酶学性质,并将固定化辣根过氧化物酶用于苯酚的催化氧化,考察研究了催化氧化特性。本课题的研究在酶固定化领域具有明显的科学意义,对于酶催化技术在环境工程中的应用,具有重要的参考价值。
     首先,采用“接出法”将甲基丙烯酸缩水甘油酯(glycidyl methacrylate,GMA)接枝聚合在硅胶表面,制得了接枝微粒PGMA/SiO_2,又通过环氧基团的开环反应,将乙二胺(EDA)键合在接枝微粒表面,制备了阳离子型双功能复合载体EDA-PGMA/SiO_2(第一种载体),共价偶联法实施了辣根过氧化物酶的固定化;重点考察了两种次价键力(静电相互作用与疏水相互作用)在共价键合法固定HRP过程中的作用,探索研究了作用机理。研究结果表明,在水介质中,复合载体EDA-PGMA/SiO_2表面胺基的质子化作用,使载体微粒的zeta电位在较大的pH范围内保持正值;当介质的pH=8.5,大于HRP的等电点(等电点为8)时,酶蛋白与载体之间所产生的强静电相互作用,会显著促进HRP的固定化;EDA的键合率在30%附近的载体,静电相互作用对固酶的促进作用最强,固定化酶的偶联率与比活力具有最高值,分别为57.85%和0.257U g~(-1)·min~(-1)。疏水相互作用对化学法固定辣根过氧化物酶,也会产生明显的作用,当以接枝微粒PGMA/SiO_2为载体时,增大溶液中NaCl的浓度,可有效促进酶蛋白与载体之间的疏水相互作用,提高固定化酶的偶联率与比活力。
     接着,以对羟基苯磺酸钠(SHBS)为试剂,使接枝大分子PGMA的部分环氧基团发生开环反应,制备了阴离子型双功能复合载体SHBS-PGMA/SiO_2(第二种载体),并采用共价偶联法实施了辣根过氧化物酶的固定化;重点考察了HRP与载体SHBS-PGMA/SiO_2之间的静电相互作用在共价固定HRP过程中的作用,并探索研究了作用机理。研究结果表明,复合载体SHBS-PGMA/SiO_2表面大量的磺酸根离子,使其zeta电位在较大的pH范围内显示很大的负值,即SHBS-PGMA/SiO_2表面携带高密度的负电荷。当pH=6.0,HRP分子荷正电,酶蛋白分子与载体之间会产生很强的静电相互作用,显著促进HRP的固定化;当载体表面SHBS的键合率在18%附近时,静电相互作用对固酶的促进作用最强,固定化酶的偶联率与比活力达最高值,分别为63.64%和0.27U g~(-1)·min~(-1)。
     催化氧化实验表明,以上述两种环氧载体固定的辣根过氧化物酶催化活性不高,于是又采用胺基载体(二乙烯三胺改性的交联聚丙烯腈微球,DETA-CPAN),以戊二醛为偶联剂,实施了辣根过氧化物酶的固定化,考察了最适酶固定化条件。研究结果指出,最适固定化条件为:温度为30℃,固定化时间为8h,戊二醛浓度为0.02mol L-1,pH值为8.0,本实验体系的适宜酶溶液量为10mL。在最适条件下,HRP的偶联率和固定化酶的比活力分别可达到41.96%和0.32U g~(-1)·min~(-1)。
     最后,对最适条件下所制得的固定化酶的酶学性质进行了研究,并将其用于苯酚的催化氧化,考察了其催化性能。酶学性质研究结果表明,固定化酶的最适pH为7.0,且具有较好的pH稳定性;最适温度为30℃,且在20-50℃范围内,固定化酶都保持有较高的活性;游离酶和固定化酶的表观米氏常数Km值分别为1.35×10-3mol·L-1、4.05×10-2mol·L~(-1),固定化酶的米氏常数高于游离酶的米氏常数,表明固定化酶与底物之间的亲和力比游离酶要低,同于大多数固定化酶的情况。苯酚溶液催化氧化降解实验结果表明,催化氧化体系中底物苯酚与氧化剂H_2O_2的比例为1:1时,催化效果最好;在本研究体系中加入少量(0.5g)固定化酶,25℃下进行苯酚的催化氧化降解实验2h,苯酚的去除率可达到28.57%。随着给酶量的增加,苯酚的去除率也在增加,当加入2.0g固定化酶时,去除率可达到56%。循环使用5次后,固定化酶仍具有较高的酶活性,表明固定化酶具有较好的重复循环使用性能。
Enzyme is a kind of highly efficient, highly specific biological catalyst. With thedevelopment of science and technology, enzyme is used widely. However, the poor stability,sensitive to high temperatures, organic solvents and extreme pH, the use of enzymes islimited. The emergence of enzyme immobilization technology opens up a new prospect forthe application of enzyme. Study and application of enzyme immobilization are concernedin the industrial production, chemical analysis, medical, environmental engineering, andmany other field.
     Horseradish peroxidase (HRP) is a kind of glycoprotein compound enzyme containingprotoheme prosthetic group (iron protoporphyrin), and possessing special catalytic oxidationproperties. It can catalyze oxidation the aromatic compounds under relatively broad condition.Especially, the catalytic effect is better for the oxidation reaction of phenol and anilinecompounds in water system. Industrial waste water containing phenol has serious harm to theecological balance of water environment and human health. Immobilized horseradishperoxidase used to treat phenolic wastewater is an important research subject inenvironmental protection and enzyme engineering field. Researching and preparingimmobilized horseradish peroxidase carrier with good performance, and applied to catalyticoxidation of wastewater containing phenol degradation process, is an important environmentalmanagement and environmental protection technology.
     In this paper, based on molecular designing, two kinds of novel difunctional epoxycarrier are prepared, and the properties of immobilized horseradish peroxidase andimmobilization mechanism are studied deeply. The immobilization of horseradish peroxidaseused amino carrier is carried out, and enzymology properties are studied. The immobilized horseradish peroxidase is used for catalytic oxidation of phenol, and the catalytic oxidationproperties are researched. This topic has significant scientific significance in the enzymeimmobilization field, and important reference value for the enzyme catalysis technologyapplication in environmental engineering.
     Firstly, the glycidylmethacrylate (GMA) is grafted on silica surface using the "graftingfrom" method, and grafted particles PGMA/SiO_2are prepared. By ring-opening reaction ofethylenediamine (EDA) and epoxy groups, ethylenediamine are bonded on the particlesurface, resulting in preparation of the difunctional composite carrier EDA-PGMA/SiO_2.The immobilization of horseradish peroxidase on the difunctional on composite carrierEDA-PGMA/SiO_2is carried out using covalent coupling method. The effect of twosecondary valence bond forces (electrostatic interaction and hydrophobic interaction) in theimmobilization process of HRP is studied focused, and mechanism is researched. Theresults show that the zeta potential keeps positive value in larger range because of theprotonation effect of amino groups on the surface of EDA-PGMA/SiO_2composite carrier.The electrostatic interaction between EDA-PGMA/SiO_2and horseradish peroxidase has asignificant role to promote the enzyme immobilization when pH of8.5. When bonding rateof ethylenediamine is30%, the immobilized enzyme coupling ratio and the specific activityhas the highest,57.85%and0.257U g~(-1)·min~(-1), respectively. Hydrophobic interaction canproduce significant effect on immobilized horseradish peroxidase using chemical method.When the grafted PGMA/SiO_2particles as the carrier, adding NaCl electrolyte in solutioncan effectively promote the hydrophobic interactions between enzyme protein and thecarrier, and enhance coupling rate and specific activity of immobilized enzyme.
     Secondly, graft particles PGMA/SiO_2is chemically modified using sodium4-hydroxybenzenesulfonate (SHBS), and anionic difunctional composite carrierSHBS-PGMA/SiO_2is prepared. The immobilization of horseradish peroxidase on thedifunctional on composite carrier SHBS-PGMA/SiO_2is carried out using covalent couplingmethod. The effect of electrostatic interaction in the immobilization process of HRP isstudied focused, and mechanism is researched. The results show that the zeta potential keeps negative value in larger range because of abundant sulfonic acid ions on the surfaceof SHBS-PGMA/SiO_2composite carrier. The electrostatic interaction betweenSHBS-PGMA/SiO_2and horseradish peroxidase has a significant role to promote theenzyme immobilization when pH of6.0. When the bonding rate of SHBS is18%, theimmobilized enzyme coupling ratio and the specific activity has the highest,63.64%and0.27U g~(-1)·min~(-1), respectively.
     Catalytic oxidation experiments show that, the catalytic activity of two kinds of epoxycarrier immobilized horseradish peroxidase is not high. So, the amino carrier(diethylenetriamine modified crosslinked polyacrylonitrile microsphere, DETA-CPAN)modified using glutaraldehyde as coupling agent, is used to immobilize horseradishperoxidase. The optimal enzyme immobilization conditions are investigated. The resultsindicate that the optimal immobilized conditions as follows: the temperature is30℃,immobilization time is8h, glutaraldehyde concentration is0.02mol L-1, pH value is8.0,and the appropriate amount of enzyme solution is10ml. In optimal conditions, the couplingratio of HRP and the specific activity of immobilized enzyme can reach41.96%and0.32U g~(-1)·min~(-1), respectively.
     Finally, the enzymatic properties of immobilized enzyme prepared at the optimalconditions are studied. The catalytic oxidation performance to phenol is investigated. Theenzymology properties results show that the optimal pH of the immobilized enzyme is7.0,and the immobilized enzyme has good pH stability. The optimum temperature is30°C, andthe immobilized enzyme remains higher activity within20°C to50℃. The apparentmichaelis constant of free enzyme and immobilized enzyme are1.35×10-3mol L-1,4.05×10-2mol L-1, respectively. This indicates that the affinity between immobilized enzymeand the substrate is lower than that of free affinity between enzyme and substrates. Theexperimental results of catalytic oxidation degradation of phenol show that the catalyticeffect is the best as the ratio of oxidant H_2O_2and substrate phenol of1:1. The removal rateof phenol can reach28.57%at temperature of25°C and time of2h when a small amount(0.5g) of immobilized enzyme used. The removal rate of phenol increases with the increase of enzyme amount. The removal rate of phenol can reach56%when2g of immobilizedenzyme used. The immobilized enzyme still has high enzyme activity after5cycle use andthe immobilized enzyme can be used in recirculation.
引文
[1] Mosbach K. Immobilized enzymes[J]. Tredds in Biochemical Science,1980,5(1):1-3.
    [2]野本正雄.酵素の新しい工業的利用[J].化学と生物,1982,20(5):317-326.
    [3]野本正雄.酵素の新しい工業的利用(2)[J].化学と生物,1982,20(6):401-402
    [4]肖海军,贺筱蓉.固定化酶及其应用研究进展[J].生物学通报,2001,36(7):9-10.
    [5]杨节非编译.固定化酶-回顾与展望[J].国外医药-合成药、生化药、制剂分册.1994,15(4):209-212.
    [6]居乃琥,陈石根,等.固定化酶理论与应用[M].北京:轻工业出版社,1987:4-15.
    [7]罗贵民.酶工程[M].北京:化学工业出版社,2003:58.
    [8]朱启忠.生物固定技术及应用[M].北京:化学工业出版社,2009:334-380
    [9]郑善切.酶固定化技术的研究和进展[J].赤峰学院报,2011,27(2):36-38.
    [10]吕勇军,李佩晋,郭杨龙,等.酶在有序介孔材料上的固定化[J].化学进展,2008,20:1172-1179.
    [11]曹树祥,黎苇.固定化酶制备方法研究进展[J].化工环保,1999,19(5):273-277.
    [12]罗贵民.酶工程[M].北京:化学工业出版社,2003:57.
    [13]王苗苗.介孔二氧化硅磁性复合微球的制备及漆酶固定化[D].北京:北京工业大学,2012.
    [14]郭勇,酶工程[M].北京:科学出版社(第三版),2009:164-165.
    [15]贾鹏翔,刘雪莹,刘京龙,等.固定化酶及其在化工等领域中的应用[J].皮革科学与工程,2004,14(5):31-37.
    [16]蒋挺大.甲壳素[M].北京:中国环境科学出版社.1999:355
    [17] Laurell T, Drott J, Rosengren L. Silicon wafer integrated enzyme reactors[J].Biosensors and Bioelectronics,1995,10(3-4):289-299.
    [18] Martin B, Simon E, Gy rgy M, et al.Improved performance in silicon enzymemicroreactors obtained by homogeneous porous silicon carrier matrix[J]. Talanta,2002,56(2):341-353.
    [19] Dyal A, Loos K, Noto M, et al. Activity of Candida rugosa Lipase Immobilized onγ-Fe2O3Magnetic Nanoparticles[J]. Journal of the American Chemical Society,2003,125:1684-1685.
    [20] Deere J, Magner E, Wall J G, et al. Adsorption and activity of proteins onto mesoporoussilica[J]. Catalysis Letters,2003,85(l-2):19-23.
    [21] Husain S, Husain Q, Saleemuddin M. Inactivation and reactivation of horseradishperoxidase immobilized by various procedures[J]. Indina Journal of BiochemistryBioPhysics,1992,29(6):482-486.
    [22]胡龙兴.固定化酶催化氧化去除水溶液中酚的研究[J].环境科学,1996,17(3):57-60.
    [23] Ishikawa T, Tamura M, Yamazkai I. A kinetic study on the diffusion-coupled reactionof a basic horseradish peroxidase adsorbed on the carboxymethylcellulose membrane[J]. theJournal of Biological Chemistry,1980,255(22):10764-10770.
    [24]廖红东,袁丽,童春义,等.基于聚乙烯醇/Fe2O3纳米颗粒的纤维素酶固定化[J].高等学校化学学报,2008,29(8):1564-1568.
    [25]刘宇,郭晨,王锋,等.磁性SiO2纳米粒子的制备及其用于漆酶固定化[J].过程工程学报,2008,8(3):583-588.
    [26]王旭朋.新型复合载体PEI/SiO2的制备及对青霉素酰化酶的固定化研究[D].太原:中北大学,2006.
    [27]吴国琪,凌达仁,王忱,等.固定化谷氨酸脱羧酶柱式反应器测定L-谷氨酸[J].分析化学,1999,27(7):759-763.
    [28]贾德民,庞永新,郭柏平,等.光交联聚乙烯醇水凝胶及青霉素敏生物传感器研究[J].应用科学学报,1996,14(1):91-96.
    [29]张斌,金莉.固定化酶及其在食品中的应用[J].中国食品添加剂,2006,1:147-150.
    [30]张立武,徐禧.固定化酶技术进展I.固定化方法[J].成都科技大学学报,1989(5):109-126.
    [31]邱蔚然,定庆豹.酶法合成核苷类抗病毒药物.中国医药工业杂志,1999,30(10):44-48.
    [32]马建标.高分子对酶、抗体、DNA的修饰、固定化及其生物医学应用[J].高等学校化学学报,1997,18(7): l127-1235.
    [33] Kalia A, Goyal L, Pundir C S.烷基胺玻璃固定化葡萄糖氧化酶测定血糖[J].生物工程学报,1998,14(3):336-338.
    [34] Chaplin M F, Bucke C. Enzyme Technology[D]. UK, Cambridge University Press,1990.
    [35] Bahar T,Celebi S S,Immobilization of glucoamylase on magnetic poly(styrene)particles[J]. Journal of Applied Polymer Science,1999,72(l):69-73.
    [36]李树本.生物催化剂的固定化[J].分子催化,1987,1(2):120-130.
    [37] Cellapadian M, Krishnan M R V. Chitosan-ploy (glycidyl methacrylate) copolymer forimmobizization of urease[J]. Process Biochemisty,1998,33(6):595-560.
    [38] Chen J P, Chen J Y. Preparation and characterization of immobilized phospholipase A2on chitosan beads for lowering serm cholesterol concentration[J]. Journal of MolecularCatalysis B: Enzymatic,1998,5:483-490.
    [39] Mohamed A, Abdel-Naby A, Abdel-Mohsen S, et al. Preparation and some propertiesof immobilized penicilium funiculosum258dextranase [J]. Process Biochemisty,1999,34(4):391-398.
    [40] Dannibale A, Stazi S R, Vincignerra V, et al. Characterization of immobilized laccasefrom lentinuls ecodes and its use in olive-mill waste water treatment process [J]. Biochem,1999,34:697-701.
    [41]梅建凤,王普,王敏.固定化酶催化合成头孢羟氨苄[J].浙江工业大学学报,2005,33(2):134-136.
    [42]唐松山,张娟辉,姚侃.苯丙氨酸氨解酶的包被及其对家兔肠道苯丙氨酸吸收的影响[J].广东药学院学报,2005,21(5):576-579.
    [43] Odaci D, Timur S, Pazarlio lu N, et al. Effect of mediator on the laccase biosensorresponse in paracetamol detection[J]. Biotechnology and Applied Biochemistry,2006,45:23-28.
    [44] Tang D, Yuan R, Chai Y. Direct electrochemical immunoassay based on immobilizationof protein-magnetic nanoparticle composites on to magnetic electrode surfaces by stericallyenhanced magnetic field force[J]. Biotechnol Letter,2006,28(8):559-565.
    [45] Edward S W, Leukswd R P, et al. Immobilization of polyphenol oxidase onchitosan-coated polysulphone capillary membranes for improved phenolic effluentbilremediation[J]. Enzyme and Microbial Technology,1999,25(8-9):769-773.
    [46]杨雪梅,张兰英,张蕾,等.固定化酶在高浓度有机废水处理中的应用[J].吉林大学学报,2005,35(3):398-402.
    [47](?)etinusa (?) A,(?)ztop H N. Immobilization of catalase on chitosan film[J]. Enzyme andMicrobial Technology [J].2000,26(7):497-501.
    [48]马秀玲,陈盛,黄丽梅,等.磁性固定化酶处理含酚废水的研究[J].广州化学,2003,28(3):17-22.
    [49]张庆庆,汤斌,方磊,等.聚丙烯二氧化钛负载膜固定化农药降解酶的研究[J].农业工程学报,2006,22(3):19-21.
    [50] Zhang J B, Ye P, Chen S, et al. Removal of pentachlorophenol by immobilizedhorseradish peroxidase[J]. International Biodeterioration&Biodegradation.2007,59(4):307-314.
    [51] Havens P L, Rase H F. Reusable Immobilized enzyme/polyurethane sponge forremoval and detoxification of localized organophosphate pesticide spills[J]. Industrial andEngineering Chemistry Research,1993,32(10):2254-2258.
    [52] Lejeune K E, Russell A J. Covalent binding of a nerve agent hydrolyzing enzymewithin polyurethane foams[J]. Biotechnology and Bioengineering,1996,51(4):450-457.
    [53] Kanner J, Ben-Gera I, Berman S. Nitric oxide myoglobin as an inhibitor of lipidoxidation [J]. Lipids,1979,15(11):944-948.
    [54] Love J D, Pearson A M. Metmyoglobin and nonheme1iron as prooxidants in cookedmeat [J]. J Agric Food Chemistry,1974,22(6):1032-1034.
    [55]张寒飞,杨婉身,黄乾明.磁性固定化漆酶在苹果汁除酚中的应用研究[J].四川食品与发酵,2005,41(125):11-15.
    [56] Stefdano D G, Piacquadio P, Sciancalaepore V. Metal-chelate regenerable carries infood processing[J]. Biotechnol Tech,1996,10(11):857-860.
    [57]谭海运,董周永.苹果汁澄清技术的研究[J].西藏农业科技,2005,27(2):15-23.
    [58]张永勤,薛长湖,孙岩.几丁质共价固定果胶酶的研究[J].中国食品学报,2005,5(2):17-21.
    [59]张剑,王又容,陈进.球形A-壳聚糖固定化糖化酶的比较研究[J].中国酿造,2005,(12):15-18.
    [60] Conte A, Buonocore G G, Bevilacqua A, et al. Immobilization of lysozyme onpolyvinylalcohol films for active packaging applications[J]. Food Prot,2006,69(4):866-870.
    [61]吴虹,宗敏华,娄文勇.无溶剂系统中固定化脂肪酶催化废油脂转酯生产生物柴油[J].催化学报,2004,25(11):903-908.
    [62]Yu j i Shimada, Yomi Watanabe,Akio Sugihara. Enzymaticlcoholysis for biodiesel fuelproduction andapplication of the reaction to oil processing[J]. Journal of MolecularCatalysis B:Enzymatic,2002,79(17):133-142.
    [63] Sagiroglu A. Conversion of sunflower oil to biodiesel by alcoholysis usingimmobilized lipase[J]. Artificial Cells Blood Substitutes and Biotechnology,2008,36(2):138-149.
    [64] Fischback M B, Youn J K, Zhao X Y, et al. Miniature biofuel cells with improvedstability under continuous operation[J]. Electroanalysis,2006,18(19-20):2016-2022.
    [65]陈建波,夏春谷,尉迟力,等.过氧化物酶催化反应机理和动力学研究进展[J].分子催化,1999,13(4):312-320.
    [66] Duford H B, Stillman J S. Function and Mechanism of Action of Peroxidases[J].Coordin Chem Rev,1976,19(3):187-251.
    [67] Song H Y,Yao J H,Liu J Z,et al. Effects of phthalic anhydride modification onhorseradish Peroxidase stability and structure. Enzyme and Microbial Teehnology,2005,36(4):605-611.
    [68]宋海燕,尹友谊.邻苯二甲酸醉化学修饰对辣根过氧化物酶催化活性的影响[J].分子催化,2009,23(5):465-469.
    [69] Osann G. Poggendorf’sAnn[Z].1845.
    [70] Guilbaut G G. Handbook of Enzymatic methods of Analysis[D]. New York and Basel.Marcel dekker. Inc.,1976.
    [71]张东华.辣根过氧化物酶在有机合成中的应用[J].应用化工,2006,10(35):805-808.
    [72]吴洁颖.基于电聚合吡咯的电流式胆固醇生物传感器[D].浙江:浙江大学,2006.
    [73] Tatsumi K, Wada S, Ichikawa H. Removal of chlorophenols from Wastewater byImmobilized Horseradish Peroxidase[J]. Biotechnology and Bioengineering,1996,51(1):126-130.
    [74] Ryu K, Dordick J S. How do organic solvents affect peroxidase structure andfunction[J]. Biochemistry.1992,31(9):2588-2598.
    [75] Alva K S, Lee T S, Kumar J, et al. Enzymatically synthesized photodynamicpolyaniline containing azobenzene groups[J]. Chem Mater,1998,10(5):1270-1275.
    [76]左国防,袁焜,潘素娟.基于纳米金自组装膜固定辣根过氧化物酶的生物传感研究[J].化学研究与应用,2012,24(1):84-89.
    [77] Kafi A K M, Wu G-S, Chen A-C. A novel hydrogen perox-ide biosensor based on theimmobilization of horseradishperoxidase onto Au-modified titanium dioxide nanotubearrays[J]. Biosensors and Bioelectronics,2008,24(8):566-571.
    [78]周国清.基于聚乙烯吡咯烷酮/纳米金固定辣根过氧化物酶的生物传感器[J].西南师范大学学报(自然科学版),2011,36(4):41-45.
    [79]骆加里,沈炳贵,宋光承,等.辣根过氧化物酶(HRP)标记抗体的简易方法[J].生物化学与生物物理学报,1981,13(01),1.
    [80] Wilson M B, Nakane P P. Recent developments in the periodate method of conjugatinghorseradish peroxidase (HRP) to antibodies Antibodies in Immunofluorescence and RelatedStaining Techniques, Knapp et al.[D], Elsevier North Holland Biomedical, Amsterdam,1978:215-224.
    [81]骆加里,宋光承,陈彩云.过碘酸钠氧化辣根过氧化物酶(HRP)中的若干问题及高效果的标记方法[J].生物化学与生物物理学报,1984,16(6):650-656.
    [82] Karam J, Nicell J A. Potential applications of enzymes in waste Ireat-ment[J]. Journalof Chemical Technology and Biotechnology,1997,69(2):141-153.
    [83] Samokyszyn V M, Freeman J P, Maddipati K R, et al. Peroxidase-Catalyzed Oxidationof Pentachlorophenol [J]. Chem Res Toxicol,1995,8(3):349-355.
    [84] Kazunga C, Aitken M D, Gold A. Primary product of the horseradishperoxidatecatalyzed oxidation of pentaehlorophenol[J]. Environ Sci Technol,1999,33(9):1408-1412.
    [85] Zhang G, Nicell J A. Treatment of Aqueous Pentachlorophenol by HorseradishPeroxidase and Hydrogen Peroxide[J]. Wat Res,2000,34(5):1629-1637.
    [86]叶鹏.中国杀虫剂类POPs替代技术评估与废水屮五氯酚的酶催化士除[D].北京:北京大学,2004.
    [87]李勤,张彤,张莉,等.有机氯化物的固定化酶处理技术研究[J].华东理工大学学报,1999,25(5):502-505.
    [88] Kim G Y, Moon S H. Degradation of pentachlorophenol by an electroenzymat-icmethod using immobilized peroxidase enzyme[J]. Korean J Chem Engin.2005,22(1):52-60.
    [89]王翠,姜艳军,周丽亚,等,纳米氧化硅固定辣根过氧化物酶处理苯酚废水[J].化工学报,2011,62(7):2026-2032
    [90]王杉霖,张剑波,王维敬,等.四氧化三铁吸附包埋固定辣根过氧化物酶及其应用[J].北京大学学报(自然科学版),2006,42(6):762-766.
    [91] Sun D M, Cai C X, Li X G, et al. Direct electrochemistry reaction of horseradishperoxidase immobilized on active carbon powders[J]. Chinese Chemical Letters,2004,15(4):453-454.
    [92] Gomez J L, Bodalo A, Gomez E, et al. Immobilization of peroxidases on glass beads:An improved alternative for phenol removal[J]. Enzyme and Microbial Technology,2006,39(5):1016-1022.
    [93]张娟,徐静娟,陈洪渊.基于SiO2纳米粒子固定辣根过氧化物酶的生物传感器[J].高等学校化学学报,2004,25(4):614-617
    [94] Zhao Y D, Zhang W D, Chen H, et al. Direct electrochemisty of horseradish peroxidaseat carbon nanotube powdermicroelectrode[J]. Sensors and Aetuators B,2002,87(1):168-172.
    [95]蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学[J].化学学报,2004,62(3):335-340.
    [96] Xu S Y, Peng B, Han X Z. A third-generation H2O2biosensor based on horseradishproxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres[J]. Biosensors and Bioelectronnics,2007,22(8):1807-1810.
    [97] Cao S R, Yuan R, Chai Y Q, et al. A mediator-free amperometric hydrogen peroxidebiosensor based on HRP immobilized on a nano-Aupoly2,6-pyridinediamine-coatedelectrode[J]. Bioproeess Biosyst Eng,2007,30(2):71-78.
    [98]李春香,阳明辉,沈国励,等.基于2-6-吡啶二甲酸聚合膜固定纳米金胶的过氧化氢传感器的研究[J].化学学报,2004,62(17):1663-1667.
    [99] Shi Y T, Yuan R, Chai Y Q, et al. Development of an amperometric immunosensorbased on TiO2nanoparticles adn gold nanoparticles[J]. Eleetrochimica Aeta,2007,52(11):3518-3542.
    [100] Wang F C, Yuan R, Chai Y Q, et al. Probing traces of hydrogen peroxide by use of abiosensor based on mediator-free DNA and horseradish peroxidase irnrnobilized on silvernan-opartieles[J]. Anal Bioanal Chem,2007,387(2):709-717.
    [101] Felipe J D, Kenneth J. Enzyme immobilization in MCM-41molecular sieve[J]. JMolecular Catalysis B: Enzymatic,1996,2(2-3):115-126.
    [102] Li B, Takahashi H. New immobilization method for enzyme stabilization involving amesoporous material and an organic/inorganic hybridgel[J]. Biotechnology Letters,2000,22(24):1953-1958.
    [103] Takahashi H, Li B, et al. Immobilized enzymes in ordered mesoporous silica materialsand improvement of their stability and catalytic activity in and organic solvent[J].Mieroporous and Mesoporous Materials,2001,44-45:755-762.
    [104] Cheng J, Yu S M, Zuo P. Horseradish peroxidase immobilized on alumiu-pillaredinterlayered clay for the catalytic oxidation of phenolic wastewater[J]. Water Researeh,2006,40(2):283-290.
    [105]于少明,程俊,左鹏,等.以层柱粘土为载体固定辣根过氧化物酶[J].化工学报,2006,57(12):3021-3024.
    [106] Huang H, Hu N, Zeng Y, et al. Electrochermistry and electrocatalysis with hemeproteins in chitosan biopolymer films[J]. Analytical Biochemisty,2002,308(1):141-151.
    [107] Zhau G J, Wang G, Xu J J, et al. Reagentless chemiluminescence biosensor fordetermination of hydrogen peroxide based on the immobilization of horseradish peroxidaseon biocompatible chitosan membrane[J]. Sensors and Actuators B: Chemical,2002,81(2-3):334-339.
    [108] Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidaseand its biosensor based on chitosan and room temperature ionic liquid[J]. ElectrochemistryCommunication,2006,8(5):874-878.
    [109] Bego a C G,Ruth D.Evaluation of the biological properties of soluble chitosan andchitosan microspheres[J].IHnternational Journal of Pharmaceutics,1997,148(2):231-240.
    [110] Xu Q, Mao C, Liu N N, et al. Imrnobilization of horseradish peroxidase onO-carboxymethylated chitosan/sol-gel matrix[J]. Reaetive Functional Polymers,2006,66(8):863-870.
    [111] Bora U, Sharma P, Kannan K, et al. Photoreactive cellulose rnembrane--A novelmatrix for covalent immobilization of biomoleeules[J]. J Biotechnology,2006,126(2):220-229.
    [112] Kumar S, Nahar P. Sunlight-induced covalent irnmbilization of proteins[J]. Talanta,2007,71(3):1438-1440.
    [113]李业梅,刘光东,张志凌.辣根过氧化物酶在海藻酸钠水凝胶中的电化学和电催化特性[J].应用化学,2006,23(4):399-403
    [114]Pérez J P,López-Cabarcos E, López-Ruiz B. The application of methacrylate-basedpolymers to enzyme biosensors[J]. Biomolecular Engineenng,2006,23(5):233-245.
    [115] Fernandes K F, Lima C S, Lopes F M, et al. Properties of horseradish peroxidaseirnmobilised onto polyaniline[J]. Process Biochemistry,2004,39(8):957-962.
    [116] Agostinelli E, Belli F, Mura A, et al. Polyketone polymer: A new support for directenzyme imrnobilization[J]. J Biotechnology,2007,127(4):670-678.
    [117] Xu Y, Peng W L, Liu X J, et al. A new film for the fabrication of an unmediated H2O2biosensor[J]. Biosensors and Bioelectronies,2004,20(3):533-537.
    [118]郭刚军,马林,毛学圃,等.新型芳香胺-邻醌聚合物的合成及其作为纳米固定化酶载体的研究[J].化学学报,2002,60(3):499-503.
    [119] Mahanta K, Pal A J, Roy S, et al. A control over accessibility of immobilized enzymesthrough porous coating layer[J]. J Colloid Interf Sci,2006,304(2):329-334.
    [120] Morrin A, Wilbeer F, Ngamna O,et al. Novel biosensor fabrication methodologybased on processable conduetion polyaniline nanopartieles[J]. Eleetrochem Commun,2005,7(3):317-322.
    [121] Razola S S, Ruiz B L, Diez N M, et al. Hydrogen peroxide sensitive amperometricbiosensor based on horseradish peroxidase entrapped in a polypyrrole eleetrode[J].Biosensors and Bioeleetronics,2002,17(11-12):921-928.
    [122] Shao Y, Jin Y D, Wang J L, et al. Conducting polymer polypyrrole supported bilayerlipid membranes[J]. Biosensors and Bioeleetronics,2005,20(7):1373-1379.
    [123]李松林,崔建明.导电聚合物固定酶生物传感器研究进展[J].材料导报,2006,20(4):38-40.
    [124]陈滨晖,吴辉煌,张流洲. HRP的电化学固定化及HRP/POPD酶电极的性能[J].厦门大学学报(自然科学版),1997,36(2):234-239.
    [125] Carvalbo R H, Lemos F, Cabral J M S, et al. Influence of the presence of NaY zeoliteon the activity of horseradish peroxidase in the oxidation of phenol[J]. Journal of MolecularCatalysis B: Enzymatic,2007,44(2):39-47.
    [126] Ku Y, Lee K C. Removal of phenols from aqueous solution by XAD-4resin[J].Journal of Hazardous Materials,2000,80(1-3):59-68.
    [127] Li A M, Zhang Q X, Chen J L, et al. Adsorption of phenolic compounds on AmberliteXAD-4and its acetylated derivative MX-4[J]. Reactive and Functional Polymers,2001,49(3):225-233.
    [128]张芳西,金承基.含酚废水的处理与应用[M],北京:化学工业出版社,1983.
    [129]中国化工防治污染技术协会.化工废水处理技术[M],北京:化学工业出版社,2000.
    [130]李玉标.含酚废水的处理方法[J].净水技术,2005,24(2):51-54.
    [131] Gonzalez G, Herrea G. Biodegradation of phenolic industrial wastewater in a fluidizedbed bioreactor with immobilized cells of Pseudomonas putida[J]. Bioresource Technology,2001,80(2):137-142.
    [132]王红娟,奚红霞,夏启斌,等.含酚废水处理技术的现状与开发前景[J],工业水处理,2002,22(6):6-9.
    [133]张芳,李光明,胡惠康,等.电催化氧化技术在含酚废水处理中的应用[J].化工进展,2005,24(8):860-864.
    [134]安富强.新型表面分子印迹技术的建立及其在环境保护中的应用研究[D].太原:中北大学,2009.
    [134] MacDonald J A F, Evans M J B. Adsorption and enthalpy of phenol on BPL carbon [J].Carbon,2002,40(5):703-707.
    [135] Kim S, Kim Y K. Apparent desorption kinetics of phenol in organic solvents fromspent activated carbon saturated with phenol [J]. Chemical Engineering Journal,2004,98(3):237-243.
    [136] Tryba B, Tsumura T, Janus M, et al. Carbon-coated anatase: adsorption anddecomposition of phenol in water [J]. Applied Catalytic B,2004,50(3):177-183.
    [137] Al-Asheh S, Banat F, Abu-Aitah L. Adsorption of phenol using different types ofactivated bentonites [J]. Separation and Purification Technology,2003,33(1):1-10.
    [138] Akbal F. Sorption of phenol and4-chlorophenol onto pumice treated with cationicsurfactant [J]. Journal of Environmental Management,2005,74(3):239-244.
    [139]吴慧英,施周,陈积义,等.两种微波-活性炭法对苯酚的去除效果及其效能比较[J].中国给水排水,2008,24(23):52-56.
    [140]冯臻.微波法制备有机膨润土吸附污染水中铅和苯酚的特性[J].无机盐工业,2008,40(6):47-49.
    [141]谢祖芳,晏全,周振.201树脂吸附硝基苯酚的热力学研究[J].化工时刊,2008,22(4):23-25.
    [142]王小梅,彭江鸣,赵晨曦等.大孔交联聚(对乙烯基苄基苯胺)树脂对苯酚的吸附[J].化学学报,2008,66(8):990-994.
    [143]王小梅,赵晨曦,黎成勇,等.聚(N-甲基-N-对乙烯基苄基乙酰胺)对水中苯酚的吸附[J].应用化学,2008,25(6):714-717.
    [144]熊春华,吕建.大孔树脂对有机废水中苯酚的吸附性能[J].水处理技术,2008,34(2):24-27.
    [145]彭成松,王少宝,张晓梅.新型羟丙基-β-环糊精交联聚合物的合成及其对苯酚的吸附[J].应用化工,2008,37(3):287-290.
    [146]潘梅,李海宗,费正皓.双官能基修饰的超高交联吸附树脂对2,4-二氯苯酚的吸附性能研究[J].应用化工,2008,37(5):483-486.
    [147]陈翠萍,堪伟艳.膜分离技术及其在废水处理中的应用[J].污染防治技术,2007,20(3):132-136.
    [148]牛永生,郑强,牛晓玉,等.氧化法处理工业含酚废水的研究[J].化学工程师,2000,(2):72-75.
    [149] Galina N K, Galina A Z, Alexei A S, et al. Structural Peculiarities of TiO2andPt/TiO2catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange7Dyeupon ultraviolet light[J]. Applied Catalysis B: Envionmmental,2007,71(3-4):169-176.
    [150]邵坚,李海华,王延乐.光催化氧化法处理含酚废水影响因素研究[J].河南科学,2006,24(5):126-127.
    [151] Peter K. Corrosion in high-temperature and superc-ritical water and aqueousSolutions: a review[J]. Journal of Supercritical Fluids,2004,29(1-2): l-29.
    [152]强志民,赵俊镁,王建民.厌氧一好氧反应系统处理含酚废水的研究[J].环境污染与防治,1997,19(2):145-147.
    [153]马静. SBR工艺处理含苯酚及氨氮废水的试验研究[D].青岛大学,2007.
    [154]吴罡,韩中坚,葛梅,等. SBR工艺处理含酚废水的研究[J].交通环保,2002,23(1):162-163.
    [155] Mei J G, Yu S M, Cheng J. Heterogeneous catalytic wet peroxide oxidation of phenolover delaminated Fe-Ti-PILC employing microwave ir-radiation[J]. Catalysis Communicat-ions Catalysis Communications,2004,5(8):437-440.
    [156] Liu J Z, Song H Y, Weng L P, et al. Increased thermostability and phenolremovalefficiency by chemical modified horseradish peroxidase[J]. Journal of MolecularCatalysis B: Enzymatic,2002,18(4-6):225-232
    [157] Klibnaov A M, Alberti B N, Mortis E D, et al.Removal of chorophenols fromwastewater by horseradish peroxidase[J]. Journal of Applied Biochemistry,1980,2:412-414.
    [158] Duran N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review[J]. Applied catalysis B:Enviormnental,2000,28(2):83-99.
    [159]颜流水,黄智敏,王承宜,等.水溶性及固定化铬氨酸酶去除苯酚的试验研究[J].南昌航空工业学院学报,1999,13(l):67-71.
    [160]邵凤琴,韩庆祥.酶工程在污染治理中的应用[J].石油化工高等学校学报,2003,16(2):36-40.
    [161] Wu Y M, Taylor K E, Biswas N, et al. A modelfor the protective effect of additives onthe activity ofhorseradish peroxidase in the removal of phenol[J]. Enzyme and MicrobialTechnology,1998,22(5):315–322.
    [162] Nicell A, Saadi K W, Buchanan I D. Phenol polymerization and percipitation byhorseradish peroxidase enzyme and an additive[J]. Bioresource Technology,1995,54(1):5-16.
    [163] Venkata Mohan S, Krishna Prasad,et al. Acid azo dye degradation by free andimmobiliazed horeradish peroxidase(HRP) catalyzed process[J]. Chemosphere,2005,58(8):1097-1105.
    [164] Pencreac H G, Leullier M, Baratti J C. Properties of free and immobilized lipase fromPseudomonas cepacia[J]. Biotechnology Bioengineering,1997,56(2):181-189.
    [165] Hertzberg S, Kvittingen L, Anthonsen T, et al. Alginate as immobilization matrixandstabilizing agent in a two-pase liquid system: Applicationin lipase-catalysed reactions[J].Enzyme and Microbial Technology,1992,14(1):42-47.
    [1] Bayramo lu G, Akg l S, Bulut A, et al. Covalent immobilisation of invertase onto areactive film composed of2-hydroxyethyl methacrylate and glycidyl methacrylate:properties and application in a continuous flow system[J]. Biochemical Engineering Journal,2003,14(2):117-126.
    [2] Ar ca M Y, Bayramo lu G, B ak N. Characterisation of tyrosinase immobilised ontospacer-arm attached glycidyl methacrylate-based reactive microbeads[J]. Process Biochemistry,2004,39(12):2007-2017.
    [3] Hou X H, Liu B L, Deng X B, et al. Covalent immobilization of glucose oxidase ontopoly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesizedby dispersion polymerization[J]. Analytical Biochemistry,2007,368(1):100-101.
    [4] Mileti N, Vukovi Z, Nastasovi A, et al. Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins-Versatile immobilization supports for biocatalysts[J].Journal of Molecular Catalysis B: Enzymatic,2009,56(4):196-201.
    [5] Kartal F, Akkaya A, Kilinc A. Immobilization of porcine pancreatic lipase on glycidylmethacrylate grafted poly vinyl alcohol[J]. Journal of Molecular Catalysis B: Enzymatic,2009,57(1-4):55-61.
    [6] Chen C I, Chen C W, Huang C W, et al. Simultaneous purification and immobilizationof penicillin G acylase using bifunctional membrane[J]. Journal of Membrane Science,2007,298(1-2):24-29.
    [7] Mateo C, Torres R., F-L G, et al. Epoxy-amino groups: a new tool for improvedimmobilization of proteins by the epoxy method [J]. Bimacromolecules,2003,4(3):772-777.
    [8] GrazúV, Abian O, Mateo C, et al.Novel Bifunctional Epoxy/Thiol-Reactive Support toImmobilize Thiol Containing Proteins by the Epoxy Chemistry[J]. Biomacromolecules,2003,4(6):1495-1501.
    [9] Pessela B C C, Mateo C, Carrascosa A V, et al. One-Step Purification, CovalentImmobilization, and Additional Stabilization of a Thermophilic Poly-His-Taggedβ-Galactosidase fromThermussp. Strain T2by using Novel Heterofunctional Chelate-EpoxySepabeads[J]. Biomacromolecules2003,4(1),107-113.
    [10] Mateo C, Fernández-Lorente G, Cortés E, et al. One-step purification, covalent immob-ilization, and additional stabilization of poly-his-tagged proteins using novel heterofunction-nal chelate-epoxy supports [J]. Biotechnology and Bioengineering,2001,76(3):269-276.
    [11] Torres, R.; Mateo, C.; Fernández-Lorente, G.; Ortiz, C.; Fuentes, M.; Palomo, J. M.;Guisan, J. M. Fernández-Lafuente, R. A novel heterofunctional epoxy-amino sepabeads fora new enzyme immobilization protocol: Immobilization-stabilization of beta-galactosidasefrom Aspergillus oryzae[J]. Biotechnology progress2003,19(3),1056-1060.
    [12] Sun M, Qiu H D, Wang L C, et al. Poly(1-allylimidazole)-grafted silica, a new specificstationary phase for reversed-phase and anion-exchange liquid chromato-graphy[J]. Journalof Chromatography A,2009,1216(18):3904-3909.
    [13]钱嘉渊译, Stellmach B.过氧化物酶——酶的测定方法[M].北京:中国轻工业出版社,1992:276-277.
    [14] Schultza N, Metreveli G, Franzreb M, et al. Zeta potential measurement as a diagnostictool in enzyme immobilisation[J]. Colloids and Surfaces B: Biointerfaces,2008,66(1):39-44.
    [15] Talukder M M R, Tamalampudy S, Li C J, et al. An improved method of lipasepreparation incorporating both solvent treatment and immobilization onto matrix[J].Biochemical Engineering Journal,2007,33(1):60-65.
    [16] Yusdy, Patel S R, Yap M. G S, et al. Immobilization of L-lactate dehydrogenase onmagnetic nanoclusters for chiral synthesis of pharmaceutical compounds[J]. BiochemicalEngineering Journal,2009,48(1):13-21.
    [17] Tsumoto K, Ejima D, Senczuk A M, et al. Effects of salts on protein-surface interact-ns: applications for column chromatography[J]. J Pharm Sci,2007,96(7):1677-1690.
    [1] Mateo C, Fernández-Lorente G, Cortés E, et al. One-step purification, covalent immobi-lization, and additional stabilization of poly-his-tagged proteins using novel heterofunction-al chelate-epoxy supports [J]. Biotechnology and Bioengineering,2001,76(3):269-276.
    [2] Torres R, Mateo C, Fernández-Lorente G, et al. Potential Applications of Immobilized-Galactosidase in Food Processing Industries [J]. Biotechnology progress,2003,19(3):1056-1060.
    [3] Sun M, Qiu H D, Wang L C, et al. Poly(1-allylimidazole)-grafted silica, a new specificstationary phase for reversed-phase and anion-exchange liquid chromato-graphy[J]. Journalof Chromatography A,2009,1216(18):3904-3909.
    [4] Nicell J A, Wright H. A model of peroxidase activity with inhibition by hydrogenperoxide[J]. Enzyme and Microbial Technology,1997,21(4):302-310.
    [5] Smalla K, Turkova J, Coupek J, et al. Iinfluence of salts on the covalent immobilizationof proteins to modified copolymers of2-hydroxyethyl methacrylate with ethyleneimethacrylate [J]. Biotechnology and Applied Biochemistry,1988,10(1):21-31.
    [6] Melander W, Corradini D. Horváth C. Salt-mediated retention of proteins inhydrophobic-interaction chromatography:Application of solvophobic theory[J]. Journal ofChromatography.1984,317:67-85.
    [7] GrazúV, Abian O, Mateo C, et al. Novel bifunctional epoxy/thiol-reactive support toimmobilize thiol containing proteins by the epoxy chemistry[J]. Biomacromolecules,2003,4:1495-1501.
    [8] Pessela B C C, Mateo C, Carrascosa A V, et al. One-step purification, covalentimmobilization,and additional stabilization of a thermophilic poly-his-tagged-galactosida-se of thermus up. strain T2, by using novel heterofunctional chelate-epoxy supports[J].Biomacromolecules,2003,4(1):107-113.
    [9] Schultza N, Metreveli G, Franzreb M, et al. Zeta potential measurement as a diagnostictool in enzyme immobilisation[J]. Colloids and Surfaces B: Biointerfaces,2008,66(1):39-44.
    [1]王旭朋.新型复合载体PEI/SiO2的制备及对青霉素酰化酶的固定化研究[D].太原:中北大学,2006.
    [2]钱嘉渊译, Stellmach B.过氧化物酶——酶的测定方法[M].北京:中国轻工业出版社,1992:276-277.
    [3] López-Gallego, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehydecrosslinking of adsothed proteins on aminated supports[J]. J. Bioteehllol.,2005,119(l):70-75.
    [4] Cheng J, Yu S M, Zuo P.Horseradish perexidase immobilized on aluminum-Pillaredinteriayered clay for the catalytic oxidation f phenolic wastewater[J]. Water Res.,2006,40(2):283-290.
    [1]钱嘉渊译, Stellmach B.过氧化物酶——酶的测定方法[M].北京:中国轻工业出版社,1992:276-277.
    [2]王静岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2002:355-363.
    [3]李红丹. HRP催化反应机制的研究及其动力学参数的测定[D],大连:辽宁师范大学,2009.
    [1] HJ503-2009,水质挥发酚的测定4-氨基安替比林分光光度法[s].2009.
    [2] Liu J Z, Song H Y, Weng L P, et al. Increased thermostability and Phenol removalefficiency by chemical modified horseradish peroxidase. J. Mol. Cata. B-Enzyme,2002,18(4-6):225-232.
    [3] Nakamoto S, Machida N. Phenol removal from aqueous solution byperoxidase-catalyzed reaction using additives. WaterRes,1992,26(l):45-54.
    [4] Caza N, Bewtra J K, Biswas N, et al. Removal of Phenolic compounds from syntheticwastewater using soybean peroxidase. Water Res,1999,33(13):3012-3018.
    [5] Nicell J A, Bewtra J K,Taylor K E, et al. Enzyme Catalyzed Polymerization andPrecipitation of Aromatic Compounds from Wastewater[J]. Water Sci Technol,1992,25(3):157-164.
    [6] Miguel A D, Monica A O, Blanca E, et al. Removal of Aqueous Phenoic Compoundsfrom A model System by Oxidative Polymerization with Tumip (Brassic Napus L VarPurple Top white Globe) peroxidase[J]. J Chem Technol Biotechnol,2002,78:42-47.
    [7]胡龙兴,张仲燕.酶催化氧化处理废水的研究[J].环境科学,1992,12(4):40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700