堆石料的颗粒破碎应变及其数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆石料在高应力作用下会发生较严重的颗粒破碎现象,并会对其变形和强度特性产生较大的影响。目前针对颗粒破碎的试验研究工作主要采用天然堆石料进行,存在颗粒破碎不易控制和颗粒破碎率不能准确确定等问题,难以进行定量的研究工作。为了深入研究颗粒破碎机理及其对堆石体强度和变形的影响,本文采用水泥椭球人工模拟堆石料进行了系列的常规三轴试验研究,探讨了颗粒破碎的特性和破碎变形的机理。本文取得的主要新成果有:
     1.人工模拟堆石料制备方法研究。采用水泥净浆浇筑不同强度的椭球颗粒的方法,成功制备了一种新的人工模拟堆石料。与已有的同类人工材料相比,本文制备的水泥椭球模拟堆石料更加接近天然堆石料的力学性质,且具有初始形状规则和颗粒强度可控的优点。
     2.人工模拟堆石料颗粒破碎三轴试验研究。采用五种不同颗粒强度的水泥椭球模拟堆石料,针对颗粒破碎特性进行了系列的常规三轴试验,包括完整三轴试验、过程三轴试验、等向固结试验和往复加卸载试验等。利用人工模拟料颗粒可数的优点,对试验后颗粒破碎的情况进行了详细的统计和筛分。
     3.颗粒破碎特性研究。根据水泥椭球模拟堆石料三轴试验成果,对颗粒破碎的方式、破碎后的粒径分布、破碎率变化过程以及破碎功等颗粒破碎特性进行了系统的分析和探讨,提出了颗粒破碎最优状态线的概念。
     4.颗粒破碎对堆石体强度和变形的影响机理研究。分析了颗粒破碎对堆石料损伤和压密硬化的双重作用机理,建立了可反映颗粒破碎作用机理的强度计算公式。根据不同颗粒强度模拟堆石料试验结果,定量地分离出了破碎体应变。发现破碎体应变颗粒破碎率之间存在唯一性关系,并可用幂函数进行拟合。
     5.考虑颗粒破碎影响的弹塑性本构模型。基于沈珠江双屈服面模型,通过引入本文有关颗粒破碎的研究成果,建立了可考虑颗粒破碎特性的堆石料弹塑性本构模型。该模型对堆石料发生颗粒破碎后的力学特性具有更好的适用性。
Particle breakage of rockfill materials is serious under high pressure, so the influence of particle breakage on deformation and strength of rockfill can not be ignored in practice. Most of the research works about particle breakage were performed on natural rockfill so far. The triaxial tests of natural rockfill have some disadvantages that particle breakage can not be controlled and particle breakage rate cannot be precisely determined, so it is difficult to conduct such research quantitatively. In order to investigate deeply the mechanism of particle breakage and the influence of particle breakage on deformation and strength of rockfill, a series of triaxial tests were performed by using cement-ellipse-shaped artificial rockfill. The main achievements obtained in the dissertation are as follows.
     1. A method for preparing artificial rockfill. The ellipse-shaped particles were moulded in various size and strength with cement pastes. Comparing with the existing artificial rockfill materials, the cement-ellipse-shaped artificial rockfill prepared in this dissertation is more simular to the natural rockfill in mechanical properties, and have the merits of regular shape and controllable strength.
     2. Triaxial tests on the artificial rockfill. A series of triaxial tests including complete triaxial tests, process triaxial tests, isotropic consolidation tests and load-unload cyclic triaxial tests were performed by using artificial rockfill particles with five levels of strength to investigate the characteristics of particle breakage and the mechanism of breakage deformation. By making use of the merits of artificial rockfill, a detailed statistic and sieving analysis of particle breakage was performed.
     3. Characteristics of particle breakage. Based on the triaxial test results on the artificial rockfill, the characteristics of particle breakage such as the particle breakage pattern, the grain-size distribution, the evolution of breakage rate, the breakage work and so on were analyzed systemically, and the optimizing state line concept of particle breakage was presented.
     4. Influence of particle breakage on deformation and strength of rockfill. By analyzing the damage and hardening mechanism caused by particle breakage, a formula for evaluating the strength reflecting the breakage mechanism was developed. On the basis of test results of artificial rockfill materials with different particle strength, the breakage volumetric strain of artificial rockfill materials was separated successfully. The test results show that the relationship between breakage volumetric strain and relative breakage rate is unique and can be fitted by a power function.
     5. A constitutive model considering the influence of the particle breakage. Based on Shen’s double-yield-surface elastoplastic model, a constitutive model considering the influence of the particle breakage was developed by introducing the research findings about particle breakage in this dissertation. The modified model can preferably reflect the influence of particle breakage on the mechanical behaviour of the rockfill materials.
引文
[1]郭庆国.粗粒土的工程特性及应用.郑州:黄河水利出版社, 1999.
    [2] [日]日本土质工学会.郭熙灵,文丹译.粗粒料的现场压实.北京:中国水利水电出版社, 1998.
    [3]沈珠江,殷宗泽.三百米级高土石坝应力变形规律的研究.雅砻江水电开发基础科学和关键技术问题研讨会专家建议书.
    [4]张家铭,汪稔,张阳明,陈复兵.土体颗粒破碎评研究进展.岩土力学, 2003, 10(增刊): 661-665.
    [5] Hagerty M M, Hite D R, Ullrich C R, Hagerty D J. One dimensional high pressure compression of granular media. Jourmal of geotechnical engineering, 1993, 113(1): 1-18.
    [6]张家铭.钙质砂基本力学性质及颗粒破碎影响研究[博士学位论文].武汉:中国科学院, 2004.
    [7]刘崇权.钙质土土力学理论及其工程应用[博士学位论文].武汉:中国科学院, 1999.
    [8]汪稔,孙吉主.钙质砂不排水性状的损伤-滑移耦合作用分析.水利学报, 2002, 7: 75-78.
    [9]孙吉主,汪稔.三轴压缩条件下钙质砂的颗粒破裂过程研究.岩土力学, 2003, 24(5): 822-825.
    [10]孙吉主,汪稔.钙质砂的耦合变形机制与本构关系探讨.岩石力学与工程学报, 2002, 21(8): 1263-1266.
    [11]陈海洋,汪稔,李建国,张家铭.钙质砂颗粒的形状分析.岩土力学, 2005, 26(9): 1389-1392.
    [12]孙吉主,汪稔.围压对钙质砂变形特性和声发射模式的影响.岩石力学与工程学报, 2001, 20(增刊): 1173-1176.
    [13]吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报, 1997, 19(5): 49-55.
    [14]孙吉主,汪稔.钙质砂的颗粒破碎和剪胀特性的围压效应.岩石力学与工程学报, 2004, 23(4): 641-644.
    [15]孙吉主,王勇,汪稔.钙质砂的接触摩擦特性及其理论模型研究.勘察科学技术, 2004, 5: 7-30.
    [16]孙吉主,王勇.钙质砂与结构接触面的本构模型研究.力学季刊, 2006, 27(3): 476-480.
    [17]孙吉主,罗新文.考虑剪胀性与状态相关的钙质砂双屈服面模型研究.岩石力学与工程学报, 2006, 25(10): 2145-2149.
    [18]吴梦喜,楼志刚.钙质砂与钢板接触面力学特性试验研究.岩土力学, 2003, 24(3): 369-371.
    [19]刘崇权,汪稔.钙质砂在三轴剪切中颗粒破碎评价及其能量公式.工程地质学报, 1999, 7(4): 366-371.
    [20]李广信.高等土力学.北京:清华大学出版社, 2004.
    [21]程展林,丁红顺,吴良平.粗粒土试验研究.岩土工程学报, 2007, 29(8): 1151-1158.
    [22] Masataka Takei, Osamu Kusakabe, Taketo Hayashi. Time-dependent behavior of crushable materials in one-dimensional compression tests. Soils and Foundations, 2001, 41(1): 97-121.
    [23]刘恩龙.岩土结构块破损机理与二元介质模型研究[博士学位论文].北京:清华大学, 2005.
    [24]张连卫.各向异性粒状材料破坏规律与强度准则及应用[博士学位论文].北京:清华大学, 2007.
    [25]钟晓雄,袁建新.颗粒材料的剪胀模型.岩土力学, 1992, 13(1): 1-10.
    [26] Lanier J, Combe G. An experimental study of deformation in 2D granular media. International workshop on homogenization. Theory of migration and granular bodies: 143-149.
    [27] Calvetti F, Combe G, Lanier J. Experimental micro-mechanical analysis of a 2D-granular material: relation between evolution and loading path.Mechanics of cohesive-frictional materials, 1997, 2(2): 121-163.
    [28] Drecher A, De Josselin de Jong G. Photoelastic verification of mechanical model for the flow of a granular material. Journal of mechanical physics of solids, 1972, 20(5): 337-351.
    [29] Konishi J, Oda M, Nemat-Nasser S. Inherent anisotropy and shear strength of assembly of oval cross-sectional rods. Deformation and Failure of Granular Materials, International Union of Theoretical and Applied Mechanics Symposium, Delft, Neth, 1982: 403-412.
    [30] Majmudar T S, Behringe R P. Contact force measurements and stress-induced anisotropy in granular materials. Nature, 2005, 435(23): 1079-1082.
    [31] Terzaghi, K., and Peck, R. B. Soil mechanics in engineering practice.1st Ed., John Wiley&Sons, Inc., New York, N. Y., 1948.
    [32] De Souza, J. M. Compressibility of sand at high pressure, MS thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1958: 63-64.
    [33] Debeer, E. E. The scale effect in the transposition of the results of deep sounding tests on the ultimate bearing capacity of piles and caisson foundations. Geotechnique, London, England, 13(1): 39-75.
    [34] Hite, D. R. High pressure consolidation tests on sand, M. Engrg. thesis. Univ. of Louisville, Louisville, Ky., 1989: 53-67.
    [35] Esterle, M. H. Particle crushing in granular materials subjected to one-dimensional compression, M. Engrg. thesis. Univ. of Louisville, Louisville, Ky., 1990.
    [36] Yukio Nakata, Masayuki Hyodo, Adrian F. L. Hyde, Yoshinori Kato, Hidekazu Murata. Microscopic particle crushing of sand subjected to high pressure one-dimensional compression. Soils and Foundations, 2001, 41(1): 69-82.
    [37] M. R. Coop, K. K. Sorensen, T. Bodas Freitas, G. Georgoutsos. Particle breakage during shearing of a carbonate sand. Geotechnique, 2004, 54(3): 157-163.
    [38] L. Luzzani, M. R. Coop. On the relationship between particle breakage and the critical state of sands. Soils and Foundations, 2002, 42(2): 71-82.
    [39] Indraratna B, Salim W. Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering. Thomas Telford Services Ltd, 2002,155: 243-252.
    [40]蒙进,屈智炯.高压下冰碛土的颗粒破碎及应力应变关系.成都科技大学学报, 1989, 43(1): 17-22.
    [41]张振南,缪协兴,葛修润.松散岩块压实破碎规律的试验研究.岩石力学与工程学报, 2005, 24(3): 451-455.
    [42]姜景山,程展林,姜小兰.粗粒土二维模型试验研究.长江科学院院报, 2008, 25(2): 38-41.
    [43] Harremoes, P. Compressibility of ground sand at high pressure. MS thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1959.
    [44] Roberts, J. Sand compressibility as a factor in oil field subsidence, DSc thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1964.
    [45] Hendron, A. J. The behavior of sand in one-dimensional compression, PhD thesis, Univ. of Illinois, Urbana, Ill., 1963: 50-89.
    [46] Kjaernsli, B., and Sande, A. Compressibility of some coarse-grained materials. Proc. European Conf. Soil Mech. and Found Engrg., Weisbaden, Germany, 245-251.
    [47] Hall, E. B., and Gordon, B. B. Triaxial testing with large-scale high pressure equipment. Laboratory Shear Testing of Soils, Special Tech. Publication No.361.ASTM, Philadelphia, Pa. 315-328.
    [48]温彦锋,蔡红,边京红.强风化岩防渗土料的压实及渗透特性.水力发电学报, 2002, 69(2): 17-24.
    [49]李广信.小浪底土坝堆石料湿化试验报告. 1988, 1: 1-13.
    [50]魏松.粗粒料浸水湿化变形特性试验及其数值模型研究[博士学位论文].南京:河海大学, 2006.
    [51]梁军.高面板堆石坝流变特性研究[博士学位论文].南京:河海大学, 2003.
    [52] Uriel Frisch, et al. A simple dynamical model of interm ittent fully developed turbulence. J Fluid Mech, 1978, 87: 719-736.
    [53] G. R. Mcdowell, M. D.Bolton, D. Robertson. The fractal crushing of granular materials. J. Mech. Phys. Solids, 1996, 44(12): 2079-2102.
    [54]徐永福,史春乐.用土的分形结构确定土的水份特征曲线.岩土力学, 1997, 18(2): 40-43.
    [55]赵明华,陈炳初,苏永华.红层软岩崩解破碎过程的分形分析及数值模拟.中南大学学报(自然科学版), 2007, 38(2): 351-356.
    [56]刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构.岩土工程学报, 1993, 15(1): 23-30.
    [57]田堪良,张会礼.论天然沉积砂卵石粒度分布的分形结构.西北水资源与水工程, 1996, 7(4): 26-31.
    [58] King G C P, Sammis C G. The mechanisms of finite brittle strain. Pure and Appl. Geophys., 1992, 38: 611-640.
    [59]徐永福,刘斯宏,董平.粒状土体的结构模型.岩土力学, 2001, 22(4): 366-372.
    [60]谢和平,高峰,周宏伟,左建平.岩石断裂和破碎的分形研究.防灾减灾工程学报, 2003, 23(4): 1-9.
    [61]徐健,阎宗岭.堆石体粒径的概率分布特征.施工与技术, 2003, 1: 34-36.
    [62]涂新斌,王思敬,岳中琦.风化岩石的破碎分形及其工程地质意义.岩石力学与工程学报, 2005, 24(4): 587-595.
    [63]易顺民,赵文谦.单轴压缩条件下三峡坝基岩石破裂的分形特征.岩石力学与工程学报, 1999, 18(5): 497-502.
    [64]王谦源,张清.破碎体分形及其筛分布.青岛建筑工程学院学报, 1994, 15(1): 59-66.
    [65]柯昌松.人工冻土破碎块度分布的分形性质.冰川冻土, 1997, 19(1): 79-83.
    [66]张季如,祝杰,黄文竞.侧限压缩下石英砂砾的颗粒破碎特性及其分形描述.岩土工程学报, 2008. 30(6): 783-789.
    [67] Takeaki Fukumoto. A grading equation for decomposed granite soil. Soils and Foundations, 1990, 30(1): 27-34.
    [68] Takeaki Fukumoto. Particle breakage characteristic of granular soils. Soils and Foundations, 1992, 32(1): 26-40.
    [69]李昌彩,等.水布垭面板堆石坝前期关键技术研究.中国水利水电出版社, 2005.
    [70]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应.岩石力学与工程学报, 1994, 13(3): 240-246.
    [71]赵中岩,王毅.碎裂岩的分数维分析:理论、方法及地质意义.地质科学, 1992, 27(3): 282-290.
    [72] Lee K L, Seed H B. Drained strength characteristics of sand, Proc. ASCE, JSMFD. 1967, 93(6).
    [73] Marsal, R. J. Research on Granular Materials (Rockfill and Soil-Gravel Mixtures), Universidad Nacional Autonoma De Mexico, 1977.
    [74] Marsal R J. Large scale testing of rockfill materials. Jourmal of the Soil Mechanics and Foundations Division. 1967, 93(2): 27-43.
    [75] Vesic A, Clough G W. Behavior of granular materials under high stresses. J. Soil Mech. and Found. Engrg. Div., ASCE, 1968, 94(3): 661-688.
    [76] Maksimovi?, M. Nonlinear failure envelope for coarse-grained soils, XII ICSMFE, 1989, Rio de Janeiro, Vol.I
    [77] A. Marcu, E. Luca, F. Cracium. Nonlinear rockfill parameters and stability of dams. New Delhi, India, XIII ICSMFE, 1994: 955-958.
    [78] Jerry A. Yamamuro, Poul V. Lade. Instability of granular materials at high pressures. Soils and Foundations, 1997, 37(1): 41-52.
    [79] Yasuhiko Okada, Kyoji Sassa, Hiroshi Fukuoka. Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Engineering Geology, 2004, 75: 325-343.
    [80] A Tarantino, A. F. L. Hyde. An experimental investigation of work dissipation in crushable materials. Geotechnique, 2005, 55(8): 575-584.
    [81] Poul V. Lade, Paul A. Bopp. Relative density effects on drained sand behavior at high pressures. Soils and Foundations, 2005, 45(1): 1-13.
    [82] Paul A. Bopp, Poul V. Lade. Relative density effects on undrained sand behavior at high pressures. Soils and Foundations, 2005, 45(1): 15-26.
    [83] A.Varadarajan, K. G. Sharma, S. M. Abbas, A. K. Dhawan. The role of nature of particles on the behaviour of rockfill materials. Soils and Foundations, 2006, 46(5): 569-584.
    [84]刘汉龙,秦红玉,高玉峰,周云东.堆石粗粒料颗粒破碎试验研究.岩土力学, 2005, 26(4): 562-566.
    [85]梁军,刘汉龙,高玉峰.堆石蠕变机理分析与颗粒破碎特性研究.岩土力学, 2003, 24(3): 480-483.
    [86]赵光思,周国庆,朱锋盼,别小勇.颗粒破碎影响砂直剪强度的试验研究.中国矿业大学学报, 2008, 37(3): 291-294.
    [87]保华富.粗粒料的湿化特性和本构模型的研究[硕士学位论文].成都:成都科技大学, 1988.
    [88]王辉.小浪底堆石料湿化特性及初次蓄水时坝体湿化计算研究[硕士学位论文].北京:清华大学, 1992.
    [89] Naylor D J, Maranha das Neves, E. Mattar D., Veiga Pinto A. Prediction of construction performance of Belice dam. Geotechnique, 1986, 36(3): 359-376.
    [90]汪明元,何晓民,程展林.粗粒料流变研究的现状与展望.岩土力学, 2003, 24(增): 451-454.
    [91]梁军,刘汉龙.面板坝堆石料的蠕变试验研究.岩土工程学报, 2002, 24(2): 257-259.
    [92]陈晓斌,张家生,安关峰.红砂岩粗粒土流变机理试验研究.矿冶工程, 2006, 26(6): 16-24.
    [93]张建民.砂土的可逆性和不可逆性剪胀规律.岩土工程学报, 2000, 22(1): 12-17.
    [94]郭熙灵,胡辉,包承纲.堆石料颗粒破碎对剪胀性及抗剪强度的影响.岩土工程学报, 1997, 19(3): 83-88.
    [95]胡辉.颗粒破碎对粗粒料抗剪强度的影响[硕士学位论文].武汉:长江科学院, 1995.
    [96] Yi Pik Helen Cheng. Micromechanical investigation of soil plasticity. Cambridge University, 2004.
    [97] G. R. Mcdowell, Y. Nakata. M. Hyodo. On the plastic hardening of sand. Geotechnique, 2002, 52(5): 349-358.
    [98] Y.Nakata, A. F. L. Hyde, M. Hyodo and H.Murata. A probabilistic approach to sand particle crushing in the triaxial test. Geotechnique. 1999, 49(5): 567-583.
    [99] Y. Hiramatsu, Y. Oka. Determination of the tensile strength of rock by a compression test of an irregular test piece. Int. J.Rock Mech. Sci., 1966, 3: 89-99.
    [100] Jaeger, J.C. Failure of rocks under tensile conditions. Int. J. Rock.Min.Sci., 1967, 4: 219-227.
    [101] Lee. D. M. The angles of friction of granular fills. Ph. D. dissertation, University of Cambridge.
    [102] Shobha K. Bhatia, Aly F. Soliman. Frequency distribution of void ratio of granular materials determined by an image analyzer. Soils and Foundations, 1990, 30(1): 1-16.
    [103] M. Oda, H. Kazama. Microstructure of shear bands and its relation to the mechanism of dilatancy and failure of dense granular soils. Geotechnique, 1998, 48(4): 465-481.
    [104]马巍,吴紫汪,常小晓,等.围压作用下冻结砂土微结构变化的电镜分析.冰川冻土, 1995, 17(2): 152-158.
    [105]迟世春,贾宇峰.土颗粒破碎耗能对罗维剪胀模型的修正.岩土工程学报, 2005, 27(11): 1266-1269.
    [106] Ueng Tzou-shin, chen Tse-jen. Energy aspects of particle breakage in drained shear of sands. Geotechnique 2000, 50(1): 65-72.
    [107] W. Salim, B. Indraratna. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage. Can. Geotech. J., 2004,41: 657-671.
    [108]贾宇峰.考虑颗粒破碎的粗粒土本构关系研究[博士学位论文].大连:大连理工大学, 2008.
    [109] Been K, Jefferies M G. State parameter for sands. Geotechnique, 1985, 35(2): 99-112.
    [110] R. G. Wan, P. J. Guo. A simple constitutive model for granular soils: modified stress-dilatancy approach. Computers and Geotechnics, 1998, 22(2): 109-133.
    [111] Bolton M D. The strength and dilatancy of sands. Geotechnique, 1986, 36(1): 65-78.
    [112] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations, 1975, 15(4): 29-44.
    [113] Wood D M, Belkheir K, Liu D F. Strain softening and state parameter for sand modeling. Geotechnique, 1994, 44(2): 335-339.
    [114] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands. Geotechnique, 1997, 47(2): 255-272.
    [115] LI X S, Dafalias Y F. Dilatancy for cohesionless soils. Geotechnique, 2000, 50(4): 449-460.
    [116]刘萌成,高玉峰,刘汉龙.堆石料剪胀特性大型三轴试验研究.岩土工程学报, 2008, 30(2): 205-211.
    [117] Yangping Yao, Naidong Wang, Haruyuki Yamamoto, and Huilin Xing. An elastoplastic model considering sand crushing. Lecture notes in computer science, Springer Berlin/Heidelberg, 2007: 4489.
    [118] Ali Daouadji, Pierre-Yves Hicher, Afif Rahma. An elastoplastic model for granular materials taking into account grain breakage. Eur. J. Mech. A/Solids, 2001, 20: 113-137.
    [119] C. Chávez,E. E.Alonso. A constitutive model for crushed granular aggregates which includes suction effects. Soil and Foundations, 2003, 43(4): 215-227.
    [120]余寿文,冯西桥.损伤力学.北京:清华大学出版社, 1997.
    [121] Desai C S. Mechanics of materials and interfaces: the disturbed state concept. 2001, Boca Raton: CRC Press.
    [122] A.Varadarajan, K. G. Sharma, K. Venkatachalam, A. K. Gupta. Testing and modeling two rockfill materials. Journal of Geotechnical Geoenvironmental Engineering, ASCE, 2003, 129(3): 206-218.
    [123]相彪.粗粒土的扰动状态本构模型及其参数确定[硕士学位论文].大连:大连理工大学, 2005, 6.
    [124]迟世春,相彪.基于损伤扰动的土体本构关系研究.世界地震工程, 2007, 23(2): 139-144.
    [125] Adrian R. Russell, Nasser Khalili. A bounding surface plasticity model for sands exhibiting particle crushing. Can. Geotech. J., 2004, 41: 1179-1192.
    [126]沈珠江.岩土破损力学与双重介质模型.水利水运工程学报, 2002, 4: 1-6.
    [127]沈珠江.岩土破损力学:理想脆弹塑性模型.岩土工程学报, 2003, 25(3): 253-257.
    [128]沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力-应变关系.岩土工程学报, 2005, 27(5): 489-494.
    [129]米占宽,李国英,陈铁林.考虑颗粒破碎的堆石体本构模型.岩土工程学报, 2007, 29(12): 1865-1869.
    [130]蒋国澄,傅志安,凤家骥.混凝土面板坝工程.湖北科学技术出版社, 1997.
    [131]张宗亮,徐永,刘兴宁,等.天生桥一级水电站枢纽工程设计与实践.中国电力出版社, 2007.
    [132]陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社, 1994.
    [133] Marsal R J.土石坝工程. (第四章).江苏:水利出版社, 1979.
    [134]曾伟雄,林国赞.岩石单轴饱和抗压强度的点荷载试验方法设计与探讨.岩石力学与工程学报, 2003, 22(4): 566-568.
    [135]王茹,唐春安,王述红.岩石点荷载试验若干问题的研究.东北大学学报, 2008, 29(1): 130-140.
    [136]张丙印,吕明治,高莲士.粗粒料大型三轴试验中橡皮膜嵌入量对体变的影响及校正.水利水电技术, 2003, 34(2): 30-33.
    [137]盖国胜.超细粉碎分级技术-理论研究?工艺设计?生产应用.北京:中国轻工业出版社, 2000, 3: 35-36.
    [138] Guyon E., Troadec J.-P. . Du sac de billes au tas de sable, Editions Odile JACOB Sciences, 1994.
    [139]沈珠江,李建红.椭球形结构块破损过程的数学描述.岩土工程学报, 2006, 28(4): 470-474.
    [140]秦红玉.考虑颗粒破碎的粗粒料损伤模型试验研究[硕士学位论文].南京:河海大学, 2002.
    [141] Lade P V, Yamamuro J. Significance of particle crushing in granular materials. Journal of Geotechnical Engineering,1996, 122(4): 309-316.
    [142] Norihiko Miura and Sukeo O-hara, Particle crushing of a decomposed granite soil under shear stresses. Soils and Foundations. JSSMFE. 1979, 19(3).
    [143] Lee. K. L.,and Farhoomand. I. compressibility and crushing of granular soils in anisotropic triaxial compression. Can. Geotech.J., Ottawa, Canada, 1967, 4(1): 68-86.
    [144]柏树田.西北口混凝土面板堆石坝筑坝材料特性的试验研究.水利水电科学研究院论文集, 1985.
    [145] Hardin B O. Crushing of Soil Particles. Journal of Geotechnical Engineering, 1985, 11(10): 1177-1192.
    [146]郭爱国,茜平一.三轴压缩试验中橡皮膜约束影响的校正.岩土力学, 2002, 23(4):442-445.
    [147]孔德志,张丙印,孙逊.人工模拟堆石料颗粒破碎应变的三轴试验研究.岩土工程学报(录用待刊).
    [148]蔡正银,李相菘.砂土的剪胀理论及其本构模型的发展.岩土工程学报, 2007, 29(8): 1122-1128.
    [149] Rowe. P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc Royal Society of London, 269,Series A, 1962: 500-527.
    [150] Rowe. P W. Theoretical meaning and observed values of deformation parameters for soil, stress strain behavior of soils. (PARRY R H G), ed. Roscoe Memorial Symposium, Cambridge Univ, 1972: 143-194.
    [151]黄文熙.土的工程性质.北京:中国水利水电出版社, 1983: 44-46.
    [152]沈珠江.复杂荷载下砂土液化变形的结构性模型.第五届全国土动力学学术会议论文集, 1998, 6: 1-10.
    [153]司洪洋.砂卵石的工程性质与西北口水库混凝土面板堆石坝.水利水运科学研究, 1986, 4: 65-75.
    [154]汪小刚.超径颗粒对土石坝坝壳料强度和变形性能的影响[博士学位论文].武汉:武汉水利电力学院, 1990.
    [155] Marsal, R. J., Soil properties-strength and consolidation session 2-division 2, Proc. 6th ICSMFE, 3, 1965.
    [156]沈珠江.土体应力应变分析中的一种新模型.第五届土力学及基础工程学术讨论会论文集.北京:中国建筑工业出版社, 1990: 101-105.
    [157]罗刚,张建民.邓肯-张模型和沈珠江双屈服面模型的改进.岩土力学, 2004, 25(6): 887-890.
    [158]贾延安.复杂应力路径下堆石体本构模型的比较验证[硕士学位论文].北京:清华大学, 2006.
    [159]张丙印,贾延安,张宗亮.堆石体修正Rowe剪胀方程与南水模型.岩土工程学报, 2007, 29(10): 1443-1448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700