液体微小流量的非定常流测量原理与方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着流体系统向微小化方向的发展,对微小流量进行精确测量的需求越来越多。在医疗器械、流体元件检漏、不规则零件配合公差检验、微小流体器件流动特性研究、微小孔径或毛细管管径测量和生化防护等领域中,常常要对被测试件的微小流量(每分钟几毫升至几百毫升)进行高精度的测量,一般是在定常流条件下进行微小流量的测量。目前,定常流条件下测量流量时,测量系统必须具备高精度的液体恒压装置,这增加了测量系统的复杂性;再有,常用的流量仪表对于微小流量的测量存在误差大、仪表自身压力损失大等问题,难以直接应用于微小流量的测量系统中,定常流条件下测量微小流量的原理实质上就是“秒表-量杯法”,测量的自动化程度不高、操作复杂。
     针对目前微小流量测量中的上述问题,本文提出了一种用非定常流等效定常流测量微小流量的原理及其实现方法。
     基于流体力学非定常流伯努利积分理论,建立了圆角薄壁小孔、锐缘薄壁小孔和细长圆管等三种典型微小流道自由出流时,非定常流等效定常流测量应满足的水头适用条件;得出了典型微小流道中非恒定水头的非线性微分方程,分析了非定常流等效定常流测量的理论误差,并实验验证了理论分析的正确性。基于非定常流等效定常流测量微小流量的原理,成功研制出了一种人工机械心脏瓣膜返流量测量装置并实现产业化;针对静脉输液针的通流检测试验,设计出了多段标定的非定常流流量测量装置;针对水压轴向柱塞泵中配流盘摩擦副的间隙检测,设计出了通过测量间隙泄漏流量确定摩擦副间隙的测量装置。
     论文的主要内容:
     第1章,阐述了本课题的研究意义和目的,概述了微小流量测量的研究现状和发展状况,现有方法存在的问题,概述了本文的主要研究内容。
     第2章,在定常流条件下,建立了圆角薄壁小孔、锐缘薄壁小孔和细长圆管等三种典型微小流道自由出流的流动模型,基于流体力学定常流伯努利方程,推导出了典型微小流道出流的流量计算公式。根据微小流量测量的特点,分别设计了静态质量法、静态容积法、动态质量法和动态容积法测量装置,并指出了定常流条件下微小流量测量存在的问题。
     第3章,提出了用非定常流等效定常流测量微小流量的原理,在非定常流条件下,建立了典型微小流道自由出流的流动模型,基于非定常流伯努利积分,推导出了非定常水头下典型微小流道出流的流量计算公式,由此建立了非定常流等效定常流测量微小流量时,测量装置应满足的水头适用条件,并求解分析了理论误差。
     第4章,建立了微小流量的非定常流测量实验装置,对标准流量块进行了非定常流条件下的实际流量测量,该测量结果与定常流条件下的实际测量结果进行了对比,得出“实测的误差随着被试件过流断面面积a与测量容器过流断面面积A的比值a/A增大而增大”的结论,验证了理论分析的正确性。对测量的误差来源做了分析,提出了理论误差的补偿方法,
     第5章,介绍了人工机械心脏瓣膜返流量的非定常流测量装置研制过程,对本文提出的微小流量非定常流等效定常流的测量原理进行实际应用和验证。
     第6章,针对静脉输液针的通流检测试验,设计出了多段标定的非定常流流量测量装置;针对水压轴向柱塞泵中配流盘摩擦副的间隙检测,设计出了通过测量间隙泄漏流量确定摩擦副间隙的测量装置。
     最后,总结了本论文的研究工作和结论,展望了未来的研究工作。
     本文的主要创新点概括如下:
     (1)提出了用非定常流等效定常流测量微小流量的原理及其实现方法,为微小流量的测量方法及测量装置的设计提供了新的思路。
     (2)基于流体力学非定常流伯努利积分原理,得出了非定常流等效定常流测量微小流量的面积适用条件和水头适用条件。
     (3)研制成功了人工机械心脏瓣膜返流量的非定常流测量装置,并实现产业化。
Accurate minute flow measurement is widely required along with fluidic systems grow smaller in size. The minimum flow may be ml/min in medical devices, leak detection of hydraulic components, tolerance check for irregular shape, study of flow characteristics of MEMS, micro tube or capillary tube diameters measurement and biochemical defense. Nowadays, minute flow measurement is under the condition of steady flow and it requires precise hydraulic constant pressure instrument. This will cause the complexity of measuring system. Besides, it is obvious that conventional flow meter is difficult to be used in minute flow measurement for great measuring errors and high pressure loss.
     In this dissertation, unsteady flow measuring principle is proposed and the applications of this method are developed.
     Based on unsteady flow Bernoulli equation, three typical models of outflow through minute flow paths are established for round corner thin-wall hole, sharp corner thin-wall hole and long hole respectively. Then corresponding flow formulas and elevation conditions for application (ECA) of the method are deduced. Nonlinear differential equations are built for unsteady minute flow under inconstant pressure. Theoretical measuring errors are computed and analyzed. Experimental instrument for unsteady minute flow measurement is established. Test results prove the correction of the theoretical analysis. For measuring the regurgitant volume of artificial mechanical cardiac valve prosthese, an unsteady flow measuring instrument is developed. This device has been industrialized. For flow check of intra-vein catheter, an unsteady flow measuring instrument is designed, which is multi-pieces marked. For valve plate couples of water axial piston pump, clearance leak flow measuring instrument is studied and manufactured. With this instrument, the clearance of the couples can be obtained.
     The thesis contains 6 chapters.
     In chapter 1, the objective and significance of the study are stated. Current research situations of minute flow measurement are analyzed and the main contents of the study are introduced.
     In chapter 2, under the condition of steady flow, three typical models of outflow through minute flow paths are established for minute round corner thin-wall hole, sharp corner thin-wall hole and long hole respectively. Based on steady flow Bernoulli integral equation, correspondent flow formulas are deduced. According to the characteristics of minute flow, four measuring methods are proposed,named static mass memthod,static volume method, dynamic mass method and dynamic volume method,and corresponding instruments are designed.Meanwhile,the existing problems for steady minute flow measurement are pointed out.
     In chapter 3,unsteady minute flow measuring principle is proposed.Based on unsteady flow Bernoulli imegral equation.three models are established for typical free outflow through minute flow paths.Then,corresponding flow formulas and elevation conditions for application(ECA)of the method are deduced.Theoretical measuring errors are analyzed.
     In chapter 4,experimental instrument of unsteady flow measurement is established. Unsteady flow and steady flow measuring methods are both applied to standard flow check block and the results are compared.The test results show that measuring errors will increase with the ratio of flow seetion area of tested component(a)to that of measuring instrument(A). This proves the coffeetion of the theoretical analysis.The causes of measuring errors are analyzed and error compensation methods are proposed.
     In chapter 5,specified measuring instrument is studied and manufactured for regurgitant volume in artificial mechanical cardiac valve prosthese.Unsteady flow measuring principle is applied in the device thus proved correct.
     In chapter 6,an unsteady flow measuring instrument,which is multi-pieces marked,is designed for flow check of intra-vein catheter.Clearance leak flow measuring instrument is studied and developed for valve plate couples of water axial piston pump.With this instrument,the clearance of the couples can be obtained.
     At last,the main results and conclusions of this work are summarized,and further research plan is brollght forward.
     This research is initiative as follows:
     (1) Unsteady minute flow measuring principle and the realization are proposed.It puts forward a new way for minute flow measurement.
     (2) Based on unsteady flow and Bernoulli integral equations,the elevation conditions for applications(ECA)of this method are deduced.
     (3)Unsteady flow measuring instrument for regurgitant volume of artificial mechanical cardiac valve prosthese is developed and industrialized.
引文
[1]T. Shimada, S. Oda, Y. Terao, et al. Development of a new diverter system for liquid flow calibration facilities[J]. Flow Measurement and Instrumentation, 2003,14(3): 89-96.
    [2]Y. Terao, M. Takamoto, Uncertainty analysis of large water flow calibration facility[J]. Transactions of the Society of Instrument and Control Engineers, 2000, 36(1): 10-15.
    [3]Marshall, J. L., editor, NIST Calibration Services Users Guide, NIST Special Publication 250, January 1998, http://ts.nist.gov/ts/htdocs/230/233/calibration/indexl.html.
    [4]吉红.基于标准装置[天津大学硕士学位论文].天津:天津大学2005.7
    [5]段慧明.液体流量标准装置和标准表法流量标准装置[M].北京:中国计量出版社,2004.9
    [6]苏彦勋.范砧.液体流量标准装置[M].北京:中国计量出版社,1994.10
    [7]中国国家技术监督局.GB 12279-90人工心脏瓣膜通用技术条件[S].北京:中国标准出版社,1990
    [8]中国国家质量监督检验检疫局,GB 8368-2005一次性使用输液器重力输液式[S].北京:中国标准出版社,2006.7
    [9]中国国家质量监督检验检疫局,GB 8369-2005,一次性使用输血器[S].北京:中国标准出版社,2005.10
    [10]中国国家质量监督检验检疫局,GB 18671-2002,一次性使用静脉输液针[S].北京:中国标准出版社,2002.1
    [11]中国国家质量监督检验检疫局,GB 15811-2001,一次性使用无菌注射针[S].北京:中国标准出版社,2001.12
    [12]蔡武昌.微小流量测量现状[J].世界仪表与自动化.2004.8(1):26-29.
    [13]Ho Chih-Ming, Tai Yu-Chong. Micro-Electro-Mechanicalsystems(MEMS) and fluid flows[J], Annual Review of Fluid Mechanics, 1998, 30: 579-612
    [14]Kandlikar S-G, Grande W-J. Evolution of MicroChannel Flow Passsages-Thermohydraulic Performance and Fabrication Technology. Procdeedings of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, November 17-22,2002,New Orleans Louisiana.
    [15]马吉.微小通道内低雷诺数流动的[D].南京航空航天大学:南京,2004.
    [16]远藤良一.微小流量的检测技术与传感器[J].国外计量.1991.(05):30-32.
    [17]苏彦勋,盛健,梁国伟.流量计量与测试[M].北京:中国计量出版社,2007
    [18]蔡武昌,孙淮清,纪纲.流量测量方法和仪表的选用[M].北京:化学工业出版社,2001.3
    [19]刘欣荣.流量计[M].北京:水利电力出版社,1989.1
    [20]梁国伟,蔡武昌.流量测量技术及仪表.[M].北京:机械工业出版社,2002.5
    [21]沼田秀夫,浦井章.最近の液体质量流量计测制御技术[J].计测技术.1997(10):32-37.
    [22]石川享一.液体用冷却式微少流量计“LF/LVシリニズ[J].计装.1993,36(7):70-73.
    [23]蔡武昌.热式液体质量微流量仪表[J].石油化工自动化.2000(04):67.
    [24]Kanarov V, Hayes A-V, Yevtukhov R. A new type micro flow meter[J]. Scientific Instrument. 1988, 59(2): 874-876
    [25]Takamoto M., Ishikama H. New measurement method for very low liquid flow rates using ultrasound[J]. Flow Measurement and instrumentation. 2001, 12(4): 267-273. Peter West. A guide to the flowmeter maze World pumps(2) August 1977: P267-273
    [26]Hemp J, Sanderson M-L, Koprioug A-V. Promble in the theory and design of electromagnetic flowmeters for dielectric liquids. Part 1: Experimental assessment of static charge noise levels and singal-to-Noise ratios[J]. Flow Measurement and instrumentation. 2002, 13(4): 143-153
    [27]丁立申,吴国玢.微流量智能电磁流量计的研究[J].上海理工大学学报.2000,.22(1):29-33.
    [28]苏艳茹.微小流量信号检测系统的研究及应用[D].哈尔滨工程大学:哈尔滨,2005.
    [29]叶赫.双波纹管差压计用于高压微小流量的测量[J].抚顺石油化工研究院院报.7():71-74
    [30]陈卫民,谢楠,呼兴福等.智能小流量靶式流量计的研制[J].仪表技术与传感器.2007(04):15-16.
    [31]李玉柱江春波.工程流体力学[M].北京:清华大学出版社.2007.
    [32]吴望一.流体力学[M].北京:北京大学版社,2004.
    [33]陈卓如.工程流体力学[M].北京:高等教育出版社,2004.
    [34]盛敬超.工程流体力学[M].北京:机械工业出版社,1988.
    [35]国家质量监督检验检疫总局,JJG6432003标准表法流量标准装置检定规程,北京:中国计量出版社,2003.1
    [36]国家质量技术监督局,JJG164-2000液体流量标准装置检定规,中华人民共和国国家计量检定规程,北京:中国计量出版社,2000.2
    [37]Terao, Y.,Takamoto, M., Uncertainty analysis of large water flow calibrationfacility, Transactions of the Society of Instrument and Control Engineers, v36, n1, Jan. 2000, p10-15
    [38]Scott, R.W. W., Flow measurement calibration facilities of the world, Nat. Engng. Lab., East Kilbride, UK, NEL-622, Sept. 1976, 24pp
    [39]Shimada, T.,Oda, S., Terao,Y., Takamoto,M., Development of a new diverter system for liquid flow calibration facilities, Flow Measurementand Instrumentation, vl4, n3, June2003, p89-96
    [40]世界上最大的高精度电磁流量计校准设备.Technis Messen.1979(7、8): 296-298(in German
    [41]Shimada, T. , Oda . A Large Capacity Calibration Rig for Electromagnetic Flowmeters Preprints of IMEK0 Symposium on Flow Measurement and Control in Industry. 1979, Tokyo.
    [42]Shimada, Takashi, Oda, Shinji, Takamoto, Masaki, Nagai, Satoshi, A novel diverter fo rliquid flow calibration facilities, Nippon Kikai Gakkai Ronbunshu, B Hen/Transaetions of the Japan Soeiety of Meehanieal Engineers, Part B, v 68, n 665, January, 2002, pl37-143
    [43]GuoLiang, ZhengQi, Guo Ming chang, The biggest calibration facility to be built for actual natural gas in China, FLOMEKO 2003-may 12-14, Groningen, The Netherlands
    [44]Broder Ketelsen. Electromagnetic Flowmeter Calibration Flciliti es. Fiow. Its Measurement and Control in Science and Industry, Vol.1. Part 2. 755-761,ISA(1974)
    [45]王荣杰,陈超,威尔泰.变水头大流量标准装置[J].上海计量测试.2003,30(4)
    [46]孙国林,沈海津,乔鑫根等.大口径水流量标准装置及校准方法
    [47]蔡武昌,非稳压源大管径水流量校验装置的现状.
    [48]程岚,李明,陈彦萼.变水头变流速水流量标准装置的流动模型[J].青岛化工学院学报.1994,15(1):55-60.
    [49]周云成,何娜,王展等.变水头边界条件下土壤水分运动数值模拟[J].清华农业大学学报.2005,36(4):454-457.
    [50]陈辉,谭永红,党选举.结构型小管径小流量虚拟传感器研究[J],传感器技术,2004,23(4)
    [51]Mattingly, G. E., Flow Metrology: Standards, Calibrations, and Traceabilities, in Flow Measurement, Spitzer, D. W., editor, Instrument Society of America, Research Triangle Park, NC, pp. 575-587.
    [52]Caron, R. W., Kegel, T. M., and Britton, C. L., A Measurement Assurance Program (MAP) Using Critical Flow Venturis, 4th International Symposium of Fluid Flow Measurement, Denver, Colorado, June, 1999.
    [53]Measurement of Liquid Flow in Closed Conduits by Weighing Method, ASME/ANSI MFC-9M-1988, American Society of Mechanical Engineers, New York.
    [54]Shafer, M. R. and Ruegg, F. W., Liquid Flowmeter Calibration Techniques, Transactions ASME, October, 1958, pp. 1369-1379.
    [55]Liu Ciqun, Huang Jun-qi. Analytical slutions for equations of unsteady flow of non-newtonlan fluids in tube[J]. Applied Mathematics and Mechanics, 1989, 11(10): 989-996.
    [56],E. O. Tuck. Calculation of Unsteady Flows Due to Small Motions of Cylinders in a Viscous Fluid [J]. Journal of Engineering Mathematics, 1969,3(1): 29-44.
    [57]F. D. Cave, J. Franklin, P.L. Patel. Comparison of methods for the dynamic calibration of electromagnetic flowmeters[J]. Medical & Biological Engineering & Computing, 1978,16: 51-58.
    [58]R. F. Ganiev, Y. B. Malykh. Effect of fluid compressibility on the linear stability of poiseuille flow in a circular tube[J]. Fluid Dynamics, 1994,29(2): 161-165.
    [59]C. I. Chen, T. Hayat, J. L. Chen. Exact solutions for the unsteady flow of a Burger's fluid in a duct induced by time-dependent prescribed volume flow rate[J]. Heat Mass Transfer, 2006,43: 85-90.
    [60]S. C. Xue, N. P. Thien, R. I. Tanner. Numerical investigations of Lagrangian unsteady extensional flows of viscoelastic fluids in 3-D rectangular ducts with sudden contractions[J]. Rheologica Acta, 1998, 37(2): 158-169.
    [61]C. S. Chen. The analytical and numerical solutions for gaseous slip flows in micro-channels. Journal of the Chinese Institute of Engineers, 2000, 23(2): 229-235.
    [62]H. Xue, Q. Fan, C. Shu. Prediction of Micro-channel flows using direct simulation Monte Carlo[J]. Probability Engineers, 2000, 15(2): 213-219.
    [63]H. Santos, E. Catak, J Kinder, etal. Kick Detection and Control in Oil-based Mud: Real Well Test Results Using Micro-Flux Control Equipment[C]. 2007 SPE/IADC Drilling Conference, 2007, Amsterdam, Netherlands.
    [64]周光炯,严宗毅,许世雄,等.流体力学[M].北京:高等教育出版社,2002.
    [65]陆君安.偏微分方程的Matlab解法[M].武汉:武汉大学出版社,2001.
    [66]ADBALLAH S A. Dynamic performance of heart valve prostheses and the testing loop characteristics[J]. Artif. Organs, 1983, 14 (2): 89-98.
    [67]VENU GORTI, HEMI SAGI. Simplifying the approach to specify and measure product seal integrity and leak tightness[C]. Society of Automotive Engineers. SAE 2006 World Congress, August 4-6, 2006, Detroit, Michigan,USA.Warrendale, PA,USA: SAE International, 2006: 4 359-4 368.
    [68]CHIN HSIA, CHEN-TSAIR YANG,JIUNN-HAUR SHAW. Validation of a microflow calibration system based on a weighing method with pneumatic control[C]// Proceedings of the 12th International Conference on Flow Measurement, September 14-17, Guilin, China. Beijing: Chinese Society for Measurement Press, 2004: 245-251.
    [69]FISHE J, JACK G R, WHEATLEY D J. Design of a function test apparatus for prosthetic heart valves[J]. Clinical Physics and Physiological Measurement, 1986, 7(1): 63-73.
    [70]中国国家质量监督检验检疫局,GB 18457-2001,制造医疗器械用不锈钢针管[S]北京:中国标准出版社,2006.7
    [71]Yamaguchi A. Pressure Distribution on Valve Plate of Axial Plunger Pumps and Motors. SEISAN-KENKYU 18. Japan: Yokohama National University, 1966
    [72]Hooke C J . A Note on the Effect of Shaft and Casing Stiffness on the Port Plate Lubrication Film of a Particular Slipper-pad Axial Piston Pump. The 4th International Fluid Power Symposium , Cambridge , 1972
    [73]Yamaguchi A, Fujitani Y, Isoda Y, etal. Characteristics of Fluid Film between a Valve Plate and a Cylinder Block of Axial Piston Pumps and Motors. Japan Hydraulics and Pneumatics Society, 1984 , 15 (4) :314— 322
    [74]Yamaguchi A. Formation of a Fluid Flow between a Valve Plate and a Cylinder Block of Piston Pumps and Motors. Bul. J SME, 1986 , 29 :1494~1498
    [75]Yamaguchi A, Shimizu S. Design Method for Fluid Lubrication on Valve Plate of Axial Piston Pumps and Motors. The 7th International Fluid Power Symposium, Bath ,1986
    [76]Pan H C , Sheng J C , Lu Y X. Finite Difference Computation of Valve Plate Fluid Film Flows in Axial Piston Machines. International Journal of Mechanical Science, 1989, 31(10) :779~791
    [77]Edge K A, Darling J . The Pumping Dynamics of Swash Plate Piston Pumps. Journal of Dynamic Systems, Measurement, and Control, 1989 ,111(6) :307~312
    [78]Oberem R. Entwicklung Eines Schragscheiben-motors fur Die Wasserhydraulik. Olhydraulik und Pneumatik, 1998 ,42(2) :105~109
    [79]Ramo J, Hyonen M , Mantyla T, etal. Wear Resistance of Materials in Water Hydraulics. The Sixth Scandinavian International Conference on Fluid Power, Tampere ,1999
    [80]KocE , Hooke C J. Considerations in the Design of Partially Hydrostatic Slipper Bearings. Tribology International, 1997 , 30(11) :815~823
    [81]KocE, Hooke CJ. An Analysis of the Lubrication Mechanisms of the Bush-type Bearings in High Pressure Pumps. Tribology International, 1997, 30 (8) :553~560
    [82]McConnachie J, Fagan M J . Design and Analysis of the Cylinder Block of an Axial Piston Pump. TheThird Scandinavian International Conference on Fluid Power, Link"oping ,1993
    [83]International Symposium on Magnetic Bearings. 1994 ,1996. 1998 ,2000.
    [84]Bassani R, Chilli E , etal. Study of Conic Permanent Magnetic Bearings [J].Meccanica, 2002, 36(6) :745 ~754.
    [85]Bosch. Development of a bearingless Motor [J].Proc.Int. Conf. Electric. Machines (ICEM'88) ,1988, (3) :373~ 375.
    [86]Bichsel J. The Bearingless Electrical Machine [C].Proc.Int. Symp. Magn. Suspension technol NASA Langley Res.Center Hamption ,1991 :561 ~ 573.
    [87]Chiba A , Furuichi R , etal . Stable Operation of Induction Type Bearingless Motors Under Loaded Conditions [ J ].IEEE Trans. Industry Application, 1997 ,33 (4) : 919~924.
    [88]Mukhopadhyay S C , T Ohjj , Iwahara M, Yamada S. Design ,analysis and control of a new repulsive-type magnetic bearing system[J ]. IEE proc. Electr. Power Appl. 1999 ,46 (1) :33~40.
    [89]Hsu, Chan-Tang ,Chen, Shyh - Leh. Exact linearization of a voltage - controlled 3-pole active magnetic bearing system[J ]. IEEE Transactions on Control Systems Technology, 2002 ,10(4) :618~625.
    [90]Yoshimoto T.Eddy Current Effect in Magnetic BearingModel[J].IEEE Transactions on Magnetics ,1992 ,28 (2): 1605 -1610.
    [91]Yang C , Knospe C ,Tsiotras P. Optimal control of amagnetic bearing without bias flux using finite voltage.[J]. Applications and Methods, 1998(19) :227~246.
    [92]Trumper D, Olson S , Subrahmanyan P. Linearizing control of magnetic suspension systems [J ] . IEEE Trans on CST ,1997,5(4) :427~437.
    [93]Levine J , Lottin J ,Ponsart J C. A nonlinear approach to the control of magnetic bearings [ J ]. IEEE Trans on CST ,1996 ,4(5) :524~544.
    [94]Charara A,Miras J, Caron B. Nonlinear control of a magnetic levitation system without premagnetization[J ] IEEE Trans on CST, 1996,4(5) :513~523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700