基于Zigbee技术的油菜叶绿素含量远程测量系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确农业已成为国际上发达国家面向21世纪,合理利用农业资源,提高农产品产量和品质,降低生产成本,改善生态环境和农业可持续发展的最富有吸引力的前沿热点领域。它的实质是基于信息和知识来精细管理复杂的农业系统,并且实现了因地制宜、因作物、因时间全面平衡施肥,有明显的经济和环境效益。其中如何快速准确的获取农田信息成为了精细农业研究的一个难点。叶绿素是作物生长中的重要因素,是植物营养胁迫、光合作用能力和生长状况的良好指示剂。实时、可靠的作物营养诊断是进行科学施肥管理的基础,也是实践精细农业的关键技术之一。
     本论文针对目前农作物营养成分检测过程中主要存在的工作量大,费用高等问题,结合我国的实际情况,对远程测量油菜叶绿素含量的系统设计方案进行了开发和研究。开发了一种油菜叶绿素无损检测仪器,该仪器可实现对叶绿素浓度的实时、快速、无损检测。
     由于检测农作物叶绿素含量没有专用的传感器,传统化学方法测时往往受设备限制,存在制样和分析时间长、不便于无损检测的等缺点,本论文通过近红外光谱分析方法获取油菜叶片的光谱信息;区别于近红外光谱的实验室检测惯例,将Zigbee无线通信技术应用于无线测量农作物营养成分中,提出一种采用Zigbee无线通信技术传输油菜叶片光谱信息的设计方案。然后对获得的光谱信息进行滤波等预处理,然后采用二元线性回归法建立了植物叶片叶绿素含量与叶片吸收光谱的定量分析模型。BURR BROWN公司生产的单片光电二极管OPT101组成光电探测器,叶绿素含量标准值采用日本Minolta公司生产的SPAD-502仪测定, STC89C516RD+单片机作为系统主控制,无线通信模块处理器选择CC2430完成数据传输。
     最后利用该模型对预测集样本进行预测。预测集中样本的预测值与参考值之间的相关系数为0.89,预测均方根误差为1.2 SPAD。实验结果表明,利用基于Zigbee技术的油菜叶绿素含量远程测量系统检测叶片叶绿素含量是可行的,实现了油菜叶片叶绿素含量的快速无损检测,对精确施肥具有指导意义。
Precision agriculture has become a focus of concern for developed countries being confronted with 21 st century, utilizing reasonably agricultural resource, improving quantity and quality of agricultural products, reducing producing cost,and improving environment and agricultural sustainable development. The essential of precision agriculture is precisely to manage complex agricultural system based on information and knowledge. Precision agriculture realizes work out measures to suit local conditions, suit crop and time comprehensive balanced fertilization, and has obvious economic and environmental benefits. How to acquire field information rapidly and precisely has become a difficult issue of precision agriculture. Chlorophyll is the important factors of the crop in its growth stage, and it is the favorable indicator of nutrition stress and photosynthesis. Site-specific crop nutrition diagnosis is the basics of the scientific fertilizer management, and it is essential for the practice of precision agriculture.
     Considering the presence problem of the heavy workload and high cost in crop nutrition component testing process, and the actual situation of our country, the remote measurement of rape chlorophyll content system design scheme were developed and studied in this thesis. A nondestructive measuring instrument for plant chlorophyll was developed, which can perform real-time, quick and nondestructive measurement of crop chlorophyll.
     Since no has special sensor in the detection of crop chlorophyll content, and the traditional chemical has the problems of restricted by the device, long time of sample preparation and analysis, and not convenient for nondestructive testing, this paper gets the rapes leaf spectral information using the near infrared spectra analysis techniques. From near infrared spectroscopy laboratory testing practices, this paper takes the Zigbee wireless communication technology implicating in wireless measuring crop nutrition composition, propounds the a design on transmuting of rape leaf spectral information by Zigbee wireless communication technology . Then the obtained spectral information were made filtering, and uses variables linear regression method was used to develop the quantitative analysis model for chlorophyll content with absorbance spectroscopy. Each leaf sample was spectrally scanned by OPT101 photo detector of BURR BROWN. Chlorophyll standard value of each rape leaf was measured by SPAD-502 meter, Minolta Camera, Japan. STC89C516RD+ Single chip microcomputer was selected as main controller; the wireless communication module processor selects CC2430 to complete data transmission.
     Finally, prediction samples were predicted by the model. The predicted value of the sample and reference values of correlation coefficients in prediction set sample is 0.89, and the root mean square error of prediction is about 1.2SPAD. It could be concluded that it is feasible to measure plant chlorophyll content based on Zigbee Remote Measurement System in the Chlorophyll Content of Rapes. It realizes rapid and nondestructive measurement of chlorophyll content, and it is also significant in precision fertilization in the future.
引文
[1]陆海燕.精确农业蔬菜变量施肥决策系统研究[R].江苏:江苏大学,2005.
    [2]洪添胜.法国精确农业研究现状[J].农机化研究,2000,11(1):1-5.
    [3]梁西陈,腾康开.基于Web服务的精确农业地理信息系统的设计[J].安徽农业科学,2009,37(11):5308-5310.
    [4]张书慧,马成林,杜巧玲,等.精确农业自动变量施肥机控制系统设计与实现[J].农业工程学报,2004,20(1):113-115.
    [5]National Research Council. Precision agriculture in the 21st century, geospatial and information technologies in crop management. Washington D C: National Academic Press, 1997..
    [6]Balasubramanian V, Morales A C, Cruz R T. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems[J] .Nutrient Cycling Agroecosystems,1999,53:59-69.
    [7]褚小立袁洪福.近红外光谱分析技术发展和应用现状[J].现代仪器,2011 ,17(5) :1-4.
    [8]王汉中.我国油菜产需形势分析及产业发展对策[J].中国油料作物学报,2007,29:101-105.
    [9]冯雷等.基于多光谱视觉传感技术的油菜氮含量诊断方法研究[J].光谱学与光谱分析,2006,26(9):1749-1752.
    [10]Dieter Frense, Adrian Muller, Dieter Beckmann. Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors and Actuators.1998, 51:256-260.
    [11]Bemhard Ruth. Monitor the herbicide concentration in ponds by detecting the chlorophyll fluorescence of algae with ms-laser-excitation. SPIE.1995, (2503):2-13.
    [12] Pinar A. International Journal of Remote Sensing, 1996, 17(2):351.
    [13] Huang Cheng-wei, Huang Chun-chi, Wu Te-hui, et al. Paper Number 031132, 2003 ASAE Annual Meeting. Las Vegas, Nevada, USA, July, 2003.
    [14]张宪政.植物叶绿素含量测定-丙酮乙醇混合液法[J].辽宁农业科学, 1986, (3): 26-28.
    [15]金仲辉.绿色植物反射光谱的特征及其在监测农作物生长中的应用[J].物理,1993, 22 (11) :673.
    [16]吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000, 4(3):228.
    [17]张鹏娜.基于STC89C516RD+单片机的控制系统的实验论证[R].吉林:吉林大学,2006.
    [18]杨思源.基于ZigBee的无线监测监控网络系统研究[R].青岛:青岛理工大学,2011.
    [19]郭贵中,毛新华,黄婷婷.基于Zigbee的油菜叶绿素含量无线测量系统设计[J]中国农机化,2012,2:145-147.
    [20]郭鑫,张立.便携式叶绿素含量光电检测仪设计[J] .电子测量与仪器学报,2009,23(4):92-96.
    [21]李民赞.光谱分析技术及其应用[M].科学出版社, 2006:219-223.
    [22]金尚忠,王东辉,周文,等发光二极管光谱参数测试方法的研究[J] .光电子激光,2002 , 13 (8):825.
    [23]许宜申,顾济华,陶智,等.一种高精度恒流源电路的设计与实现[J].仪器仪表学报2008,29(4):725-727.
    [24]王廷林,解少良,陈炜刚,等. OPT101型光电传感器的技术性能与应用[J].传感器世界,1999,10:32-35.
    [25]耿涛,赵光,陶志勇.基于STC89C516单片机的数字光功率计设计[J].电子元器件应用,2008,10(11):8-10.
    [26]陈晓风. ADC0809模数转换器的测试与研究[J].福建师范大学学报,2001,17(4):44-47.
    [27]神祥明,吴龟灵,李思其,等.光模数转换系统中幅度不均匀性的校正[J].光传输技术,2011,1:1-3.
    [28]吴建国.作物种子品质研究中近红外光谱分析模型的创建和应用[R].浙江:浙江大学,2003.
    [29]周云艳.弱信号放大电路的设计[J].山西电子技术,2011,6:11-13.
    [30]王颖,金志军.常用数字滤波算法[J].测量与控制,2011,3:98-100.
    [31]马菁菁.Zigbee无线通信技术在智能家居中的应用研究[R].武汉:武汉理工大学,2007.
    [32]李百明.Zigbee无线传感器网络在矿山环境监测中的应用研究[R].江西:江西理工大学,2009.
    [33]梁光胜,刘丹娟,郝福珍.基于CC2430的ZigBee无线网络节点设计[J].电子设计工程,2010,18(2):15-18.
    [34]马永强,李静强,冯立营.基于Zigbee技术的射频芯片CC2430[J].单片机及嵌入式系统应用,2007,1:45-47.
    [35]Chipcon.The Data Sheet of CC2430.http://www.chipcon.com.
    [36]林少锋,何一.基于CC2420的ZigBee无线网络节点设计[J].电子设计工程,2009,17(3):66-68.
    [37]黄智伟.射频电路设计[M].北京:电子工业出版社,2005.
    [38]李文仲,段朝玉.ZigBee无线网络技术入门与实战[M].北京:北京航空航天大学出版社, 2007.
    [39]李劲松,杨明,刘晓平.基于CC2430和ZigBee2006协议栈的通信模块设计[J].单片机及嵌入式系统应用,2010,2:26-28.
    [40]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报, 2003, 7(1): 73-77.
    [41]李庆波,徐玉坡,张超航,等.基于光谱技术的植物叶绿素浓度无损检测仪器的研制[J].光谱学与光谱分析, 2009, 29(10): 2875-2878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700