Merlin/NF2蛋白在原发性肝细胞癌中对肝纤维化调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:原发性肝细胞性肝癌(hepatocellular carcinoma, HCC)是我国男性的第二大死亡原因、女性的第五大死亡原因。在世界范围内每年的发病人数约为50万人,其中绝大多数病例出现在发展中国家,尤其是中国、东亚和非洲国家的发病率最高。
     肝纤维化是肝脏组织发生持续损伤,从而造成组织发生反复修复反应时,细胞外基质(extracellular matrix, ECM)合成降解以及沉积不平衡而引起的病理过程,是慢性肝病的主要病理特征,也是进一步向肝硬化发展的主要环节。
     肝纤维化与肝癌的发生有着密切的关系。肝纤维化发展到晚期即为肝硬化。在我国,肝癌病人80%以上合并有不同程度的肝硬化。在肝硬化中发生肝癌者15%-25%,一般为20%左右,大多数肝癌是在肝炎后肝硬化基础上发生的。
     NF2基因是神经纤维瘤病Ⅱ型(neurofibromatosis type2, NF2)的一个关键基因,在很多脑瘤中表达缺失。NF2基因编码的Merlin蛋白属于蛋白4.1超家族成员之一。Merlin是连接细胞膜和皮层细胞骨架的主要分子,它一端结合骨架分子,另一端则和细胞膜的许多受体分子结合;因此,通过这些固定和调节作用,可以精细的调控受体分子复合物在细胞膜上的丰度和分布。Merlin可以控制细胞膜表面可以利用表皮生长因子受体(epidermal growth factor receptor, EGFR)的数量。在生长很密集,相互接触的培养细胞中Merlin可以阻止已经和配体结合的EGFR的内化作用,使EGFR信号通路不能持续激活,即表现为接触性抑制。而在缺失Merlin表达的哺乳动物细胞中,即使细胞密度很高,也可以检测到EGFR内化作用以及EGFR通路的持续激活,即表现为接触性抑制的丧失。
     Merlin和HCC的发生具有密切的关系。在最近的研究中,基因剔除小鼠动物模型的建立,证明了Merlin/NF2基因蛋白在HCC的发生中具有关键的抑制作用。NF2(-/-)完全敲除的小鼠胚胎不能成活,说明NF2基因是小鼠胚胎发育过程中所必需的。NF2(+/-)杂合型基因小鼠,即杂合性缺失NF2基因,有自发成瘤,并具有很高的肿瘤转移率。其中,骨肉瘤发生率极高(63%),其次是肝细胞癌(11%)。近期研究显示,在肝脏特异性NF2(-/-)基因敲除鼠中,在发育的基因剔除小鼠会发生肝祖细胞(即肝卵圆细胞,OCs)过度增生,并最终基本全部发生肝细胞性肝癌(HCC)和胆管细胞癌(CC),且转移到肺。在成年小鼠中特异性敲除肝脏NF2(-/-)基因,肝脏的OCs细胞仅有轻度增殖,并且基本不发生HCC;而对这些小鼠肝脏刺激后,比如实行肝叶部分切除后(PHx) OCs细胞增殖明显,并诱发HCC和CC。对NF2(-/-)小鼠使用EGFR抑制剂Erlotinib,可以明显抑制OCs的增殖。
     Merlin在肝癌的发生发展中,被认为是一个很强的抑制因素。Merlin对于肝纤维化发生的影响至今尚无人研究。而在我国,肝炎后肝硬化的肝癌发生率很高。那么Merlin是否可以抑制肝纤维化的发生?Merlin是通过何种机制抑制肝纤维化的?因此深入研究了解Merlin对肝癌和肝纤维化的影响关系,对于肝癌、肝纤维化的发生发展机制,以及肝癌的防治方面,都提出了新的指导和新的思路。
     方法:我们利用qPCR和Western blot方法检测四种肝癌细胞系:FOCUS、MHCC-97H、HepG2、SMMC-7721以及人正常肝细胞株L-02中TGF-β1的表达情况。采用非接触式共培养技术(Transwell小室共培养)共培养FOCUS细胞和肝星状细胞系LX-2细胞。荧光光定量PCR和Western blot检测肝细胞是否对肝星状细胞有激活刺激作用。利用Western blot方法检测了四种肝癌细胞系:FOCUS、MHCC-97H、 HepG2、SMMC-7721以及人正常肝细胞株L-02中Merlin以及TGF-β1的表达情况。利用瞬时转染、Western blot方法研究Merlin对肝癌细胞株TGF-β1表达的影响,以及Merlin对EGFR的影响;以及对肝星状细胞TGF-β/Smad信号通路和ECM合成的影响。
     结果:利用qPCR和Western blot方法检测四种肝癌细胞系:FOCUS、MHCC-97H、HepG2、SMMC-7721以及人正常肝细胞株L-02中TGF-β1的表达情况。结果显示:FOCUS细胞中TGF-β1的表达水平很高,其次为MHCC-97H,再次为SMMC-7721, HepG2最低;但是在人正常肝细胞株L-02中无论在mRNA还是在蛋白水平都很难检测到TGF-β1的表达。通过免疫组织化学检测了20例肝癌组织标本以及10例正常肝组织中TGF-β1的表达水平。在肝细胞癌组织中TGF-β1强阳性率为55%(11例),弱阳性率为40%(8例),阴性表达1例。在肝细胞癌组织中,TGF-β1表达于癌细胞胞浆以及癌组织的间质中。而在所有的正常肝组织中,正常肝细胞都没有检测到TGF-β1的表达,而在肝组织的内皮细胞中可以检测到TGF-β1的强阳性表达。这些结果证明了TGF-β1在肝细胞癌中表达水平明显增高,肝癌细胞可以自身分泌TGF-β1。
     采用非接触式共培养技术(Transwell小室共培养)共培养FOCUS细胞和肝星状细胞系LX-2细胞。荧光光定量PCR和Western blot证实:肝癌细胞FOCUS可以分泌TGF-β1,激活LX-2细胞的TGF-β1/Smad通路,促进LX-2细胞合成细胞外基质(ECM)。利用Western blot方法检测了四种肝癌细胞系:FOCUS、MHCC-97H、 HepG2、SMMC-7721以及人正常肝细胞株L-02中Merlin以及TGF-β1的表达情况。两者表达情况呈相反的趋势,即Merlin表达高的细胞株中TGF-β1的表达低甚至缺失,而Merlin表达缺失的细胞株中TGF-β1的表达则很高。
     在相同的细胞密度下,分别转染pCDNA-NF2质粒和pCDNA3.1(+)空质粒。在转染处理组中,随着pCDNA-NF2质粒量的依次增加,Merlin的表达依次增加,而TGF-β1表达量则随着Merlin表达的依次增加而逐渐减弱;空载体组中Merlin表达均缺失,TGF-β1表达水平基本一致。这说明Merlin调控了TGF-β1的表达,恢复Merlin的表达可以减低TGF-β1的表达水平。
     在相同的细胞密度下,分别转染不同浓度的pCDNA-NF2质粒和pCDNA3.1(+)空质粒至FOCUS细胞。将转染了各质粒的FOCUS细胞与LX-2细胞进行共培养。我们发现随着上室FOCUS细胞中Merlin的表达水平依次增高,下腔LX-2细胞TGF-β1/Smad通路激活依次减弱,如p-Smad2, p-Smad3依次减弱;同时合成细胞外基质(ECM)依次减弱,即Fibronectin, Collagen Ⅰ, Collagen Ⅲ表达依次减弱。这说明在FOCUS细胞中恢复Merlin表达可以减少TGF-β1的表达,而使肝星状细胞合成ECM减少,从而抑制了肝纤维化的发生。
     同时Merlin高表达的转染组可以明显抑制表皮生长因子受体(EGFR)的激活,从而抑制TGF-β1的表达;而空载体对照组在EGF刺激后,表皮生长因子受体(EGFR)被激活,TGF-β1的表达随EGF的浓度依次明显增高。结果证实了Merlin可以抑制表皮生长因子受体信号通路,从而下调TGF-β1的表达分泌。随着肝星状细胞LX-2细胞数目的依次增多,Merlin表达依次增高。在这种线性细胞密度下,在TGF-β1刺激下,LX-2细胞TGFBR Ⅰ型受体、Smad2磷酸水平依次减低,TGF-β/Smad信号通路受到抑制;而在同样的条件下,由于肝细胞癌细胞FOCUS缺失Merlin表达,无论细胞数目的多少FOCUS细胞都不表达Merlin。在线性细胞密度下,使用TGF-β1刺激,FOCUS细胞的TGF-β/Smad信号通路始终保持持续激活状态。在肝星状细胞LX-2细胞中,低细胞密度下Merlin表达低;高细胞密度下Merlin表达高。在这两种细胞密度下,使用TGF-β1刺激,低细胞密度的LX-2细胞与高密度的情况相比TGF-β/Smad信号通路被显著激活;其合成ECM能力也大大增加。同时我们在低细胞密度的情况下,转染NF2的真核表达载体,提高Merlin的表达水平,再使用TGF-β1刺激,其TGF-β/Smad信号通路明显受到抑制;ECM合成受到明显抑制。另一方面,在高细胞密度的情况下,转染NF2的shRNA干扰载体,降低Merlin的表达水平,再使用TGF-β1刺激,其TGF-β/Smad信号通路抑制作用解除;ECM合成增加。
     结论:综上所述,本研究通过检测各肝癌细胞株以及肝细胞癌患者中的TGF-β1蛋白表达水平,明确了在一些肝癌细胞株中以及肝癌患者中TGF-β1蛋白表达上调;肝癌细胞可以自身分泌TGF-β1,激活肝星状细胞的TGF-β1/Smad通路,促进肝星状细胞合成细胞外基质,促进肝纤维化的发生。Merlin可以抑制表皮生长因子受体信号通路,从而下调TGF-β1的表达分泌。在肝癌细胞中恢复Merlin表达可以减少TGF-β1的表达,而使肝星状细胞合成ECM减少,从而抑制了肝纤维化的发生。同时,Merlin也可以负调控TGF-β/Smad信号通路,从而抑制肝纤维化。
Objective:Hepatocellular carcinoma (HCC), one of the most common fatal malignancies in China and many other countries in Asia and Africa, is the leading cause of cancer mortality in China.
     Liver fibrosis is the excessive accumulation of extracellular matrix proteins including collagen that occurs in most types of chronic liver diseases. It is a critical stage in cirrhosis development which the end stage consequence of fibrosis.
     Liver fibrosis, also Cirrhosis is very closely related to the occurrence of hepatocellular carcinoma. More than80percent of patients in China who develop liver cancer do so because they have cirrhosis of the liver.15%-25%, usually about20%cirrhosis patients develop liver cancer. The majority of liver cancer occurred on the base of posthepatitic cirrhosis.
     Chronic injury leading to fibrosis in liver occurs in response to a variety of insults, including viral hepatitis (especially hepatitis B and C), alcohol abuse, drugs, metabolic diseases due to overload of iron or copper, autoimmune attack of hepatocytes or bile duct epithelium, or congenital abnormalities. The immune system is activated and the repair process swings into gear because of these insults. The injury or death (necrosis) of hepatocytes stimulates inflammatory immune cells to release cytokines, growth factors, and other chemicals. These chemical messengers direct support cells in the liver called hepatic stellate cells (HSCs)to activate and produce collagen, glycoproteins (such as fibronectin), proteoglycans, and other substances. These substances are deposited in the liver, causing the build-up of extracellular matrix (nonfunctional connective tissue). HSCs play a very important role in the process of liver fibrosis. Cytokines are also a critical factor in activated liver fibrosis. They interacted HSCs, ECM, and also interacted themselves, which constituted network-like control networks. TGF-β1is the most effective cytokine to improve hepatic fibrosis, which can inhibit the proliferation of liver cells and stimulate HSC activation, and promote the production of ECM and regulate the apoptosis of hepatocytes.
     The tumor suppressor NF2, which is inactivated in the familial cancer syndrome Neurofibromatosis type2, encodes for Merlin, a member of the Ezrin/Radixin/Moesin (ERM) family of proteins. Merlin and the closely related ERM proteins form a subgroup of the Protein4.1superfamily. NF2is a predominantly inherited disorder characterized by the development of schwann cell tumors and other brain tumors. Mutations or the loss of heterozygosity of the NF2locus has been detected in various tumors of the nervous system, such as schwannomas, meningiomas and ependymomas. Merlin is composed of an N-terminal FERM domain, an ensuing a-helical domain and a C-terminal domain that includes an actin-binding module in the ERM proteins but not in Merlin. The FERM domain adopts a cloverleaf structure composed of three interdependent lobes and seems designed to bring multiple proteins together at the membrane. This is well supported by the long list of proteins that have been reported to interact with the Merlin/ERM FERM domain, including transmembrane receptors such as CD43and CD44, and the tandem PDZ-domain-containing adapters Na+/H+exchanger regulatory factor (NHERF)-1and-2, which in turn associate with a variety of membrane receptors. The FERM domain can also associate with regulators of Rho GTPase signaling. The a-helical and C-terminal portions of Merlin can fold back and envelop the FERM domain, masking all known sites of protein interaction in both the FERM and the C-terminal domains, including the ERM actin-binding domain. For Merlin, evidence from studies of mammalian cells indicates that this self-associated'closed'form is the active growth-suppressing conforma-tion. In fact, many tumor-derived missense mutations are predicted to disrupt the closed conformation.
     Merlin is a membrane/cytoskeleton-associated protein that can link the membrane proteins to the underlying cortical cytoskeleton and in controlling the distribution of and signaling from membrane receptors. In mammalian cells, Merlin can block the internalization of ligand-bound EGFR specifically in contacting (confluent) cells in culture. In fact, whereas wildtype, Merlin-expressing cells normally downregulate EGFR signaling at high cell density, Merlin-deficient cells fail to do so and also fail to undergo contact-dependent inhibition of proliferation—a phenol-type reversed by pharmacologic inhibition of EGFR.
     Merlin and the incidence of HCC have a close relationship. In a recent study, the gene knockout mouse animal model, demonstrated Merlin/NF2protein is the critical inhibition in HCC. NF2homozygous mutant at the mouse leads to embryonic failure immediately before gastrulation, indicating that merlin function is critical at a very early stage in development. Nf2+/-mice developed a variety of malignant tumors later in life.63%developed osteosarcoma, followed by hepatocellular carcinoma (11%). Targeted deletion of NF2in the mouse liver results in massive hepatic enlargement due to OCs hyperproliferation and All mice eventually developed frank liver tumors then metastasized to lung. In adult mice which the liver specific NF2(-/-) gene knockout, liver OCs cell proliferation mildly, and basically does not occur HCC; but after stimulating the liver of these mice, such as partial hepatectomy (PHx), OCs cells was significant proliferation and induce HCC and CC. NF2(-/-) mice injected EGFR inhibitors Erlotinib, can inhibit the proliferation of OCs.
     Merlin was considered to be a strong disincentive in the development of liver cancer. Merlin for the occurrence of liver fibrosis research so far no one has. In China, hepatitis, cirrhosis of the liver cancer rate is high. Then Merlin can inhibit hepatic fibrosis? Merlin is the mechanism through which inhibition of liver fibrosis? Therefore, in-depth study to understand Merlin on liver cancer and liver fibrosis in relation to liver cancer, liver fibrosis development mechanism, as well as prevention and treatment of liver cancer, have put forward a new direction and new ideas.
     Method and Result:We used qPCR and Western blot detect the expression level of TGF-β1in four liver cancer cell lines:FOCUS、 MHCC-97H、HepG2、SMMC-7721and human normal liver cell line L-02. The results showed that:in FOCUS cells, the expression level of TGF-β1is the highest, and followed by the MHCC-97H, SMMC-7721, HepG2is the minimum; However, in normal human liver cell line L-02in both the mRNA or protein levels are difficult to detect the expression of TGF-β1. We detected by immunohistochemistry20cases of HCC specimens and10normal liver tissue levels of TGF-β1expression. TGF-β1in hepatocellular carcinoma strongly positive rate was55%(11cases), weak positive rate was40%(8cases), and negative in1case. TGF-β1expressed in the cytoplasm of cancer cells and stroma in hepatocellular carcinoma tissues. In all of the normal liver tissue, normal liver cells are not detected the expression of TGF-β1, while in liver endothelial cells can detect the strong TGF-β1expression. These results demonstrate that TGF-β1expression in HCC was significantly higher liver cancer cells themselves could secrete TGF-β1.
     Non-contact co-culture technique (Transwell chamber co-culture) was used to culture FOCUS cells and liver stellate cell line LX-2cells. Fluorescence quantitative PCR and Western blot confirmed that FOCUS hepatocellular carcinoma cells can secrete TGF-β1, activate TGF-β1/Smad pathway and promote synthesis of extracellular matrix (ECM) in LX-2cells.
     We used Western blot to detect the expression of Merlin and TGF-β1in four liver cancer cell lines:FOCUS, MHCC-97H, HepG2, SMMC-7721and human normal liver cell line L-02. The levels of expression of the two proteins are totally opposite. The cell lines with high expression of Merlin expressed low or absent TGF-β1, and Merlin missing cell lines expressed very high TGF-β1.
     In the same cell density, FOCUS cells were transfected with pCDNA-NF2plasmid and pCDNA3.1(+) plasmid. In the treatment group that transfected with pCDNA-NF2plasmid, Merlin gradually increased by improved the amount of plasmid, contrast to TGF-β1; but in the vector group, Merlin was always absent and TGF-β1was the same levels. It shows that Merlin controls the expression of TGF-β1, and recovery Merlin can reduce the expression of TGF-β1.
     In the same cell density, FOCUS cells were transfected with different concentrations of pCDNA-NF2plasmid and pCDNA3.1(+) plasmid. The FOCUS cells which were transfected with the plasmid and LX-2cells were co-cultured. We found that Merlin in FOCUS cells on the up room was gradually increased depend on the concentration of plasmid, and TGF-β1/Smad pathway of LX-2cells in the inferior well was gradual deactivation, such as p-Smad2, p-Smad3were declined; at the same time the synthesis of extracellular matrix (ECM) was reduced, such as the Fibronectin, Collagen Ⅰ, Collagen Ⅲ were also declined. This shows that resumption of Merlin in FOCUS cells can reduce the TGF-β1expression, promote to reduce the synthesis of ECM in hepatic stellate cell and inhibit liver fibrosis.
     The high expression of Merlin transfected with plasmid can significantly inhibit the epidermal growth factor receptor (EGFR) activation, thereby inhibit the expression of TGF-β1; and in the vector control under the EGF stimulation, the epidermal growth factor receptor (EGFR) is activated, TGF-β1expression along with the concentration of EGF was significantly increased in turn. The results confirmed that Merlin can inhibit the epidermal growth factor receptor signaling pathway, which reduced the secretion of TGF-β1.
     With the LX-2hepatic stellate cells gradually increased the number of cells, Merlin expression also gradually increased. In this linear cell density, in TGF-β1stimulation, the level of phosphated TGFBR Ⅰ receptor and Smad2in LX-2cells gradually reduced, TGF-β/Smad signaling pathway was inhibited. In the same conditions, due to Merlin in cancer cells FOCUS was loss, no matter how much the number of cells, FOCUS cells do not express Merlin. In the different cell density, stimulated by TGF-β1, TGF-β/Smad signaling pathway was activated continuously in FOCUS cells. In low cell density, hepatic stellate cell line LX-2cells expressed low Merlin, and high cell density with high expression of Merlin. In both cell density, stimulated by TGF-β1, low cell density LX-2cells compared with the high density TGF-β/Smad signaling pathway was significantly activated; its ability to greatly increase the synthesis of ECM. Meanwhile, in the low cell density, we transfected pCDNA-NF2to improve the expression level of Merlin, and then stimulated with TGF-β1and its TGF-β/Smad signaling pathway was significantly inhibited, ECM synthesis was significantly inhibited. On the other hand, in the high cell density, transfected shRNA to interfere Merlin, reducing the expression level of Merlin, and then stimulated with TGF-β1and the inhibitions of TGF-β/Smad signaling pathway and ECM synthesis were rescinded.
     Conclusion:In summary, this study was to detect TGF-β1protein levels in the HCC cell lines and hepatocellular carcinoma patients, and identified in hepatocellular carcinoma and liver cancer cell lines the TGF-β1protein expression were up-regulated; HCC cells can secrete TGF-β1themselves, and activated hepatic stellate cells TGF-β1/Smad pathway, promote hepatic stellate cells to synthesize extracellular matrix, and promote liver fibrosis. Merlin can inhibit the epidermal growth factor receptor signaling pathway, which reduced the expression of TGF-β1secretion. Restored Merlin in HCC cells can reduce the expression of TGF-β1, inhibit the hepatic stellate cell synthesize ECM, thereby inhibit the occurrence of liver fibrosis. Meanwhile, Merlin can negatively regulate TGF-β/Smad signaling pathway, and suppress liver fibrosis.
引文
[1]Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:from genes to environment. Nat Rev Cancer.2006;6(9):674-87.
    [2]Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet.2002;31(4):339-46.
    [3]Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Journal of Biological Chemistry.2000;275(4):2247.
    [4]Elkington SG, McBrien DJ, Spencer H. Hepatoma in cirrhosis. British Medical Journal.1963;2(5371):1501.
    [5]Oka H, Kurioka N, Kim K, et al. Prospective study of early detection of hepatocellular carcinoma in patients with cirrhosis. Hepatology.1990; 12 (4):680-7.
    [6]Wynn TA. Cellular and molecular mechanisms of fibrosis. The Journal of Pathology.2008;214(2):199-210.
    [7]Le Bousse-Kerdiles MC, Martyre MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis:a review. Eur Cytokine Netw.2008;19(2):69.
    [8]Gressner OA, Rizk MS, Kovalenko E, Weiskirchen R, Gressner AM. Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? Journal of gastroenterology and hepatology.2008;23 (7pt1):1024-35.
    [9]Friedman SL. Hepatic stellate cells:protean, multifunctional, and enigmatic cells of the liver. Physiological reviews.2008;88(1):125.
    [10]Bataller R, Brenner DA. Liver fibrosis. Journal of Clinical Investigation. 2005;115(2):209-18.
    [11]Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver International.2006;26(1):8-22.
    [12]Ishak KG, Anthony PP, Sobin LH. Histological Typing of Tumours of the Liver (WHO. World Health Organization. International Histological Classification of Tumours).2 ed. Berlin:Springer 1994.
    [13]Wittekind C. Pitfalls in the classification of liver tumors. Pathologe. 2006;27(4):289-93.
    [14]Gao Q, Qiu SJ, Fan J, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol.2007;25(18):2586-93.
    [15]Zhu XD, Zhang JB, Zhuang PY, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. Journal of Clinical Oncology.2008;26(16):2707.
    [16]Geerts A. History, Heterogeneity Developmental Biology, and Functions of Quiescent Hepatic Stellate Cells.2001:311-36.
    [17]Winau F, Hegasy G, Weiskirchen R, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity.2007;26 (1):117-29.
    [18]Stanciu A, Cotu iu C, Am linei C. New data about ITO cells. Revista medico-chirurgical a Societ ii de Medici i Naturali ti din la i.107(2):235.
    [19]Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. Cell.2008;134(4):657-67.
    [20]Flier JS, Underhill LH, Friedman SL. The Cellular Basis of Hepatic Fibrosis--Mechanisms and Treatment Strategies. New England Journal of Medicine.1993;328(25):1828-35.
    [21]Milani S, Herbst H, Schuppan D, Hahn EG, Stein H. In situ hybridization for procollagen types Ⅰ, Ⅲ and Ⅳ mRNA in normal and fibrotic rat liver: evidence for predominant expression in nonparenchymal liver cells. Hepatology. 1989;10(84-92.
    [22]Maher JJ, McGuire RF. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. Journal of Clinical Investigation.1990;86(5):1641.
    [23]Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing:cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. The Journal of cell biology. 1994;127(6):2037.
    [24]Geerts A, Vrijsen R, Schellinck P, Wisse E. Retinol affects the phenotype and protein synthesis of fat-storing cell derived myofibroblasts in vitro. Cells of the Hepatic Sinusoid E Wisse, DL Knook, and K Decker, editors Kupffer Cell Foundation, Rijs-wijk, The Netherlands.1989:20-4.
    [25]Mak KM, Leo MA, Lieber CS. Alcoholic liver injury in baboons:trans-formation of lipocytes to transitional cells. Gastroenterology.1984;87(1):188.
    [26]Schuppan D. Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins.1990:1.
    [27]Rojkind M, Giambrone MA, Biempica L. Collagen types in normal and cirrhotic liver. Gastroenterology.1979;76(4):710.
    [28]Reid LM, Fiorino AS, Sigal SH, Brill S, Holst PA. Extracellular matrix gradients in the space of Disse:relevance to liver biology. Hepatology. 1992;15(6):1198-203.
    [29]Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes:the principal collagen-producing cells of normal rat liver. Proceedings of the National Academy of Sciences of the United States of America.1985;82(24):8681.
    [30]Panduro A, Shalaby F, Biempica L, Shafritz DA. Changes in albumin, alpha-fetoprotein and collagen gene transcription in CC14-induced hepatic fibrosis. Hepatology.1988;8(2):259-66.
    [31]Gorelik L, Flavell RA. Transforming growth factor-β in T-cell biology. Nature Reviews Immunology.2002;2(1):46-53.
    [32]Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-β signaling pathway in hepatic fibrosis. Liver International.2006;26(1):8-22.
    [33]Roberts AB, Russo A, Felici A, Flanders KC. Smad3:a key player in pathogenetic mechanisms dependent on TGF-β. Annals of the New York Academy of Sciences.2003;995(TISSUE REMODELING):1-10.
    [34]Massague J. TGFβ in Cancer. Cell.2008; 134(2):215-30.
    [35]Gajewska M, Motyl T. IGF-binding proteins mediate TGF-[beta] 1-induced apoptosis in bovine mammary epithelial BME-UV1 cells. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology.2004;139 (1-3):65-75.
    [36]Feng XH, Liang YY, Liang M, Zhai W, Lin X. Direct Interaction of c-Myc with Smad2 and Smad3 to Inhibit TGF-[beta]-Mediated Induction of the CDK Inhibitor p15Ink4B. Molecular cell.2002;9(1):133-43.
    [37]Leksa V, Godar S, Schiller HB, et al. TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. Journal of cell science. 2005;118(Pt 19):4577.
    [38]Yasuda K, Aoshiba K, Nagai A. Transforming growth factor-beta promotes fibroblast apoptosis induced by H2O2. Experimental lung research. 2003;29(3):123-34.
    [39]王春雷,黄志强,周宁新, Behrns K. TGF-β1 诱导鼠肝细胞凋亡信号转导机 制的研究.2004;3(006):439-42.
    [40]Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, Kern SE. Missense Mutations of MADH4:characterization of t he mutational hot spot and functional consequences in human tumors. Clinical Cancer Research. 2004; 10(5):1597.
    [41]Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M. Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene.1999;18(34):4879-83.
    [42]Ijichi H, Ikenoue T, Kato N, et al. Systematic Analysis of the TGF-beta-Smad Signaling Pathway in Gastrointestinal Cancer Cells* 1. Biochemical and biophysical research communications.2001;289(2):350-7.
    [43]Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Medicine. 2001;7(10):1118-22.
    [44]周京旭,杨希山.TGF—β及其受体与肿瘤关系研究进展.肿瘤.1998;18(004):304-6.
    [45]Sun CX, Robb VA, Gutmann DH. Protein 4.1 tumor suppressors:getting a FERM grip on growth regulation. Journal of cell science.2002;115(21):3991.
    [46]Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin:integrators at the cell cortex. Nature Reviews Molecular Cell Biology.2002;3(8):586-99.
    [47]Gutmann DH, Hirbe AC, Haipek CA. Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Human molecular genetics.2001;10(14):1519.
    [48]Li Q, Nance MR, Kulikauskas R, et al. Self-masking in an Intact ERM-merlin Protein:An Active Role for the Central [alpha]-Helical Domain. Journal of molecular biology.2007;365(5):1446-59.
    [49]Terawaki S, Maesaki R, Hakoshima T. Structural basis for NHERF recognition by ERM proteins. Structure.2006;14(4):777-89.
    [50]Shimizu T, Seto A, Maita N, Hamada K, Tsukita S, Hakoshima T. Structural basis for neurofibromatosis type 2. Journal of Biological Chemistry. 2002;277(12):10332.
    [51]Kang BS, Cooper DR, Devedjiev Y, Derewenda U, Derewenda ZS. The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. Acta Crystallographica Section D:Biological Crystallography. 2002;58(3):381-91.
    [52]Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell.2000;101(3):259-70.
    [53]Weinman EJ, Hall RA, Friedman PA, Liu-Chen LY, Shenolikar S. The association of NHERF adaptor proteins with g protein-coupled receptors and receptor tyrosine kinases. Annu Rev Physiol.2006;68(491-505.
    [54]Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pakl. Molecular cell.2003;12(4):841-9.
    [55]Maeda M, Matsui T, Imamura M, Tsukita S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene.1999;18(34):4788-97.
    [56]LaJeunesse DR, McCartney BM, Fehon RG. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. Journal of Cell Biology.1998;141(7):1589.
    [57]Takahashi K, Sasaki T, Mammoto A, et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. Journal of Biological Chemistry.1997;272(37):23371.
    [58]Tsukita S, Yonemura S. ERM proteins:head-to-tail regulation of actin-plasma membrane interaction. Trends in Biochemical Sciences.1997;22(2):53-8.
    [59]McClatchey AI, Giovannini M. Membrane organization and tumori genesis —the NF2 tumor suppressor, Merlin. Genes & development.2005;19(19):2265.
    [60]Xiao GH, Beeser A, Chernoff J, Testa JR. p21-activated kinase links Rac/Cdc42 signaling to merlin. Journal of Biological Chemistry.2002;277(2):883.
    [61]Kissil JL, Johnson KC, Eckman MS, Jacks T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. Journal of Biological Chemistry.2002;277(12):10394.
    [62]Okada T, Lopez-Lago M, Giancotti FG. Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. Journal of Cell Biology.2005;171(2):361.
    [63]Lallemand D, Manent J, Couvelard A, et al. Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene.2008.
    [64]Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes & development.2003;17(9):1090.
    [65]Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the Tumor Suppressor Gene NF2, Encoding Merlin, Constitutively Activates Integrin-Dependent mTORC1 Signaling. Molecular and Cellular Biology. 2009;29(15):4235.
    [66]Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. Journal of Cell Biology. 2007;177(5):893.
    [67]von Zastrow M, Sorkin A. Signaling on the endocytic pathway. Current opinion in cell biology.2007;19(4):436-45.
    [68]Lazar CS, Cresson CM, Lauffenburger DA, Gill GN. The Na+/H+ exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface. Molecular biology of the cell.2004;15(12):5470.
    [69]Cole BK, Curto M, Chan AW, McClatchey AI. Localization to the cortical cytoskeleton is necessary for Nf2/merlin-dependent epidermal growth factor receptor silencing. Molecular and Cellular Biology.2008;28(4):1274.
    [70]McClatchey AI, Saotome I, Mercer K, et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes & development.1998;12(8):1121.
    [71]Benhamouche S, Curto M, Saotome I, et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes & development.2010;24 (16):1718.
    [72]Lee JY, Moon HJ, Lee WK, et al. Merlin facilitates ubiquitination and degra-dation of transactivation-responsive RNA-binding protein. Oncogene. 2005;25(8):1143-52.
    [73]Li W, You L, Cooper J, et al. Merlin/NF2 Suppresses Tumorigenesis by Inhibiting the E3 Ubiquitin Ligase CRL4DCAF1 in the Nucleus. Cell.2010; 140 (4):477-90.
    [74]Bazley LA, Gullick WJ. The epidermal growth factor receptor family. Endocrine-Related Cancer.2005;12(Supplement_1):S17.
    [75]Hubbard SR, Miller WT. Receptor tyrosine kinases:mechanisms of activation and signaling. Current opinion in cell biology.2007; 19(2):117-23.
    [76]Olayioye MA, Neve RM, Lane HA, Hynes NE. NEW EMBO MEMBERS'R-EVIEW:The ErbB signaling network:receptor heterodimerization in development and cancer. Science's STKE.2000;19(13):3159.
    [77]Jones N, Dumont DJ. Recruitment of Dok-R to the EGF receptor through its PTB domain is required for attenuation of Erk MAP kinase activation. Current Biology.1999;9(18):1057-60.
    [78]Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocrine-Related Cancer.2001;8(1):11.
    [79]Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signalling in cancer:from expression to turnover. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer.2006; 1766 (1):120-39.
    [80]Lehmann K, Janda E, Pierreux CE, et al. Raf induces TGFβ production while blocking its apoptotic but not invasive responses:a mechanism leading to increased malignancy in epithelial cells. Genes & development.2000; 14 (20):2610.
    [81]Fujita H, Omori S, Ishikura K, Hida M, Awazu M. ERK and p38 mediate high-glucose-induced hypertrophy and TGF-{beta} expression in renal tubular cells. American Journal of Physiology-Renal Physiology.2004;286(1):120.
    [82]Andriamanalijaona R, Felisaz N, Kim SJ, et al. Mediation of interleukin-lb-induced transforming growth factor b1 expression by activator protein 4 transcription factor in primary cultures of bovine articular chondrocytes: Possible cooperation. Arthritis and Rheumatism.2003;48(6):1569-81.
    [83]周钦,兰洋.AP—1在转录水平调控氧化低密度脂蛋白诱导的转化生长因子—p1表达.中华医学杂志.2002;82(019):1346-50.
    [84]Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits:quarrel and harmony among siblings. Journal of cell science.2004;117(Pt 25):5965.
    [85]Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochimica et biophysica acta, CR Reviews on cancer.1991;1072(2-3):129-57.
    [86]Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology.2001;34(5):859-67.
    [87]Xu XB, Leng XS, Yang X, He ZP. Obstruction of TGF-betal signal transduc-tion can decrease the process of hepatocellular carcinoma in mice induced by CC14/ethanol. Zhonghua yi xue za zhi.2004;84(13):1122.
    [88]Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA. Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology. 2001;34(1):89-100.
    [89]张文岚,邢德利.Smad蛋白家族与TGF—β信号传导.深圳中西医结合杂志.2003;13(003):178-80.
    [90]Wotton D, Lo RS, Lee S, Massague J. A Smad transcriptional corepressor. Cell. 1999;97(1):29-39.
    [91]Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal Structure of a Smad MH1 Domain Bound to DNA::Insights on DNA Binding in TGF-[beta] Signaling. Cell.1998;94(5):585-94.
    [92]Miyazono K, Ten Dijke P, Heldin CH. TGF-[beta] signaling by Smad proteins. Advances in Immunology.2000;75(115-57.
    [93]Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. Journal of cell science.2001;114(Pt 24):4359.
    [94]Heldin CH, Miyazono K, Ten Dijke P. TGF-P signalling from cell membrane to nucleus through SMAD proteins. Nature.1997;390(6659):465-71.
    [95]Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature.2003;425(6958):577-84.
    [96]Massague J, Wotton D. NEW EMBO MEMBER'S REVIEW:Transcriptional control by the TGF-β/Smad signaling system. The EMBO journal.2000; 19 (8):1745.
    [97]Massague J, Seoane J, Wotton D. Smad transcription factors. Genes & develop-ment.2005;19(23):2783.
    [98]Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Signaling of transforming growth factor-β family members through Smad proteins. European Journal of Bioche-mistry.2000;267(24):6954-67.
    [99]Zhang Y, Derynck R. Regulation of Smad signalling by protein associations and signalling crosstalk. Trends in Cell Biology.1999;9(7):274-9.
    [100]Yu L, Hebert MC, Zhang YE. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. The EMBO journal.2002;21 (14):3749-59.
    [101]Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-β1-induced α2 (Ⅰ) collagen expression in human glomerular mesangial cells. Journal of Biological Chemistry.2001;276 (10):6983.
    [1]Massague J. TGFβ in Cancer. Cell.2008; 134(2):215-30.
    [2]Hsieh HG, Huang HC, Lee FY,et al.Kinetics of cytokine expression in cirrhotic rats.Chin Med Assoc.2011,74(9):385-93.
    [3]Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007;1775(1):21-62.
    [4]Galal GM, Amin NF, Abdel Hafeez HA, et al.Can serum fibrosis markers predict medium/large oesophageal varices in patients with liver cirrhosis?Arab J Gastroenterol.2011;12(2):62-7.
    [5]Bierie B, Moses HL. Tumour microenvironment:TGFβ:the molecular Jekyll and Hyde of cancer. Nature Reviews Cancer.2006;6(7):506-20.
    [6]Bandyopadhyay S, Friedman RC, Marquez RT, et al.Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29:miR-29 overexpression reduces hepatitis C viral abundance in culture.J Infect Dis. 2011;203(12):1753-62.
    [7]Pan X, Dai Y, Li X, et al.Inhibition of arsenic-induced rat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation.Toxicol Appl Pharmacol.2011;254(3):323-31.
    [8]Miyazono K, Maeda S, Imamura T. BMP receptor signaling:transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine & growth factor reviews.2005;16(3):251.
    [9]Lang Q, Liu Q, Xu N, et al.The antifibrotic effects of TGF-β1 siRNA on hepatic fibrosis in rats.Biochem Biophys Res Commun. 2011;409(3):448-53.
    [10]Hong SW, Jung KH, Lee HS,et al.Suppression by fucoidan of liver fibrogenesis via the TGF-β/Smad pathway in protecting against oxidative stress.Biosci Biotechnol Biochem.2011;75(5):833-40.
    [11]Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol.2005;21(659-93.
    [12]ten Dijke P, Hill CS. New insights into TGF-b-Smad signalling. Trends Biochem Sci.2004;29(5):265-73.
    [13]Olsen AL, Bloomer SA, Chan EP, et al.Hepatic stellate cells require a stiff environment for myofibroblastic differentiation.Am J Physiol Gastrointest Liver Physiol.2011;301(1):G110-8.
    [14]Lee JJ, Park SK, Kwon OS, et al.Genetic polymorphism at codon 10 of the transforming growth factor-β1 gene in patients with alcoholic liver cirrhosis.Korean J Hepatol.2011;17(1):37-43.
    [15]Robertson DM, Burger HG, Fuller PJ. Inhibin/activin and ovarian cancer. Endocrine-Related Cancer.2004;11(1):35.
    [16]Park K, Hong SW, Hur W, et al.Target specific systemic delivery of TGF-P siRNA/(PEI-SS)-g-HA complex for the treatment of liver cirrhosis.Biomaterials.2011;32(21):4951-8.
    [17]Burger HG, Igarashi M. Inhibin:definition and nomenclature, including related substances. J Clin Endocrinol Metab.1988:66(885-6.
    [18]Gibele E, Dostert K, Dorn C, et al.A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis.Alcohol Clin Exp Res.2011;35 (7):1361-7.
    [19]Mellor SL, Cranfield M, Ries R, et al. Localization of Activin β A-, p B-, and β C-Subunits in Human Prostate and Evidence for Formation of New Activin Heterodimers of β C-Subunit. Journal of Clinical Endocrinology & Metabolism.2000;85(12):4851.
    [20]Kingsley DM. The TGF-beta superfamily:new members, new receptors, and new genetic tests of function in different organisms. Genes & development.1994;8 (2):133.
    [21]Chen YG, Wang Q, Lin SL, Chang CD, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Experimental Biology and Medicine.2006;231(5):534.
    [22]Yoshiji H, Noguchi R, Ikenaka Y, et al.Cocktail therapy with a combination of interferon, ribavirin and angiotensin-II type 1 receptor blocker attenuates murine liver fibrosis development.Int J Mol Med.2011;28(1):81-8.
    [23]Wang JH, Shin JW, Choi MK, et al.. An herbal fruit, Amomum xanthoides, ameliorates thioacetamide-induced hepatic fibrosis in rat via antioxidative system. J Ethnopharmacol.2011; 135(2):344-50.
    [24]Sulyok S, Wankell M, Alzheimer C, Werner S. Activin:an important regu-lator of wound repair, fibrosis, and neuroprotection. Molecular and cellular endocrinology.2004;225(1-2):127-32.
    [25]Zonneveld P, Scheffer GJ, Broekmans FJM, et al. Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women. Human Reproduction.2003;18(3):495.
    [26]Luyten FP, Cunningham NS, Ma S, et al. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. Journal of Biological Chemistry.1989;264(23):13377.
    [27]Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science.1988;242(4885):1528.
    [28]Eurich D, Bahra M, Boas-Knoop S,et al. Transforming growth factor β1 polymorphisms and progression of graft fibrosis after liver transplantation for hepatitis C virus--induced liver disease. Liver Transpl. 2011;17(3):279-88
    [29]Urist MR. Bone:formation by autoinduction. Science.1965;150(698):893-9.
    [30]Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth factors.2004;22(4):233-41.
    [31]Deng H, Makizumi R, Ravikumar TS, Dong H, Yang W, Yang WL. Bone morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes migration and invasion of HCT116 cells. Experimental cell research.2007;313(5):1033-44.
    [32]Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology.2011;53(5):1730-41.
    [33]Jin Y, Tipoe GL, Liong EC, Lau TYH, Fung PCW, Leung KM. Overexpres-sion of BMP-2/4,-5 and BMPR-IA associated with malignancy of oral epi-thelium. Oral oncology.2001;37(3):225-33.
    [34]Hamdy FC, Autzen P, Robinson MC, Home CH, Neal DE, Robson CN. Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer research.1997;57(19):4427.
    [35]Haramis APG, Begthel H, van den Born M, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science's STKE.2004;303(5664):1684.
    [36]He XC, Zhang J, Tong WG, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-(3-catenin signaling. Nature gene-tics.2004;36(10):1117-21.
    [37]Kaji K, Yoshiji H, Kitade M, et al. Combination treatment of angiotensin II type I receptor blocker and new oral iron chelator attenuates progression of nonalcoholic steatohepatitis in rats. Am J Physiol Gastrointest Liver Physiol. 2011;300(6):G1094-104.
    [38]Kim BG, Li C, Qiao W, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature.2006;441(7096):1015-9.
    [39]Auclair BA, Benoit YD, Rivard N, Mishina Y, Perreault N. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology.2007;133(3):887-96.
    [40]Beppu H, Mwizerwa ON, Beppu Y, et al. Stromal inactivation of BMPRII leads to colorectal epithelial overgrowth and polyp formation. Oncogene. 2007;27 (8):1063-70.
    [41]Termaat MF, Den Boer FC, Bakker FC, Patka P, Haarman HJ. Bone morpho genetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. The Journal of bone and joint surgery American volume.2005;87(6):1367.
    [42]Kwiecinski M, Noetel A, Elfimova N, et al.Hepatocyte Growth Factor (HGF) Inhibits Collagen I and IV Synthesis in Hepatic Stellate Cells by miRNA-29 Induction.PLoS One.2011;6(9):e24568.
    [43]Zhou X, Sasaki H, Lowe L, Hogan BLM, Kuehn MR. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation.1993.
    [44]Lowe LA, Supp DM, Sampath K, et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus.1996.
    [45]Chen YL, Lv J, Ye XL, et al. Sorafenib inhibits transforming growth factor β1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology.2011;53(5):1708-18.
    [46]Collignon J, Varlet I, Robertson EJ. Relationship between asymmetric nodal expression and the direction of embryonic turning.1996.
    [47]Iannaccone PM, Zhou X, Khokha M, Boucher D, Kuehn MR. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. American Journal of Anatomy.1992; 194(3):198-208.
    [48]Conlon FL, Lyons KM, Takaesu N, et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development.1994; 120(7):1919.
    [49]Conlon FL, Barth KS, Robertson EJ. A novel retrovirally induced embryonic lethal mutation in the mouse:assessment of the developmental fate of embryonic stem cells homozygous for the 413. d proviral integration. Development.1991;111(4):969.
    [50]Wanninger J, Neumeier M, Bauer S, et al.Adiponectin induces the transfor-ming growth factor decoy receptor BAMBI in human hepatocytes.FEBS Lett.2011;585(9):1338-44.
    [51]ten Dijke P, Heldin CH. Smad signal transduction. Dordrecht:Springer 2006.
    [52]Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature.2003;425(6958):577-84.
    [53]Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell.2003;113(6):685-700.
    [54]Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-β receptor. Nature.1994;370(6488):341-7.
    [55]Borkham-Kamphorst E, Drews F, Weiskirchen R.Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1β through nuclear factor-KB activation.Liver Int.2011;31(5):656-65.
    [56]Derynck R, Zhang Y, Feng XH. Smads:transcriptional activators of TGF-beta responses. Cell.1998;95(6):737-40.
    [57]Jeong WI, Park O, Suh YG, et al.Suppression of innate immunity (natural killer cell/interferon-y) in the advanced stages of liver fibrosis in mice.Hepatology.2011;53(4):1342-51.
    [58]Kretzschmar M, Massague J. SMADs:mediators and regulators of TGF-beta signaling. Current opinion in genetics & development.1998;8(1):103-11.
    [59]Nakao A, Afrakhte M, Morn A, et al. Identification of Smad7, a TGFβ- inducible antagonist of TGF-β signalling. Nature.1997;389(6651):631-5.
    [60]Hocevar BA, Smine A, Xu XX, Howe PH. The adaptor molecule Disabled-2 links the transforming growth factor β receptors to the Smad pathway. The EMBO journal.2001;20(11):2789-801.
    [61]Nomura M, Li E. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature.1998;393(6687):786-90.
    [62]Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes & development. 1998;12(14):2153.
    [63]Janknecht R, Wells NJ, Hunter T. TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes & development. 1998;12(14):2114.
    [64]Wu JW, Krawitz AR, Chai J, et al. Structural Mechanism of Smad4 Recognition by the Nuclear Oncoprotein Ski:Insights on Ski-Mediated Repression of TGF-beta Signaling. Cell.2002;111(3):357-67.
    [65]Zhang D, Utsumi T, Huang HC, et al.Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis.Hepatology.2011;53(4):1306-15.
    [66]Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell. 1998;2(1):109-20.
    [67]Piestrzeniewicz-Ulanska D, Brys M, Semczuk A, Jakowicki JA, Krajewska WM. Expression of TGF-beta type Ⅰ and Ⅱ receptors in normal and cance-rous human endometrium. Cancer Lett.2002;186(2):231-9.
    [68]Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. The New England journal of medicine.2000;342 (18):1350.
    [69]Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell.2000;103(2):295-309.
    [70]Wynn TA. Cellular and molecular mechanisms of fibrosis. The Journal of Pathology.2008;214(2):199-210.
    [71]Le Bousse-Kerdil?s MC, Martyr?? MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis:a review. Eur Cyto-kine Netw.2008;19(2):69.
    [72]Gressner OA, Rizk MS, Kovalenko E, Weiskirchen R, Gressner AM. Changing the pathogenetic roadmap of liver fibrosis? Where did it start; where will it go? Journal of gastroenterology and hepatology. 2008;23(7pt1):1024-35.
    [73]Friedman SL. Hepatic stellate cells:protean, multifunctional, and enigmatic cells of the liver. Physiological reviews.2008;88(1):125.
    [74]Bataller R, Brenner DA. Liver fibrosis. Journal of Clinical Investigation. 2005;115(2):209-18.
    [75]Liu X, Hu H, Yin JQ. Therapeutic strategies against TGF-β signaling path-way in hepatic fibrosis. Liver International.2006;26(1):8-22.
    [76]Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, Kern SE. Missense Mutations of MADH4:characterization of the mutational hot spot and functional consequences in human tumors. Clinical Cancer Research.2004; 10(5):1597.
    [77]Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M. Smad2 and Smad-4 gene mutations in hepatocellular carcinoma. Oncogene.1999;18(34):4879-83.
    [78]Ijichi H, Ikenoue T, Kato N, et al. Systematic Analysis of the TGF-beta-Smad Signaling Pathway in Gastrointestinal Cancer Cells* 1. Biochemical and biophysical research communications.2001;289(2):350-7.
    [79]Bouras M, Tabone E, Bertholon J, et al. A novel SMAD4 gene mutation in seminoma germ cell tumors. Cancer research.2000;60(4):922.
    [80]Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor β signaling by targeting Smads to the ubiquitin-proteasome pathway. Proceedings of the National Academy of Sciences of the United States of America.2000;97(9):4820.
    [81]Lavallard VJ, Bonnafous S, Patouraux S, et al. Serum markers of hepatocy-te death and apoptosis are non invasive biomarkers of severe fibrosis in patients with alcoholic liver disease. PLoS One.2011;6(3):e 17599
    [82]Cardillo MR, Lazzereschi D, Gandini O, Di Silverio F, Colletta G. Transfor-ming growth factor-beta pathway in human renal cell carcinoma and surro-unding normal-appearing renal parenchyma. Anal Quant Cytol Histol.2001; 23(2):109-17.
    [83]Natsugoe S, Xiangming C, Matsumoto M, et al. Smad4 and transforming growth factor β1 expression in patients with squamous cell carcinoma of the esophagus. Clinical Cancer Research.2002;8(6):1838.
    [84]Nicolas FT, Hill CS. Attenuation of the TGF-β-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-β-induced growth arrest. Oncogene.2003;22(24):3698-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700