I-TAC-CXCR3诱导血管生成拟态形成在结肠癌肝转移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.研究背景:
     1.探究预测转移机制是影响结肠癌肝转移预后的关键因素。
     结肠癌是消化系统常见恶性肿瘤,发病率占胃肠道肿瘤的第3位。近年来由于医疗水平的进步多数患者得以在早期发现并进行相应治疗,然而即使在早期切除原发肿瘤后,大约40%的患者在5年内出现腹腔复发和肝转移,而且其发病率逐年上升[1]。Tsai等[2]研究发现结肠癌同时伴有肝转移行同期肝切除手术5年生存率只有16.8%。化疗(肝灌注化疗)因为靶向性不高,对正常组织损伤较大,对患者长期生存无显著改善作用。冷冻消融和射频消融对杀灭肿瘤细胞有确切效果,但其是否可以延长总体的生存时间,尚未有明确结论。目前认为,结肠癌肝转移的过程包括细胞外基质(ECM)的降解、细胞黏附性能的改变、肿瘤细胞局部浸润、肿瘤血管生成、肿瘤细胞循环内播散和免疫逃逸、肿瘤细胞血管内栓塞及肿瘤细胞在新的微环境重新生长等几方面[3,4]。寻找更为有效的干预方法及探究预测转移机制是解决问题的关键所在。
     2.目前血管生成在结肠癌肝转移中的研究现状
     在肿瘤形成及转移过程中,肿瘤血管生成起了非常重要的作用。肿瘤的一个亚群细胞转换为有血管生成基因的表型(an angiogenic phenotype)后,新生血管就开始迅速生成,肿瘤将进一步生长并发生转移[5]。Strieter提出在恶性肿瘤的生长和发展过程中存在血管生成因子及血管稳定因子之间的失衡[6]。肿瘤细胞可以通过过度表达一种或多种正性的血管生成调节因子、促使细胞间质含有的血管生成蛋白的释放、促宿主相关细胞释放其内的血管生成因子等方式来促进局部血管生成。促肿瘤血管生成的最重要的因子是血管内皮生长因子(VEGF)。在结肠癌,VEGF是影响结肠癌肝转移的重要因素[7]。除了VEGF外,血小板源性内皮细胞生长因子(PD-ECGF)在结肠癌的血管生成过程中也有重要作用。PD-ECGF是一种促血管生成因子,在低VEGF表达的富含血管生成的结肠癌中,PD-ECGF可能有重要作用。
     血管生成拟态是一种与经典肿瘤血管生成途径不同,不依赖于机体内皮细胞的全新肿瘤微循环模式。在血管生成方面,既往对结肠癌肝转移的研究集中在肿瘤血管密度的增加和血管因子的生成方面。但血管生成拟态的形成是否和结肠癌转移有关,目前无系统研究。
     3. I-TAC-CXCR3诱导血管生成的研究现状
     趋化因子的主要作用是趋化细胞的迁移,细胞沿着趋化因子浓度增加的信号向趋化因子源处迁徙。最近研究发现,趋化因子作为肿瘤微环境中关键信号分子,在肿瘤的侵袭及转移中起着重要的作用。1998年首次证实βR-1基因编码的产物为趋化因子I-TAC,编码基因位于人染色体4q21.2。由94个氨基酸组成(包括21氨基酸信号序列),成熟I-TAC由73个氨基酸组成,分子量约为8300[8],属于ELRCXC趋化因子家族。I-TAC受体为CXCR3,由368个氨基酸组成,其编码基因位于人染色体Xq13。CXCR3分子结构中含有7个富含巯基氨基酸的α螺旋穿膜区,属于7次跨膜转运G蛋白偶联受体超家族,经异源三聚体G蛋白传递信号。CXCR3不仅是I-TAC的受体,也是Mig、IP-10的受体。其主要分布在Thl细胞和B细胞,NK细胞和EC也有表达[9]。在血管生成方面,I-TAC可以作为血管生成或抗血管生成的因子,而且I-TAC和CXCR3还可以与VEGF相互协同作用。癌细胞可以直接产生I-TAC,也可以通过调控周围的炎症细胞来释放I-TAC进行血管生成的调控。此外,CXCR3还可以直接调控细胞的凋亡[10]。趋化因子I-TAC血管调控作用同CXCR3的结合是相关联的[11]。
     目前研究指出,I-TAC-CXCR3不但介导癌细胞的定向移动,还参与了包括穿入血管,锚定,穿出血管,免疫逃逸,增殖并血管生成等每个过程[12]。在胃癌手术切除标本中发现肿瘤组织CXCR3表达明显高于相应癌旁组织,胃癌细胞系CXCR3也升高[13]。推断CXCR3及其配体以协同作用的方式与粘附分子合作来决定肿瘤细胞的侵袭及增殖能力。研究报道肾癌[14]和黑色素瘤[15]细胞可表达CXCR3,并通过与其配体作用,介导癌细胞的定向移动和增殖。在小鼠模型中,如提高CXCL9和CXCL10的水平,高转移黑色素瘤细胞系B16F10的转移能力可再提高3倍,而使用反义RNA降低B16F10细胞的CXCR3表达,或者使用抗体中和CXCL9和CXCL10的作用,则该细胞几乎失去转移能力[16]。血管生成是生成新血管、修复损伤血管的生理和病理过程。这个过程受到促血管生成因子和抑制血管生成因子的调控。
     我们提出以下问题:I-TAC-CXCR3是否诱导结肠癌肝转移,血管生成拟态在结肠癌肝转移中的作用如何?I-TAC-CXCR3诱导血管生成拟态形成是否是结肠癌肝转移机制之一?
     综上所述,本研究拟:(1)应用免疫组化方法检测结肠癌肝转移病人结肠肿瘤和肝脏转移瘤的I-TAC-CXCR3表达;应用PAS染色、CD31双重染色检测结肠癌组织及肝转移瘤中血管生成拟态的表达,并分析其与结肠癌临床病理参数的关系,证实I-TAC-CXCR3及血管生成拟态在结肠癌肝转移中的作用;(2)应用RT-PCR和Western blot检测结肠癌肝转移细胞株中CXCR3及蛋白的表达水平;构建表达CXCR3的质粒载体,并稳定转染肿瘤细胞,进而检测I-TAC-CXCR3对肿瘤细胞体外增殖、迁移能力及侵袭能力的影响。若实验证实肝转移组与无肝脏转移组结肠癌中I-TAC-CXCR3及血管生成拟态表达差异,且与结肠癌淋巴结转移率、分化程度等临床病理参数具有相关性;而且证实I-TAC-CXCR3通过血管生成拟态诱导结肠癌肝转移是其机制之一。那么,应用I-TAC-CXCR3及血管生成拟态对肿瘤进行检测,就建立了结肠癌肝转移的预测机制,沉默CXCR3为在结肠癌可能转移的早期进行干预、进一步降低转移率提供理论支持。
     二.研究目的
     1.临床研究方面:应用免疫组化方法检测结肠癌肝转移病人结肠肿瘤和肝脏转移瘤的I-TAC-CXCR3表达;应用PAS染色/CD31双重染色检测结肠癌组织血管生成拟态的表达,并分析其与结肠癌临床病理参数的关系,证实I-TAC-CXCR3及血管生成拟态在结肠癌肝转移中的作用;
     2.细胞研究方面:应用RT-PCR和Western blot检测结肠癌肝转移细胞株中CXCR3及蛋白的表达水平;构建表达CXCR3的质粒载体,并稳定转染肿瘤细胞,进而检测I-TAC-CXCR3对肿瘤细胞体外增殖、迁移能力及侵袭能力的影响。
     三.研究方法
     (1)临床研究
     1.收集结肠癌肝转移所行结肠癌根治合并肝转移瘤切除病人22例;选取20例结肠癌无肝转移为对照组。收集结肠癌及肝转移瘤组织。所有标本取材后分别保存。
     2.免疫组织化学测定I-TAC-CXCR3在结肠癌组织、肝转移瘤组织中的表达。
     3.应用PAS及CD31双重染色检测结肠癌组织中血管生成拟态的表达,PAS染色阳性、CD31抗体检测阴性为血管生成拟态形成。
     (2)细胞研究
     1. CXCR3质粒载体的构建和鉴定,转染至肿瘤细胞和表达检测:从人结肠癌组织中提取总RNA,采用RT-PCR方法得到全长CXCR3cDNA片段,并稳定转染肿瘤细胞,经筛选后应用PCR进行鉴定。
     2.实验分组:(1) pEGFP组;(2) CXCR3组;(3) pEGFP+I-TAC组;(4)CXCR3+I-TAC组
     3.应用RT-PCR和Western blot检测结肠癌肝转移细胞株中CXCR3mRNA及蛋白的表达水平。
     4.从体外细胞模型观察I-TAC的存在与否对CXCR3细胞和pEGFP细胞增殖、定向迁移及侵袭能力的差异,探讨I-TAC-CXCR3结肠癌肝转移细胞增殖、定向迁移和侵袭中的作用。
     四.研究结果
     (一)临床研究:
     结肠癌肝转移组共22例病人(每例取结肠癌及肝转移病灶组织各一块),共44个组织样本。结肠癌无肝转移组共20例病人(每例取结肠癌组织各一块),共20个组织样本。
     1. CXCR3在42例结肠癌组织中表达:肝转移组16例阳性表达,阳性率72.72%,
     6例阴性表达,无肝转移组7例阳性表达,阳性率35%,13例阴性表达。与无肝转移组比较差异有统计学意义(χ2=6.019,P=0.014)。
     2. I-TAC在42例结肠癌组织中表达:肝转移组19例阳性表达,阳性率86.36%,
     3例阴性表达,无肝转移组9例阳性表达,阳性率45.00%,11例阴性表达。与无肝转移组比较差异有统计学意义(χ2=8.066,P=0.005)。
     3.肝转移组CXCR3在22例结肠癌组织及肝内转移癌组织中的表达:结肠癌组织中有16例表达阳性,阳性率72.72%,6例阴性表达,肝转移癌组织中16例阳性表达,阳性率72.72%,6例阴性表达。两组比较差异无统计学意义(χ2=0.000,P=1.000)。
     4.肝转移组ITAC在结肠癌组织及肝内转移癌组织中的表达:结肠癌组织中有19例表达阳性,阳性率86.36%,3例阴性表达,肝转移癌组织中19例阳性表达,阳性率86.36%,3例阴性表达。两组比较差异无统计学意义(χ2=0.000,P=1.000)。
     5.结肠癌细胞中VM的表达:VM在22例肝转移组结肠癌组织中有14例阳性表达,阳性率为63.63%,8例阴性表达。无肝转移组结肠癌组织中有5例阳性表达,阳性率为25.00%,15例阴性表达,与无肝转移组比较差异有统计学意义(χ2=6.313,P=0.012)。
     6.分析42例入组病人实验结果,发现23例CXCR3阳性病例中ITAC均为阳性;19例VM阳性病例中CXCR3均为阳性。统计结果进行配对资料的相关性分析,CXCR3与ITAC两者阳性表达呈正相关(相关系数r=0.614,P<0.001),血管生成拟态(VM)与CXCR3两者阳性表达呈正相关(相关系数r=0.637,P<0.001)。(详见表6、7)
     7. CXCR3表达与结肠癌组织临床病理特征的关系:CXCR3阳性表达主要定位于细胞膜,少数表达于细胞浆和细胞核。按CXCR3阳性细胞率和着色强度对结肠癌标本进行记分,结果显示CXCR3在结肠癌组织中的表达水平不一,CXCR3的高表达与结肠癌患者的年龄、性别、结肠癌组织分化程度无关,而与肝脏、淋巴结转移有关。
     (二)细胞研究:
     1. CXCR3蛋白表达情况:在培养的原代结肠癌肝转移细胞株中CXCR3基因表达阳性,并可以在蛋白质水平上被检测到。三组细胞(细胞组pGFP-CXCR3; pGFP;未转化的QBC939细胞)均有CXCR3基因在RNA水平上的阳性表达,且RNA量上的规律是:细胞组pGFP-CXCR3>细胞组pGFP>自细胞组未转化的QBC939细胞。但差异无统计学意义,很有可能蛋白CXCR3的表达量是更多的受到翻译后调控。
     2. I-TAC-CXCR3对肿瘤细胞体外贴壁增殖的影响(WST-1法)
     在同样的体外培养条件下,细胞组pGFP-CXCR3体外贴壁增殖能力是三个细胞组中最强的;其次为未转化QBC939细胞;最差的为转化pGFP的细胞组。
     3. I-TAC-CXCR3对肿瘤细胞体外迁移能力的影响
     在同时有CXCR3蛋白和ITAC蛋白的体外培养的条件下QBC939的体外迁徙能力最强,在缺乏CXCR3和ITAC蛋白的体外培养条件下,细胞QBC939的体外迁徙能力最弱。
     4. Transwell迁移实验检测情况:pGFP-CXCR3结肠癌细胞组在趋化作用下发生体外迁移细胞明显增多,pGFP结肠癌细胞组体外迁移则明显少。
     五.研究结论:
     (一)临床研究
     1. I-TAC-CXCR3在结肠癌及肝转移瘤中高表达,支持I-TAC-CXCR3与结肠癌肝转移有相关性。I-TAC-CXCR3信号转导通路可能在结肠癌肝转移过程中起一定作用.
     2.结肠癌组织中存在血管生成拟态。在肝转移组结肠癌组织中血管生成拟态高表达,说明血管生成拟态与肝转移有相关性。
     3. CXCR3与血管生成拟态阳性表达呈正相关,I-TAC-CXCR3可能诱导了血管生成拟态形成。
     (二)细胞研究
     1.本实验从原代的结肠癌肝转移细胞株检测到CXCR3基因在RNA水平和蛋白质水平上都有表达。
     2.利用SMART RACE的方法调取CXCR3基因,得到全长cDNA并构建载体pGFP-CXCR3和pGFP。成功转化QBC939细胞得到细胞株pGPF-CXCR3和细胞株pGPF-CXCR3。
     3.通过Real-time PCR法检测,结果表明三组细胞都有CXCR3基因在RNA水平上的表达,且RNA量上的规律是:细胞组pGFP-CXCR3>细胞组pGFP>自细胞组未转化的QBC939细胞,但差异无统计学意义。很有可能蛋白CXCR3的表达量是更多的受到翻译后调控。
     4.WST-1法检测细胞体外贴壁增殖能力。在同样的体外培养条件下,细胞组pGPF-CXCR3体外贴壁增殖能力是三个细胞组中最强的;其次为未转化QBC939细胞;最差的为转化pGFP的细胞组。说明趋化因子受体CXCR3对细胞贴壁增殖起促进作用。
     5. Transwell实验表明趋化因子受体CXCR3对细胞的侵袭能力有促进作用。
     6.另一组实验表明在同时有CXCR3蛋白和ITAC蛋白的体外培养的条件下QBC939的体外迁徙能力最强,在缺乏CXCR3和ITAC蛋白的体外培养条件下,细胞QBC939的体外迁徙能力最弱。本实验从一定角度说明受体蛋白CXCR3和趋化因子ITAC之间的互做对细胞的迁徙能力增强有促进作用。
     (三)小结
     通过本实验研究,我们应用免疫组织化学方法测定I-TAC-CXCR3在结肠癌及肝转移组织呈高表达,应用PAS/CD31双重染色测定肝转移组结肠癌组织中血管生成拟态成高表达,同时培养结肠癌肝转移细胞株,从体外细胞模型证实了I-TAC-CXCR3对结肠癌细胞增殖、定向迁移及侵袭能力有促进作用。所得数据通过统计学处理,分析结果,由此我们认为I-TAC-CXCR3通过血管生成拟态诱导结肠癌肝转移是其机制之一。那么,应用I-TAC-CXCR3及血管生成拟态对肿瘤进行检测,就建立了结肠癌肝转移的预测机制,沉默CXCR3为在结肠癌可能转移的早期进行干预、进一步降低转移率提供理论支持。
Background
     1.Explore the predictive transfer mechanisms is a key factor to affect the prognosis of colon cancer liver metastases.
     Colon cancer is a common digestive malignant tumors.3of the total gastrointestinal tract tumors. In recent years, the majority of patients can be found at an early stage and treated accordingly, even after the early resection of primary tumor, however, about40%of patients with abdominal recurrence and liver metastases in five years, and its incidence is increasing every year. Tsai et al found that colon cancer accompanied by liver metastases liver resection in the same period5-year survival of only16.8%. Chemotherapy (hepatic perfusion chemotherapy) targeting high damage to normal tissue greater long-term survival of patients no significant improvement. Cryoablation and radiofrequency ablation to kill tumor cells, the exact effect, but whether it can prolong the overall survival time, no clear conclusion. That colon cancer liver metastases steps include the degradation of extracellular matrix (ECM), changes in cell adhesion, local invasion of tumor cells, tumor angiogenesis, spread within the tumor cell cycle and immune escape of tumor cells intravascular embolization and tumor cells in the microenvironment of re-growth and other aspects. Looking for more effective interventions methods and explore the prediction of transfer mechanisms is the key to solve the problem.
     2. Current research status of angiogenesis in liver metastases of colon cancer
     Tumor angiogenesis played a very important role in the process of tumor formation and metastasis,. Tumor of a subset of cells converted to angiogenesis gene phenotype. Angiogenesis began to rapidly generate, the tumor will be further growth and occurrence of metastasis. The Strieter proposed imbalance between the factor and vascular stabilizing factor in the angiogenesis in tumor growth and development process. Tumor cells can be generated by overexpression of one or more of the blood vessels of the adjustment factor, to promote the release of stromal cells containing the angiogenesis protein, to promote host cell to release its angiogenic factors, such as to promote local angiogenesis. The most important factor to promote tumor angiogenesis is vascular endothelial growth factor (VEGF). In colon cancer. VEGF is an important factor in colon cancer liver metastases.In addition to VEGF, platelet-derived endothelial cell growth factor (PD-ECGF) has an important role in colon cancer angiogenesis. PD-ECGF is a pro-angiogenic factor, PD-ECGF may play an important role in the low expression of VEGF-rich angiogenesis in colon cancer.
     Vasculogenic mimicry is a new tumor microcirculation model, which does not depend on the body's endothelial cells. In angiogenesis, previous studies of colon cancer liver metastasis focuses on the increase in the density of tumor blood vessels and generation of vascular factors. For the relationship of angiogenesis mimicry and colon cancer metastasis, there is no system research at present.
     3I-TAC-CXCR3induced angiogenesis research status.
     The main role of chemokines chemotactic cell migration, cell migration along chemokine concentration increased signal at the source of chemokine. Recent studies have found that chemokines as a key signaling molecule in the tumor microenvironment in tumor invasion and metastasis plays an important role. The first time in1998confirmed that βR-1gene encoding a product of the chemokine I-TAC, coding gene located on human chromosome4q21. Consists of94amino acids (including the signal sequence of21amino acids), and mature I-TAC by73amino acids, the molecular weight of about8300, belong to ELRCXC chemokine family. I-TAC receptor CXCR3, composed of368amino acids, its coding gene is located on human chromosome Xq13. CXCR3molecular structure contains seven sulfhydryl amino acid-rich a-helix transmembrane domains belong to the seven transmembrane transport of G protein-coupled receptor superfamily, heterotrimeric G-proteins to pass the signal. CXCR3. I-TAC receptor, is also of Mig, IP-10receptor. Mainly distributed in Thl cells and B cells, NK cells and EC expression. In angiogenesis, I-TAC can be generated as a vascular or anti-angiogenic factor, and I-TAC, and CXCR3and VEGF mutual synergy. Cancer cells can directly produce I-TAC. and also through the regulation of inflammatory cells around the release of I-TAC for the regulation of angiogenesis. In addition, the apoptosis of CXCR3can also be directly regulated by. Chemotactic factor I-TAC vascular regulatory role with the combination of of CXCR3is associated.
     At present, the study says that I-TAC-CXCR3not only mediated directional movement of cancer cells, also participated in the penetration of blood vessels, anchor, wear clothing with blood vessels, immune escape, proliferation and angiogenesis. Found in surgical specimens of gastric cancer tumor tissue CXCR3expression was significantly higher than the corresponding adjacent tissues and gastric cancer cell lines CXCR3also increased. Infer that CXCR3and its ligand synergy with adhesion molecules to determine tumor cell invasion and proliferation. The study reported that the renal cell carcinoma and melanoma cells can express CXCR3, and through its ligand mediated directional movement and proliferation of cancer cells. In mouse models, such as raising the level of CXCL9and CXCL10, highly metastatic melanoma cell line B16F10transfer capacity can be increased by three times, the use of antisense RNA to reduce B16F10cells of CXCR3expression, or the use of antibody and CXCL9and CXCL10the role of the cells almost lost transfer ability.Angiogenesis is to generate new blood vessels, repair the damage the blood vessels of the physiological and pathological processes. This process had been pro-angiogenic factors and inhibition of vascular endothelial growth factor regulation.
     We put forward the following questions:I-TAC-CXCR3whether induced colon cancer liver metastasis and vasculogenic mimicry how to interfere with the colon cancer liver metastases? I-TAC-CXCR3induced vasculogenic mimicry formation is one of the colon cancer liver metastasis mechanism?
     In summary:(1) We detect I-TAC-CXCR3of colon cancer liver metastasis patients with colon tumors and liver metastases by immunohistochemical methods; by PAS and CD31double staining detection of colon cancer organizations and livermetastatic tumor vasculogenic mimicry expression, and analyze its relationship with colon cancer clinicopathological parameters, and confirmed role of I-TAC-CXCR3and vm in liver metastases of colon cancer;(2) We detect CXCR3and protein expression in cell lines of colon cancer liver metastasis by RT-PCR and Western blot and construct CXCR3plasmid vector, and stably transfected tumor cells, and then detect that I-TAC-CXCR3play the tumor cell proliferation, migration, and invasion a role. If the experiment confirmed that I-TAC-CXCR3and vasculogenic mimicry in differential expression between the liver metastasis group and non-liver metastasis group of colon cancer, and the rate of colon cancer lymph node metastasis, degree of differentiation and clinicopathological parameters of relevance:and confirmed that I-TAC-CXCR3inducing vasculogenic mimicry is one of the mechanisms to colon cancer liver metastases. So the application of I-TAC-CXCR3and vascular mimicry to detect the tumor, we set up a prediction mechanism of colon cancer liver metastases, we may be the early intervention to colon cancer metastases by silence CXCR3in colon cancer and further reduce the transfer rate to provide theoretical support.
     Objectives
     1. Clinical research
     We detect I-TAC-CXCR3of colon cancer liver metastasis patients with colon tumors and liver metastases by immunohistochemical methods; by PAS and CD31double staining detection of colon cancer organizations and livermetastatic tumor vasculogenic mimicry expression, and analyze its relationship with colon cancer clinicopathological parameters, and confirmed role of I-TAC-CXCR3and vm in liver metastases of colon cancer;
     2. Cell research
     We detect CXCR3and protein expression in cell lines of colon cancer liver metastasis by RT-PCR and Western blot and construct CXCR3plasmid vector, and stably transfected tumor cells, and then detect that I-TAC-CXCR3play the tumor cell proliferation, migration, and invasion a role.
     Methods
     Clinical research
     1.Collect22patients who had done with colon cancer and liver metastases resection for colon cancer liver metastasis; select20cases of colon cancer without liver metastasis in the control group;collect the tumor tissue of colon cancer and liver metastasis. All specimens are stored separately.
     2. Detect the expression of the I-TAC-CXCR3in colon carcinoma and liver metastasis tissue by immunohistochemical methods.
     3. Detect expression of vasculogenic mimicry in colon cancer tissue by PAS and CD31double staining methods, PAS stain-positive and CD31antibody tested negative is considered vasculogenic mimicry formation.
     Cell research
     1.CXCR3plasmid vector construction and identification, transfecting tumor cells and expression detection:total RNA extracted from the human colon cancer tissue, using RT-PCR method to get the full-length CXCR3cDNA fragments, and stable transfection of tumor cells, after screening by PCR were identified.
     2.Experimental groups:(1) pEGFP group;(2) CXCR3group;(3) pEGFP+I-TAC group;(4) CXCR3+I-TAC group
     3.Detect CXCR3mRNA and protein expression levels in cell lines of colon cancer liver metastasis by RT-PCR and Western blot
     4.Observe the presence or absence of I-TAC to CXCR3cells and pEGFP cell proliferation directed migration and invasion of differences from in vitro cell model. and explore the role of I-TAC-CXCR3to colon cancer liver metastasis cell proliferation, directed migration and invasion.
     Results
     Clinical research
     Colon cancer liver metastasis group of22patients (each patient take a colon cancer and a liver metastasis lesion tissue), a total of44tissue samples. Colon cancer without liver metastases group of20patients (every patient take a piece of colon cancer tissue), a total of20tissue samples.
     1.CXCR3expression in42cases of colon cancer tissue,16cases of positive expression of the liver metastasis group, the positive rate of72.72%.6cases of negative expression,7cases of positive expression of without liver metastasis group, the positive rate of35%,13cases of negative expression. Difference was statistically significant (χ2=6.019, P=0.014).
     2.I-TAC expression in42cases of colon cancer tissue,19cases of positive expression of the liver metastasis group, the positive rate of86.36%,3cases of negative expression.9cases of positive expression of without liver metastasis group, the positive rate was45.00%,11cases of negative expression. Difference was statistically significant (χ2=8.066, P=0.005)
     3.CXCR3expression in22cases of liver metastasis group,16cases of positive expression of the colon cancer tissue, the positive rate of72.72%,6cases of negative expression.16cases positive expression with liver metastatic cancer tissue, the positive rate of72.72%,6cases with negative expression. Difference was not statistically significant (χ2==0.000, P=.000)
     4. ITAC expression in22cases of liver metastasis group,19cases of positive expression of the colon cancer tissue, the positive rate of86.36%,3cases of negative expression,19cases positive expression of liver metastatic cancer tissue the positive rate of86.36%,3cases with negative expression. Difference was not statistically significant (χ2=0.000, P=1.000)
     5. VM expression in42cases of colon cancer tissue, VM14cases positive expression of the liver metastasis group, the positive rate was63.63%.8cases with negative expression.5cases of positive expression in the colon cancer tissue of the without liver metastasis group, the positive rate was25.00%,15cases with negative expression. Difference was statistically significant (χ2=6.313, P=0.012)
     6. Analysed42patients test results, ITAC were all positive in23cases of CXCR3-positive cases:CXCR3were positive in19cases of VM-positive cases.Statistical results match correlation analysis of the data,ITAC and CXCR3positive expression was positively correlated (r=0.614,p<0.001), vasculogenic mimicry and CXCR3both positive expression was positively correlated(r=0.637, p<0.001).
     7. Relationship of CXCR3expression and clinical pathological features of colon cancer:CXCR3-positive expression was mainly located in the cell membrane, a few expressed in the cytoplasm and nucleus. According to CXCR3positive cells rate and the color intensity of the colon cancer samples, the results showed that CXCR3expression in colon carcinoma is different, CXCR3was highly expressed in the colonic carcinoma, which was related to the metastasis of the liver and the lymph node. However, higher expression of CXCR3had nothing to with the patient's age, gender and tissue histologic differentiation of colonic carcinoma.
     Cell research
     1.CXCR3protein expression:positive CXCR3gene expression in colon cancer liver metastases of primary cultured cell lines, and can be detected at the protein level., three groups of cells (cell group of PGFP-CXCR3; pGFP; the untransformed QBC939cells) had positive expression of CXCR3gene at the RNA level, and the rules of RNA is:cell group pGFP-CXCR3> cell group pGFP> cell group is not transformed QBC939cells. But the difference was not large. the amount of protein of CXCR3expression is likely regulated by translation.
     2.I-TAC-CXCR3paste the impact of the wall proliferation (WST-1method) of tumor cells in vitro.The same conditions in vitro culture, cell group pGFP-CXCR3in vitro proliferation of adherent capacity is stronger in the three cell groups; followed by an untranslated QBC939cells; the worst conversion pGFP cell group.
     3.I-TAC-CXCR3to tumor cells in vitro the influence of migrating ability.
     At the same time have CXCR3protein and ITAC protein in vitro culture conditions, QBC939in vitro migration capacity strongest, in the lack of CXCR3and ITAC protein in vitro culture conditions, QBC939cells in vitro migration capacity weakest
     4.Transwell migration assay:pGPF-CXCR3colon cancer cell groups occurred in the role of chemokines in vitro migration of cells significantly increased, pGFP colon cancer cell group in vitro migration was significantly less.
     Conclusions
     Clinical research
     1.1-TAC-CXCR3is highly expressed in colon cancer and liver metastases, support the I-TAC-CXCR3and colon cancer liver metastasis have correlation. I-TAC-CXCR3signaling pathway may play a role in the process of colon cancer liver metastasis.
     2.Vasculogenic mimicry in colon cancer tissue. Vasculogenic mimicry in highly expressed in colon carcinoma of the liver metastasis group, indicating that vasculogenic mimicry and liver metastasis have correlation.
     3.CXCR3and vasculogenic mimicry positive expression are positively correlated,I-TAC-CXCR3may induce vasculogenic mimicry formation.
     Cell research
     1.In this study, from the original generation of colon cancer liver metastases cell lines CXCR3gene expression has been detected on RNA and protein levels.
     2.Using the SMART RACE method submitted CXCR3gene, full-length cDNA and construct the vector pGFP-CXCR3and pGFP. Successful conversion QBC939cells get QBC939cell lines pGFP-CXCR3and cell lines pGFP-CXCR3.
     3.Real-time PCR assay results showed that three groups of cells have the CXCR3gene expression in the RNA level, and the rules of RNA is:cell group CXCR3-pGFP> cell group pGFP> QBC939cell group is not transformed cells. But the difference was not large. the amount of protein of CXCR3expression Is likely regulated by translation.
     4. WST-1method to detect cells in vitro stick wall proliferation ability.The same conditions in vitro culture, cell group pGFP-CXCR3in vitro proliferation of adherent capacity is stronger in the three cell groups; followed by an untranslated QBC939cells; the worst conversion pGFP cell group. Chemokine receptor CXCR3play a positive role in the proliferation of adherent cells.
     5. Transwell experiments show that chemotactic factor receptor on the invasion ability of CXCR3cells is function.
     6.Another set of experiments showed that at the same time have CXCR3protein and ITAC protein in vitro culture conditions, migration in vitro QBC939best, the lack of CXCR3and ITAC protein in vitro culture conditions, QBC939cells in vitro migration the weakest. In this study, the interaction between the receptor protein CXCR3and chemokines ITAC to migratory ability of cells has a positive effect from certain angles.
     summary
     In this experimental study, we applied immunohistochemical methods to determination of I-TAC-CXCR3was highly expressed in colon cancer and liver metastasis tissue, the application PAS/CD31double staining determination vasculogenic mimicry in colon tissue of the liver metastasis group into a high expression, while cultured colon cancer liver metastasis cell lines from in vitro cell model confirmed that I-TAC-CXCR3on colon cancer cell proliferation, directed migration and invasion ability. The data obtained through statistical processing, analysis, and thus we believe that the I-TAC-CXCR3by vasculogenic mimicry-induced colon cancer hepatic metastases is one of the mechanisms. So, expression changes of I-TAC-CXCR3and vasculogenic mimicry in tumor tissue was detected, we set up colon cancer liver metastasis prediction mechanism, we may be the early intervention to colon cancer metastases by silence CXCR3in colon cancer and further reduce the transfer rate to provide theoretical support.
引文
[1]Terzic J, Grivennikov S, Karin E, et al. Inflammation and colon cancer. Gastroenterology,2010,138:2101-2114.
    [2]Tsai MS, Su YH, Ho MC, et al. Clinico pathological features and prognosis in resectable synchronous and met achronous colorectal liver metastasis. Ann Surg Oncol,2006,14(9):121-122.
    [3]Boedefeld WM, Bland KI, Heslin MJ. Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Ann Surg Oncol, 2003,10:829-851.
    [4]Rudmik LR, Magliocco AM. Molecular mechanism of hepaticmetastasis in colorectal cancer. J Surg Oncol,2005,92:347-259.
    [5]Folkman J. Clinical applications of research on angiogenesis. N Engl J Med,1995, 333(26):1757-1763.
    [6]Strieter RM, Burdick MD, Mest as J, et al. Cancer CXC chemokine netw orks and tumour angiogenesis. Eur J Cancer,2006,42:768-778.
    [7]Chen ZH, Feng B. relations of NM23 and VEGF protein expression with hepatic metastasis of large intestinal carcinoma.China Journal of Modern Medicine, 2003,13(11):20-22.
    [8]Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant (I-TAC):a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med,1998,187 (12):2009-2021.
    [9]Liu L, Callahan MK, Huang D. Chemokine receptor CXCR3:an unexpected enigma. Curr Top Dev Biol,2005,68:149-181.
    [10]Vlahakis SR, Villasis-Keever A, Gomez TS, et al. Human immunodeficiency virus-induced apoptosis of human hepatocytesvia CXCR4. J Infect Dis,2003, 188(10):1455-1460.
    [11]Avihingsanon Y, Phumesin P, Benjachat T, et al. Measurement of urinary chemokine and growth factor messenger RNAs:a noninvasive monitoring in lupus nephrit is. Kidney Int,2006,69(4):747-753.
    [12]Balkwill F. Cancer and the chemokine network. Nat RevCancer,2004,4(7): 540-550
    [13]McInnis KA, Brit ain A, Lausch RN, et al. Human corneal epithelial cells synthesize ELR(-) alpha-chemokines in response to proinflammatory mediators[J]. Ocul Immunol Inflamm,2007,15(4):295-302.
    [14]Suyama T, Furuya M, Nishiyama M, et al. Up-regulation ofthe interferon gamma (IFN-gamma)-inducible chemokines IFNinducibleT-cell alpha chemoattractant and monokine inducedby IFN-gamma and of their receptor CXC receptor 3 in humanrenal cell carcinoma. Cancer,2005,103(2):258-267.
    [15]Robledo M M, Bartolome R A, Longo N, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem,2001,276 (48):45098-45105.
    [16]Kawada K, Sonoshita M, Sakashita H, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res,2004,64(11):4010-4017.
    [17].杨明智,陈亚进,陈积圣.大肠癌肝转移的外科治疗[J].国外医学肿瘤学分册,2001,28(6):467
    [18]. Brown JR,DuBois RN. COX-2:The molecule target of preventing colorectal carcinoma[J]. J Clin Oncol,2005,23:2840-2855.
    [19]. Walker J, Quirke P. Prognosis and response to t herapy in colorectal cancer(J). EurJ Cancer,2002,38(7):880.
    [20]Lazzeri E, Romagnani P. CXCR3-binding chemokines:novel multifunctional therapeutic targets[J]. Curt Drag Targets Immune Endocr Metabol Disord.2005, 5(1):109-118.
    [21]Kao J, Kobashigawa J, Fishbein MC, et al. Elevated serum levels of the CXCR3 chemokine I-TAC are associated with the development of transplant coronary artery disease[J]. Circulation.2003,107(15),1958-1961.
    [22]Vlahakis SR, Villasis-Keever A, Gomez TS, et al. Human immunodeficiency virus-induced apoptosis of human hepatocytesvia CXCR4. J Infect Dis,2003, 188(10):1455-1460.
    [23]Avihingsanon Y, Phumesin P, Benjachat T, et al. Measurement of urinary chemokine and growth factor messenger RNAs:a noninvasive monitoring in lupus nephrit is. Kidney Int,2006,69(4):747-753.
    [24]Balkwill F. Cancer and the chemokine network. Nat RevCancer,2004,4(7): 540-550
    [25]Mclnnis KA, Brit ain A, Lausch RN, et al. Human corneal epithelial cells synthesize ELR(-) alpha-chemokines in response to proinflammatory mediators[J]. Ocul Immunol Inflamm,2007,15(4):295-302.
    [26]Suyama T, Furuya M, Nishiyama M, et al. Up-regulation ofthe interferon gamma (IFN-gamma)-inducible chemokines IFNinducibleT-cell alpha chemoattractant and monokine inducedby IFN-gamma and of their receptor CXC receptor 3 in humanrenal cell carcinoma. Cancer,2005,103(2):258-267.
    [27]Robledo M M, Bartolome R A, Longo N, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem,2001,276 (48):45098-45105.
    [28]苏敏,尧良清.肿瘤微循环的新形式—血管生成拟态[J].国际病理科学与临床杂志,2006,26(1):11-13
    [29]Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry[J]. Am J Pathol 1999; 155(3):739-752
    [30]Mai J, Sameni M, Mikkelsen T, et al. Degradation of extracellular matrix protein tenascin-C by cathepsin B:anlnteraction involved in the progression of gliomas[J]. Biol Chem,2002,383(9):1407-1413
    [31]McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma [J]. Cancer Biol Ther,2002,1(5):459-465
    [32]张诗武,高欣.血管生成拟态与血管生成及其意义[J].国外医学肿瘤学分册.2003.30(3):180-182
    [33]Sood AK,Seftor E A, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol,2001,158(4):1279-1288
    [34]Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer[J]. Int J Cancer,2002,99(6): 821-828
    [35]Shirakawa K,Kobayashi H,Sobajima J,et al.Inflammatory breast Catlcer vasculogenic mimicry and its hemodynamics of an infammtorybreast cancer xenograft model. Breast Cancer Res,2003,5(3):136-139
    [36]赵秀兰,孙保存等.肝癌中血管生成拟态的研究.中华肝脏病学杂志.2006,14(1):41-44
    [37]李熳,谷彦军,张志广等。血管生成拟态在胃腺癌中的临床病理意义和相关机制研究。中国肿瘤临床。2010,37(7):372-376
    [38]田翀,高青.结肠癌血管生成拟态的形态学观察及生成机制[J].第四军医大学学报.2009,30(22):2568-2571.
    [39]Baeten CI, Hillen F, Pauwels P, et al. Prognostic role of vasculogenic mimicry in colorectal cancer[J]. Dis Colon Rectum,2009,52(12):2028-2035.
    [40]Hess AR, Seftor EA, Seftor RE, et al. Phosphoinositide 3-kinase regulates membrane Type 1-matrix metalloproteinase(MMP)and MMP-2 activity during melanoma cell vasculogenic mimicry. Cancer Res,2003,63:4757-62.
    [41]Tanaka T, Bai Z, Srinoulprasert Y, et al. Chemokines in tumor progression and metastasis. Cancer Sci 2005; 96:317-322
    [42]赵金红,王健.趋化因子研究进展[J].陕西医学,2005,34(12):1542-1544.
    [43]Strieter RM, Belperio IA, Burdick MD, et al. CXC chemokines:anglogenesls, immunoangiostasis and metastases in lung cancer. Ann N Y Acad Sci 2004; 1028:351-360.
    [44]Kucia M, Reca R, Miekus K, Wanzeck T, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005:23:879-894
    [45]Tamamura H, Hori A, Kanzaki N, et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 2003:550:79-83
    [46]Kang H, Mansel RE, Jiang WG. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol 2005,26:1429-1434
    [47]马向涛,余力伟,张在兴,等.趋化因子受体CXCR4/CXCL12信号转导通路在结直肠癌肝转移中的作用[J].世界华人消化杂志.2006,14(16):1566-1570
    [48]陈瑜,张德新,郭长存,等.趋化因子受体CXCR3在胃癌中的表达[J]胃肠病学,2004,9(5):266-269.
    [49]Suyama T, Furuya M, Nishiyama M, et al. up-regulation of the interferon gamma(IFN-gamma)-inducible chemokines IFN inducible T-cell alpha chemoattractant and monokine induced by IFN-gamma and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer,2005.103:258-267.
    [50]丁小霞,王健.趋化因子受体CXCR3在HCC中的作用[J].细胞与分子免疫学杂志(Chin J Cell Mol Immuno 1)2009,25(4):374-376
    [51]许超,王强,蔡清萍,等。CXCR3在结直肠癌组织中的表达及临床意义[J].中华实验外科杂志.2005,25(5):609-611.
    [52]Kmmub AE, Weinberg RA. Chemokine networks and breast cancer metastasis. Breast Dis。2007,26:75-85.
    [53]Folkman J Angeiogenisis in cancer, vascular, rheumatoid and other disease[J].Nature Med 1995,1 (1):27-31.
    [54]苏敏,尧良清.肿瘤微循环的新形式—血管生成拟态[J].国际病理科学与临床杂志,2006,.26(1):11-13
    [55]Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry[J]. Am J Pathol, 1999,155(3):739-752.
    [56]Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry [J]. Am J Pathol 1999; 155(3):739-752
    [57]Mai J, Sameni M, Mikkelsen T, et al. Degradation of extracellular matrix protein tenascin-C by cathepsin B:anlnteraction involved in the progression of gliomas[J]. Biol Chem,2002,383(9):1407-1413
    [58]McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma [J]. Cancer Biol Ther,2002,1(5):459-465
    [59]张诗武,高欣.血管生成拟态与血管生成及其意义[J].国外医学肿瘤学分册.2003.30(3):180-182
    [60]Sood AK,Seftor E A, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol,2001,158(4):1279-1288
    [61]Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer[J]. Int J Cancer,2002,99(6): 821-828
    [62]Shirakawa K,Kobayashi H,Sobajima J,et al.Inflammatory breast Catlcer vasculogenic mimicry and its hemodynamics of an infammtorybreast cancer xenograft model. Breast Cancer Res,2003,5(3):136-139
    [63]赵秀兰,孙保存等.肝癌中血管生成拟态的研究.中华肝脏病学杂志.2006,14(1):41-44
    [64]李熳,谷彦军,张志广等。血管生成拟态在胃腺癌中的临床病理意义和相关机制研究。中国肿瘤临床。2010,37(7):372-376
    [65]田翀,高青.结肠癌血管生成拟态的形态学观察及生成机制[J].第四军医大学学报.2009,30(22):2568-2571.
    [66]Baeten CI, Hillen F, Pauwels P, et al. Prognostic role of vasculogenic mimicry in colorectal cancer[J]. Dis Colon Rectum,2009,52(12):2028-2035.
    [67]STRIETER R M, BURDICK M D, GOMPERTS B N, et al. CXC chemokines in angiogenesis[J]. Cytokine Growth Factor Rev,2005,16(6):593-609.
    [68]Feldman ED, Weinreich DM, Carroll NM, et al. Interferon gammainducible Protein 10 selectively inhibit sproliferation and induces a poptosisin endothelial cells[J]. Ann Surg Oneol,2006,13(1):125-133.
    [69]Lazzeri, Romagnani P. CXCR3-binding chemokines:novel multi-functional therapeutic targets[J]. Curr Drug Targets Immune Endocr Metabol Disord,2005, 5(1):109-118.
    [70]Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant(I-TAC):a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med,1998,187(12):2009-2021.
    [71]Meyer M, Paul JH, Felmayer GW, et al. Cross reactivity of three T cell attracting murine chemokines stimulating the CXC chemokine recepoter CXCR3 and their induction in cultured cells and during allograft rejection[J],Eur J Immunol,2001, 31(8):2521-2527.
    [72]BURDICK M D, MURRAY L A, KEANE M P, et al. CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling [J]. Am J Respir Crit Care Med,2005,171(3):261-268.
    [73]Hendrix MJ, Seftor RE, Seftor EA, et al. Transendothelial function of human metastatic melanoma cells:role of the microenvironment in cell-fate determination. Cancer Res,2002,62(3):665-668.
    [74]Sun B, Zhang D, Zhang S, et al. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett,2007,249(2):188-197
    [75]Li M, Gu Y, Zhang Z, et al. Vasculogenic mimicry:a new prognostic sign of gastric adenocarcinoma. Pathol Oncol Res,2010,16(2):259-266.
    [76]尧良清,丰有吉,丁景新,等.缺氧诱导卵巢上皮性癌细胞形成拟态血管的前期研究[J].中华妇产科杂志,2005,40(10):662-665.
    [1]Terzic J, Grivennikov S, Karin E, et al. Inflammation and colon cancer. Gastroenterology,2010,138:2101-2114.
    [2]Tsai MS, Su YH, Ho MC, et al. Clinico pathological features and prognosis in resectable synchronous and met achronous colorectal liver metastasis. Ann Surg Oncol,2006,14(9):121-122.
    [3]Ruers, T. and R.P. Bleichrodt, Treatment of liver metastases,an update on the possibilities and results. Eur J Cancer,2002.38(7):1023-1033.
    [4]Gout, S. and J. Huot, Role of cancer microenvironment in metastasis:focus on colon cancer. Cancer Microenviron,2008.1(1):69-83.
    [5]Boedefeld WM, Bland KI, Heslin MJ. Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Ann Surg Oncol, 2003,10:829-851.
    [6]Rudmik LR, Magliocco AM. Molecular mechanism of hepaticmetastasis in colorectal cancer. J Surg Oncol,2005,92:347-259.
    [7]. Wanebo HJ, Chu QD, Arradopoulos KA, et al. Current perspectives on repeated hepatic resection for colorectal carcinoma:a review. Surgery,1996,119(4): 361
    [8]刘佃温,张相安,刘磊,等.大肠癌肝转移的临床病理学特点[J].大肠肛门病外科杂志,2003.9(4):224-226.
    [9].潘泽亚,吴伯文,吴孟超.大肠癌肝转移的诊断与治疗进展[J].中国实用外科杂志,2000,20(3):183-185.
    [10]. Nordlinger B, Guiguet M, Vaillant JC, et al. Surgical resection of colorectal
    carcinoma metastases to the liver. Cancer,1996,77(7):1254
    [11]Foley EF, Kolecki RV, Sehirmer BD. The accuracy of laparoscopic ultrasound in the detection of colorectal cancer liver metastases[J]. Am J Surg.1998,176(3):262-264.
    [12]黄昌保,江晓红,江晓华.大肠癌肝转移的治疗进展[J].中国现代手术学杂志2009,13(6):473-476
    [13]谈高,柳学国,李占军,等.结肠癌肝转移的螺旋CT特征及临床价
    值[J].中国医学影像技术,2003,19(9):1175-1177.
    [14]王廷昱,陈奋,陈旭,等.三期螺旋CT扫描对肝转移瘤的诊断价值[J].医学影像学杂志.2004,14(10):818-820
    [15]付俊杰,吴桠楠,白人驹.肝转移瘤的64层螺旋CT多期增强扫描的初步研究[J].天津医科大学学报.2011,17(3):413-415
    [16]李双生,吕维富,张正峰,等.消化道肿瘤肝转移介入治疗的临床应用及预后分析[J].实用肝脏病杂志,2008,11(6):388-390
    [17]Mayr NA, Yuh WT, Amhoh JC, et al. Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer[J]. Magn Reson Imaging,2000,12(6):1027-1033
    [18]Meyers MO, Watson JC. Angiogenesis and hepatic colorectal metastases[J]. Surg Oncol Clin N Am,2003,12(1):151-163.
    [19]Newbold K, Castellano I, Charles-Edwards E, et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys,2009,74(1):29-37.
    [20]陈锦秀,任静,王闽,等.MRI动态增强扫描在肝转移瘤诊断及血供分析中的应用(附60例病例报告)[J].肿瘤预防与治疗,2010,23(1):53-55.
    [21]Abdel-Nabi H, Lamonica D, Cronin V. et al. Staging of primary colorectal carcinoma with flurine-18-florode-oxyglucose whole body PET:Correlation with histopathologic and CT findings[J]. Radiology,1998,206(3):755-760
    [22]Boykin KN, Zibari GB, Lilin DL, et al. The use of FDG-Position Emission Tomography for the evaluation of colorectal metastases of liver[J]. Am Surg,1 999,65(12):1183-1185.
    [23]傅传刚,王汉涛,孔令山,等.正电子发射型断层显像在结直肠癌肝转移诊断中的应用[J].中华胃肠外科杂志,2005,8(1):17-19.
    [24]Whiteford MH, Whiteford HM, Yee LF, et al. Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum[J]. Dis Colon Rectum,2000,43(6):759-767.
    [25]Bentrem DJ.DeMatteo RP and Blumgart LH. Surgical therapy for metastatic disease to the liver. Ann Rev Med,2005,56:139-156
    [26]Bentrem DJ, de Matteo RP, Blumgart LH. Surgical therapy for metastatic disease to the liver. Ann Rev Med,2005,56:139-156.
    [27]Tsalis K, Vasiliadis K, Christoforidia E, et al. Current treatment of colorectal liver metastases. Tech Coloprotol,2004,8(Suppl 1):174-176.
    [28]Pawlik TM, Scosgins CR, Zorzi D, et al. Effect of surgical margin status
    on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg,2005,241(5):715-722.
    [29]Lambert LA, Colacchio TA, Barth RJ Jr.Interval hepatic resection of colorectal metastases improves patient selection [J].Arch Surg,2000,135(4):473-479.
    [30]Otchy D, Hyman NH, Simmang C, et al. Practice parameters for colon cancer. Dis Colon Rectum,2004,47(8):1269-1284.
    [31]Capussot ti L, Ferrero A, Vigano L, et al.Major liver resections synchronous with colorectal surgery[J]. Ann Surg Oncol,2007,14(1):195-201.
    [32]Pessaux P, Lermite E, Brehant O, et al. Repeat hepatectomy for recurrent colorectal liver metastases. J Surg Oncol; 2006,93(1):1-7.
    [33]Cady B, Jenkins RL, Steele GD, et al. Surgical margin in hepatic resection for colorectal metastasis:a critical and improvable determinant of outcome[J]. Ann Surg,1998,227(4):566-577.
    [34]周志伟,任镜清,万德森.结直肠癌肝转移病人预后的多因素分析.癌症,2006,25(9):1149-1152.
    [35]Malik HZ, Ham ady ZZ, Adair R, et al. prognostic influence of multiple hepatic metastases from colorectal cancer [J]. Eur J Surg Oncol,2007,33(4) 468-473.
    [36]Johnson ST. Blit z M, Kneteman N, et al. Combined hepatic and inferior vena cava resection for colorectal metastases[J]. J Gastrointest Surg,2006,10(2) 220-226.
    [37]Jacobs M, Verdeja JC, Goldstein HS, et al. Minimally invasivecolon resection(1aparoscopic colectomy). Surg Laparosc Endosc,1991。1:144-150.
    [38]郑民华.论腹腔镜结肠直肠手术.外科理论与实践.2004,9(6):453.
    [39]. Clinical Outcomes of Surgical Therapy Study Group. A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med.2004,350:2050-2059.
    [40]. Reich H, McGlynn F, Decaprio J, et al. Laproscopic excision of benign liver lesions. Obstet Gynecol,1991,78:956-958.
    [41]. Cai XJ, Yang J, Yu H, et al. Clinical study of Laparoscopic versus open hepatectomy for malignant liver tumors. Surg Endosc.2008 Feb 23(Epub ahead of print).
    [42]Kostov DV, Kobakov GL. Segmental liver resection for colorectal metastases [J]. J Gastrointestin Liver Dis,2009,18(4):447-453.
    [43]Slupski M, Wlodarczyk Z, Jasinski M, et al. Outcomes of simultaneous and delayed resections of colorectal liver synchronous metastases[J]. Can J Surg, 2009,52(6):E241-244.
    [44]de Gramont A, Boni C, Navarro M.et al. Oxaliplatin/5-FU/LV in the adjuvant treatment of stage Ⅱ and Ⅲ colon cancer:Efficacy results with a median follow-up of 4 years[J]. J Clin Oncol,2005,23(16S):246.
    [45]Sanof HK, Sargent DJ, Campbell ME, et al. Five year data and prognostic factor analysis of oxaliplatin and irinotecan combinations for advanced colorectal cancer:N9741. J Clin Oncol,2008,26(35):5721-5727.
    [46]Cassidy J, Tabernero J, Twelves C, et al. XELOX (capecitabine plus aliplatin): active first. line therapy for patients with metastatic coloreetal cancer. J Clin Oncol,2004,22(11):2084-2091.
    [47]Garcia-Alfonso P, Muoz Martin A, Mendez-Urea M, et al. Capecitabine in combination with irinotecan (XELIRI), administered as a 2-weekly schedule, as first-line chemotherapy for patients with metastatic colorectal cancer:a phase II study of the Spanish GOTI group. Br J Cancer。2009,101(7):1039-1043.
    [48]DB Brown.JE Gould.DA Gervais.et al.Transcatheter therapy for hepatic malignancy:standardization of terminology and reporting critera[J].J Vascular and Interventional Radiol.200718(12):1469-1478.
    [49]C Aliberti, M Tilli, G Benea,et al.Transarterial chemoembolization(TACE) of liver metastases from colorectal cancer using irinotecan-eluting beads:preliminary results [J]. Anticancer Res.2006,26(5):3793-3795.
    [50]G Fiorentini,C Aliberti, G Turrisi, et al.Intraarterial hepatic chemoembolization of livermetastases from colorectal cancer adopting irinotecan-eluting beads:results of a phase Ⅱ clinical study [J]. In Vivo,2007,21(6):1085-1092.
    [51]崔彦,王平,董满库,等.经皮射频治疗结直肠癌肝转移31例[J].中华普通外 科杂志,2006,21(1):67-68.
    [52]周京旭,林丽珠,张恩欣。射频消融联合化疗治疗结直肠癌肝转移的非随机对照研究[J].现代消化及介入诊疗,2008,13(3):179-183.
    [53]Takahashi M, Oka N, Naroda,T, et al. Prognostic significance of matrix metalloproteinases-2 activation ratio in renal cell carcinoma. Int J Urol,2002 Oct,9(10):531-538
    [54]Cho NH。Shim HS, Rha SY, et al. Increased expression of matrix
    metalloproteinase-9 correlates with poor prognostic variables in renal cell carcinoma. Eur Uuol,2003 Nov,44(5):560-566
    [55]Asano T, Tada M, Cheng S, et a.l Prognostic values of matrixmetalloproteinase family expression in human colorectal carcinoma. J Surg Res.2008,146:32-42.
    [56]Smith ME, Pignatelli M. The molecular histology of neoplasia:the role of the cadherin/catenin complex. Histophathology,1997,31:107.,
    [57]Ikeguchi M, Makino M, Kaibara N. Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol, 2001,77(3):201-207.
    [58]Haynes BF, Liao HX, Patton KL, et al. The transmembrane hyaluronidase receptor(CD44):multiple functions, multiple forms [J]. Cancer Cells,1991, 3(9)347-350.
    [59]Jungling B, Menges M, Goebel R, et al. Expression of CD44v6 has no prognostic value in patients with colorectal cancer. Z-Gastroenterol,2002, 40(4):229-233.
    [60]Stanmnkovic L, Amiot M, Pesando JM, et al. A Lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell,1989,56(6):1057-1062.
    [61]. Ishida T Immunohistochemical expression of the CD44 variant 6 in colorectal Aden carcinoma[J]. Surg Today,2000,30(1):28-32.
    [62]. Wong Wong LS, Cantrill JE, Morris AG; et al. Expression of CD44 splice variants in colorectal cancer[J]. Br J Surg 1997,84(3):363-367.
    [63]. Bendardaf K, Elzagheid A, LamhmH,et al. E-cadherin,CD44 S and CD44v6 Correlate with tumour differentiation in colorectal cancer[J]. Oncol Rep,2005, 13(5):831-835.
    [64]. Morrin M, Delaney PV. CD44v6 is not relevant in colorectal tumour progression [J]. Int J Colorectal Dis 2002,17(1):30-36.
    [65]. Jungling B, Menges M, Goebel K,et al. Expression of CD44v6 has no prognostic value in patients with colorectal cancer[J]. Z Gastroenterol,2002, 40(4):229-233.
    [66]. Hynes RO. Integrins:versatility, modulation, and signaling in cell adhesion. Cell, 1992,69(1):11-25
    [67]. Takamura H, Endo Y, Ninomiya I, et al. Comparison of the pattern of integrin expression between primary tumors and liver metastasis of gastric and colorectal cancers. Nippon Rinsho,1995; 53 (7):1678-1682
    [68]Aznavoonan S, A N Murphy,Ⅳ G Stetler-Stevenson, L A LioRa, Molecular aspects oftumor cell invasion and metastasis Cancer,1993.71(4):1368-1383
    [69]HynesR O, Integrins:versatility.modulation, and signaling in cell adhesion. Cell, 1992.69(1):11-25
    [70]Steeg PS, Bevilacqua G, Kopper L, et al. Evidence for anovel gene associated with low tumor metastatic potential[J]. J Natl Cancer Irmt,1988,80(3): 200-204.
    [71]. Leone A, Flatow U, King CR, et al. Reduced tumor incidence metastatic potential and cytokine responsiveness of nm23 transfected melanoma cells. Cell, 1991; 65:25-35
    [72]. Wai PY, Mi Z, Guo H, et al. Osteopntin silencing by small interfering RNA suppresses in vitro and vivo CT26 murine colon adenocarinoma metastasis. Carcinogenesis 2005; 26:741-751.
    [73]Bemey CR, Yang JL, Fisher RJ, et al. Overpression of nm23 protein assessed by color video image analysis in metastatic colorectal cancer:correlation with reduced patient survival. World J Surg,1998,22(5):484.
    [74]. Yamaguchi A. Genetic changers in liver metastasis of colorectal cancer and their clinical application. Nippon Geka Gakkai Zasshi,2001; 102 (5):370-375
    [75]Cheah PY, Cao X, Eu KW, et al. Nrn23-H 1 immunostaining is inversely
    associated with tumor staging but not overall or survival or disease recurrence in colorectal carcinomas. Br J Cancer,1998,77(7):1164.
    [76]Heys SD, Langlois N, Smith IC, et al. Nm23 gene prdocuts expression does not predict lymph node metastases or survival in patients with colorectal cancer. Ontol Rep,1998,5(3):735.
    [77]. Sodek J, Ganss B, McKee MD. Osteopontin. Crit Rev Oral Biol Med 2000; 11 (3):279-303
    [78].丁凌,郑树,曹江.大肠癌中骨桥蛋白的mRNA和蛋白表达及其与肝转移的关系.中华医学杂志,2002;82(14):970-973
    [79]Rangaswami HA. Bulbule GC, Kundu, Nuclear factor inducing kinase plays crucial role in osteopontin induced MAPK/IKK dependent nuclear factor Kb-mediated promatrixmetalloproteinase-9 activation J Biol Chem.2004.279(37):38921-38935
    [80]. Duffy M J. Carcinoembryonic antigen as a marker for colorectal cancer:is it clinically useful. Clin Chem,2001; 47(4):624-630
    [81]. Gangopadhyay A, Lazure DA, Thoas P. Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated kupffer cells. Clin Exp Metastasis,1998; 16(8):703
    [82]Lidestri G, Lanten R, Santangelo M, et al.Can biliary carcinoem bryonic antigen identify colorectal cancer patients with occult hepatic metastases? World J Surg, 2006,30:1494-1499.
    [83]. Ferrar N, Henzel WJ. Pituitary follicular cell secrete anovel heparin-binding
    growth factors pecific for vascular endothelial cells[J]. Biochem Biophys ResCommun,1989,161(2):851.
    [84]. Fujisaki K, Mitsuyama K, Toyonaga A, et al. Circulating vascular endothelial growth factor in patients with colorectal cancer[J]. Am J Gastroenterol。1998, 93(2):249
    [85]周雷,项灿宏,李启东,等。VEG和微血管密度与大肠癌肝转移的关系[J].临床外科杂志,2008,16(4):247-248.
    [86]Cole KE, Strick CA, Paradis TJ, et al. Interferon-inducible T cell alpha chemoattractant(I-TAC):a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med,1998,187(12):2009-2021
    [87]Petkovic V, Moghini C, Paoletti S, et al. I-TAC/CXCL11 is a natural antagonist for CCR5. J Leukoc Biol,2004,76(3):701-708.
    [88]Whiting D, Hsieh G, Yun JJ, et al. Chemokine monokine induced by IFN-gamma/CXC chemokine ligand 9 stimulates T lymphocyte proliferation and effector cytokine production. J Immunol,2004,172(12):7417-7424
    [89]Xie JH, Nomura N, Lu M, et al, Antibody-mediated blockade of the CXCR3 chemokine receptor results in diminished recruitment of T Helper 1 cells into sites of inflammation [J]. J Leukoc Biol,2003,73 (6):771-780.
    [90]Helmich BK, Button RW, The role of adoptively transferred CD8+T cells and the host cells in the control of the growth the EG7 thymoma:factors that determine the reletive effectiveness and homing properties of Tc1 and Tc2 effectors[J], J Immunol,2001,166(11):6500-6508.
    [91]杨秀利,储以微,乔滨,等.ITAC转染乳腺癌细胞系4T1的体内外生物学行为研究[J].中国癌症杂志2005,15(3):252-256.
    [92]Strieter RM, Polverini PJ, Kunkel SL, et al. The functional role of ELR motif in CXC chemokine-mediated angiogenesis[J], J Bio Chem,1995, 270(45):27348-27357.
    [1]苏敏,尧良清.肿瘤微循环的新形式—血管生成拟态[J].国际病理科学与临床杂志,2006,26(1):11-13
    [2]Dennie CJ, Veinot JP,McCormack DG, et al. Infimal sarcoma of the pulmonary arteries seen as a mosaic pattern of lung attenuation on high-resolution CT [J]. AJR Am J Roentgenol,2002,178(5):1208-1210
    [3]Folkman J Angeiogenisis in cancer, vascular, rheumatoid and other disease[J].Nature Med 1995,1(1):27-31.
    [4]Staton CA, Stribbling SM, Tazzyman S, et al. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Path,2004,85:233-248.
    [5]刘剑平,侯梅.肿瘤微血管生成模型的应用现状.中国肿瘤,2002,11(1):45-47.
    [6]Hasan J, Shnyder SD, Bibby M, et al. Quantitative angiogenesis assays in vivo-a review. Angiogenesis,2004,7:1-16.
    [7]Pia N, Liang X, Raghu K. Endogenous inhibitors of angiogensis. Cancer Res, 2005,65:3967-3979.
    [8]Hasan J, Shnyder SD, Bibby M, et al. Quantitative angiogenesis assays in vivo-a review. Angiogenesis,2004,7:1-16.
    [9]Szabo s, Sandor Z. The diagnostic and prognostic value of tumor angiogenesis [J]. Eur J Surg Suppl.1998,582:99-103.
    [10]Byrne AM, Bouchier-Hayes DJ,Harmey JH.Angiogenic and cell survival functions of vascular endothelial growth factor.J Cell Mol Med,2005,9(4):777-794.
    [11]Shibuya M, Claesson. Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis[J]. Exp Cell Res,2006,312: 549-560
    [12]Takahashi H, Shibuya M. The vascular endothelial growth factor(VEGF)l/ VEGF receptor system and its role under physiological and pathological conditions[J]. Clin Sci(Lond),2005,109,227-241
    [13]Riely GJ, Miller VA. Vascular endothelial growth factor trap in non small celllung cancer[J]. ClinCancer R∞,2007,13(15/2):s4623-s4627
    [14]Dvorak HF. Vascular permeability factor/vascular endothelial growth factor:a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy[J]. J Clin Oncol,2002,20:4368-4380
    [15]Claffey KP, Senger DR, Spiegalman BM, et al. Structural requirements for dimerization. glycosylation secretion, and biological function of VPF/ VEGF. Biochim Biophys Acta,1995.1246:1-9.
    [16]Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro:vasculogenic mimicry [J]. Am J Pathol 1999; 155(3):739-752
    [17]Folberg R, Hendrix M J, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis [J]. Am J Pathol,2000,156(2):361-381
    [18]Mai J, Sameni M, Mikkelsen T, et al. Degradation of extracellular matrix protein tenascin-C by cathepsin B:anlnteraction involved in the progression of gliomas[J]. Biol Chem,2002,383(9):1407-1413
    [19]McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma [J]. Cancer Biol Ther,2002,1(5):459-465
    [20]张诗武,高欣.血管生成拟态与血管生成及其意义[J].国外医学肿瘤学分册.2003.30(3):180-182
    [21]Sood AK,Seftor E A, Fletcher MS, et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol,2001,158(4):1279-1288
    [22]Shirakawa K, Wakasugi H, Heike Y, et al. Vasculogenic mimicry and pseudo-comedo formation in breast cancer[J]. Int J Cancer,2002,99(6): 821-828
    [23]Shirakawa K,Kobayashi H,Sobajima J,et al.Inflammatory breast Catlcer vasculogenic mimicry and its hemodynamics of an infammtorybreast cancer xenograft model. Breast Cancer Res,2003,5(3):136-139
    [24]赵秀兰,孙保存等.肝癌中血管生成拟态的研究.中华肝脏病学杂志.2006,14(1):41-44
    [25]李熳,谷彦军,张志广等。血管生成拟态在胃腺癌中的临床病理意义和相关机制研究。中国肿瘤临床。2010,37(7):372-376
    [26]田翀,高青.结肠癌血管生成拟态的形态学观察及生成机制[J].第四军医大学学报.2009,30(22):2568-2571.
    [27]Baeten CI, Hillen F, Pauwels P, et al. Prognostic role of vasculogenic mimicry in colorectal cancer[J]. Dis Colon Rectum,2009,52(12):2028-2035.
    [28]Kobayashi H, Shirakawa K, Kawamoto S, et al. Rapid accumulation and internalization of radiolabeled herceptin in an inflammatory breast cancer xenograft with vasculogenic mimicry predicted by the contrast enhanced dynamic MRI with the macromolecular contrast agent G6-(1B4N-Gd)(256).Cancer Res,2002,62:860-866
    [29]Shirakawa K, Kobayashi H, Sobajima J, et al. Inflammatory breast cancer: vasculogenic mimicry, and its hemodynamics of an inflammatory breast cancer xenograft model.Breast Cancer Res,2003,5:136-139
    [30]Clarijs R, Schalkwijk L, Ruiter D J, et al. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma[J]. Invest Ophthalmol Vis Sci,2001,42(7):1422-1428.
    [31]Lee Y J, Nagai N, Siar C H, et al. Angioarchitecture of primary oral malignant melallomas [J]. J Histochem Cytochem,2002,50(11):1555-1562.
    [32]Hendrix M J, Sefior E A, Hess A R, et al. Vasculogenic mimicry and Tumour-cell plasticity:lessons from melanoma [J]. Nat Rev Cancer,2003, 3(6):411-421.
    [33]Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumour-cell plasticity:lessons from melanoma (Review). Nat Rev Cancer,2003,3:411-421
    [34]Fujimoto A, Onodera H, Mori A, et al. Tumour plasticity and extravascular circulation in ECV304 human bladder carcinoma cells.Anticancer Res,2006, 26(1A):59-69.
    [35]Mourad-Zeidan AA, Melnikova VO, Wang H, et al. Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. Am J Pathol,2008,173(6):1839-1852.
    [36]El Hallani S, Boisselier B, Peglion F, et al. A new alternative mechanism in glioblastoma vascularization:tubular vasculogenic mimicry. Brain,2010,133(Pt 4):973-982.
    [37]Hendrix MJ, Seftor RE, Seftor EA, et al. Transendothelial function of human metastatic melanoma cells:role of the microenvironment in cell-fate determination. Cancer Res,2002,62(3):665-668.
    [38]Sun B, Zhang D, Zhang S, et al. Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett,2007,249(2):188-197.
    [39]张熙郭世文尉春艳.缺氧诱导SHG44细胞拟态血管形成及相关机制.中华神经外科疾病研究杂志[J].2011,10(3):218-221
    [40]Seftor RE, Seftor EA, Koshikawa N, et al. Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res,2001,61(17):6322-6327.
    [41]Anil KS, Mavis S, Fletcher MD, et al. Functional role of matrix metallop rote inases in ovarian tumor cell plasticity[J]. Am J Obstet Gynecol 2004,190(4): 899-909.
    [42]侯风刚.肿瘤血管拟态形成机制研究进展[J].中国医药生物技术2010,5(4):289-292
    [43]Chang YS, de Tomaso E, McDonald DM,et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood[J]. Proc Natc Acad Sci USA,2000,97(26):14608-14613.
    [44]Folkman J. Can mosaic tumor vessel facilitate molecular diagnosis of cancer? [J]. Proc Natc Acad Sci USA,2001,98(2):398-400.
    [45]Dennie CJ, Veinot JP, McCormack DG, et ol. Intimal sarcoma of the pulmonary arteries seen as a mosaic pattern of lung attenuation on high-resolution CT[J].AJR Am J Roentgenol,2002,178(5):1208-1210.
    [46].张诗武,郭华,张丹芳,等.黑色素瘤组织内三种血液供应模式时间关系的初步探讨[J].中国肿瘤临床,2007,34(2):96-99.
    [47]Auguste P,Lemiere S,Larrieu-Lahargue F, et al. Crit Rev Oneol Hematol,2005, 54(1):53-61.
    [48]. Hendrix MJ, Seftor EA, Hess AR, et al. Vasculogenic mimicry and tumourcell plasticity:lessons from melanoma[J]. Nat Rev Cancer,2003,3(6):411-421.
    [49].张诗武,郭华,张丹芳,等.黑色素瘤组织内三种血液供应模式时间关系的初步探讨[J].中国肿瘤临床,2007,34(2):96-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700