TGF-β1诱导的Fascin1基因表达对胃癌细胞侵袭和转移影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言:胃癌是一种常见的恶性肿瘤,据有关文献报道,在我国其死亡率居各种恶性肿瘤之首。胃癌患者的主要死因为肿瘤病灶的侵袭及转移。因此探讨其侵袭转移机制显得尤为重要。
     在众多的促转移分子中,转化生长因子β(transforming growthfactor beta,TGFβ)是一重要分子,它参与了多种肿瘤的侵袭和转移过程。用基因转染的方法诱导肿瘤细胞中TGF-β1表达可增加肿瘤细胞的转移能力。同时有研究表明,阻止TGF-β信号通路可以抑制胃癌的转移。我们的早期研究发现TGF-β1可以促进胃癌细胞SGC7901和BGC823的浸润和转移。一些临床研究也显示:TGF-β1的表达与淋巴结的转移和预后不良呈正相关。目前虽然已有许多研究证实了TGF-β1在肿瘤侵袭和转移中的作用,但其具体机制尚不明确。
     研究表明TGF-β促浸润转移作用可由smad依赖通路及smad非依赖通路介导。TGF-β与细胞膜Ⅱ型受体(TβRⅡ)结合后,激活Ⅰ型受体,活化的Ⅰ型受体激活下游分子smad2和smad3,随后smad2/smad3与smad4结合形成smad复合物并转移到核内,调节TGF-β介导的靶基因转录。而在smad非依赖通路中,JNK,Erk和P38通路则被认为是关键性的通路。基于TGF-β在肿瘤发生与转移中的重要性,所以深入探讨TGF-β促转移机制具有非常重要的理论及临床意义。
     人类fascin 1基因属于fascin家族,其蛋白质编码产物是一种分子量为55 kDa的细胞骨架蛋白,可与F肌动蛋白结合,定位于细胞质张力纤维和细胞膜皱褶(ruffles)边缘与细胞的运动、癌细胞的转移有密切关系的公状伪足、微棘(microspikes)的核心肌动蛋白束中。细胞内fascin 1基因表达上调引起细胞间连接发生解离,同时细胞的运动也相应增加。而将fascin 1基因转染至fascin 1基因低表达的结直肠癌细胞系SW 1222中,结果细胞膜表面突起增多,细胞分化程度降低,细胞运动性增强。Fascin蛋白在胃癌中表达明显增高,它的高表达与胃癌的浸润深度、淋巴结转移、TNM分期和复发密切相关。有研究表明在肺癌中TGF-β1可诱导fascin1基因表达上调,且TGF-β1和fascin1蛋白都与肺癌的侵袭与转移有关,但是目前TGF-β与fascin1在胃癌侵袭与转移中是否存在调控关系尚未见文献报道。
     RNA干扰(RNA interference,RNAi)是近年来发展起来的一种新技术,由于它能特异而有效地阻断靶基因的表达,目前被广泛应用于各种肿瘤的研究。我们构建了针对Fascin1的短发夹RNA(shortharpin RNA,shRNA)真核表达载体并首次转染人胃癌细胞MKN45,观察抑制fascin1表达前后,TGF-β1作用对胃癌侵袭和转移的影响,并对其机制作初步探讨。
     目的:研究TGF-β1对fascin1基因表达的影响,以及fascin1在TGF-β促胃癌侵袭与转移中的作用。探讨以fascin1为靶的胃癌基因治疗以及进一步揭示TGF-β1促胃癌侵袭和转移机制提供理论和实验依据。
     方法:
     1.通过细菌转化、质粒提取、酶切、凝胶电泳、基因测序鉴定和基因重组技术等方法构建针对Fascin1的RNAi质粒pGen-1-FSCN1和阴性对照质粒pGen-1-con。
     2.利用脂质体介导转染技术转染人胃癌细胞MKN45,经G418筛选得到稳定抑制fascin1表达的胃癌细胞模型(pGen-1-FSCN1细胞);分别采用逆转录聚合酶链反应(RT-PCR)和Western blotting检测RNAi组(siFascin1)、对照组(CON)及未转染组(NT)三组细胞中Fascin1的表达。
     3.以10ng/ml的TGFβ1处理siFascin1,CON,NT三组胃癌细胞,观察处理前后各组细胞生物学行为的变化,采用MTT比色法测定细胞的黏附能力,Boyden小室测定法测定转染细胞的迁移能力和侵袭能力;腹腔移植法建立裸鼠胃癌细胞转移模型。
     4.分别瞬时转染smad2,smad4的siRNA(small interfering RNA),检测smad依赖通路在TGF-β诱导fascin1促胃癌浸润与转移中的作用;应用JNK,Erk和P38通路的特异性抑制剂检测smad非依赖通路在TGF-β诱导fascin1促胃癌浸润与转移中的作用。
     结果:
     1.TGF-β1(10ng/ml)在作用于MKN45细胞24小时后,fascin1基因表达约为0小时的2.2倍。
     2.限制性酶切及基因测序证实成功构建了针对fascin1基因的RNAi载体pGen-1-FSCN1。经G418筛选,RT-PCR及Western blotting鉴定,成功建立了稳定抑制fascin1基因表达的胃癌细胞模型。
     3.与CON和NT比较,siFascin1细胞的黏附能力、迁移能力、侵袭能力和转移能力明显降低(p<0.05);三组细胞经TGF-β1(10ng/ml)预处理后,其中CON与NT细胞黏附能力、迁移能力、侵袭能力和转移能力明显增高(p<0.05);而在siFascin1组,TGF-β1处理前后细胞黏附能力、迁移能力、侵袭能力和转移能力无明显变化(p>0.05)。
     4.分别瞬时转染smad2,smad4的siRNA于MKN45细胞中,予TGF-β1处理后,经western blotting检测发现,MKN45中smad2,smad4的表达水平较未转染前减少约70%,而在干扰smad2,smad4后,MKN45细胞中的fascin1表达无明显变化;选用JNK,Erk和P38通路的特异性抑制剂,SP600125,PD98095和SB203580分别预孵育MKN45细胞1h,结果发现:SP600125和PD98095组予TGF-β1处理24小时后,fascin1的表达明显降低(p<0.05),而P38通路的特异性抑制剂SB203580对fascin1的表达无明显影响。
     结论:
     1.首次证实,在胃癌细胞MKN45中fascin1基因表达受外源性TGF-β1(10ng/ml)调控。
     2.成功构建了针对fascin1基因的RNAi质粒pGen-1-FSCN1,建立了稳定抑制fascin1基因表达的胃癌细胞模型。
     3.稳定抑制fascin1基因表达后,TGF-β1促胃癌细胞侵袭和转移能力下降。
     4.TGF-β1主要通过JNK和Erk通路诱导fascin1基因促进胃癌的侵袭和转移。
Gastric carcinoma(GC) is a frequent malignant neoplasm.In China, the mortality of patients with GC is quite high.Invasion and metastasis is the major always responsible for the death of patients with GC. Therefore,further investigations on the mechanism of invasion and metastasis are of great importance.
     Transforming growth factor beta(TGF-β) has been reported to be expressed in many human tumors and is believed to play an important role in tumor invasion as well as tumor metastasis.Cancer cells overexpressing active TGF-β1 by gene transfection showed increased metastatic ability.Targeting of TGF-βsignaling can prevent metastasis in GC.Our previous study showed that TGF-β1 significantly promoted the invasiveness and metastasis of GC cell lines SGC7901 and BGC823. Similarly,clinical studies showed the positive correlation of TGF-β1 expression with lymph node metastasis and poor prognosis in gastric carcinoma.Although many efforts were made to clarify the role of TGF-βin the invasion and metastasis of neoplasms,the mechanism is not fully elucidated.
     Study indicated that TGFβ1 actives Smad-dependent and Smadindependent pathways.TGFβ1 combines with TGFβtypeⅡreceptor (TβR-Ⅱ) and then actives TβR-Ⅰ.Smad2 and Smad3 are phosphorylated by TβR-Ⅰand then form the heteromeric complexes by associating with Smad4.These Smad complexes move into the nucleus and regulate expression of their target genes.In Smad-independent pathway,JNK,Erk and P38 have been identified as key signaling processes in response to TGF-β.
     Fascin1,a 55-kDa globular protein,belongs to a unique family of actin-binding proteins.Fascin1 locates in structures containing actin bundles including filopodia,stress fibers,cell membrane ruffles and microspikes.Studies reported cells expressing high levels of fascin showed an increasing activity of membrane extensions,cell motility and loss of cell-cell adhesion.In human colorectal carcinoma cell SW1222, up-regulation of fascin gene expression contributed to the formation of cell-motility structure and the increased migration ability.In normal gastric mucosa,fascin expression is usually undetectable but is often dramatically up-regulated in gastric carcinoma.Moreover increased expression of fascin was found positively correlated with invasion, metastasis and prognosis in GC.Recently,study showed that TGF-β1 up-regulated fascin1 expression in lung cancer.So,we postulate that TGF-β1 can induce the expression of fascin1 and then promote the invasion and metastasis of GC cells.
     In recent years,RNA interference(RNAi) has emerged as a powerful method of gene therapy,and has been widely used for silencing malignant cellular and viral genes.In this study,we employed RNAi-mediated suppression of Fascin1 gene to evaluate its effects on invasion and metastasis of GC cells and investigate its preliminary mechanisms.
     Objective
     Our current investigation attempts to study the effects and mechanisms of TGF-β1-induced fascin1 expression on invasion and metastasis of GC cells,and to provide theoretical and experimental evidences for the gene therapy of GC through specifically turning off Fascin1 gene.
     Methods
     A single strand DNA was synthesized according to the hair loop RNA sequence,and subcloned into eukaryotic expression vector pGenesil-1 to construct a shRNA-expression pDNAs driven by human U6 promoter of fascin1(pGen-1-FSCN1),then transformed into DH5αcompetent cells.One additional construct of random siRNA (pGen-1-con) not homologous to any human genes was made in the same way as control.Positive clones were identified and verified by using restrictive cleavage and sequence.
     pGen-1-FSCN1 and pGen-1-con were transfected into gastric carcinoma cell line MKN45 with liposome,respectively.Positive colonies were selected with G418.Expression of fascin1 protein and mRNA in the transfected and non-transfected MKN45 cells(NT) was examined by Western blotting and RT-PCR,respectively.
     Adherent ability of transfected cells was detected by MTT method; The ability of migration and invasion of transfected cells was examined by Bodern method;Nude mice metastasis models were established by abdominal cavity transfer method.
     To examine the signaling pathway by which the TGF-βincreases the fascin1 expression and then promotes the ability of invasion and migration,Smad2 siRNA and Smad4 siRNA were transiently transfcted into MKN45 cells,and the the expression of fascin1 were measured. Specific protein kinase inhibitors were used to determine that whether the Smad-independent signaling involved in the changes of fascin1 production and promoting the ability of invasion and migration induced by TGF-β.
     Results
     Fascin1 expression levels were found to markedly decrease in MKN45 cells transfected with pGen-1-FSCN1(siFascin1).Transfection of pGen-1-con plasmid(CON) showed no obvious effect on fascin1 expression in MKN45.Down-regulation of fascin1 was accompanied with decreased adhesiveness,invasiveness and migratory abilities.
     To investigate whether TGF-β1-mediated fascin1 expression is involved in the invasive and metastatic potential of MKN45 cells,NT, CON and siFascin1 cells with or without TGF-β1 treatment were used in our study.Compared with untreated NT and CON cells,the siFascin1 cells showed lower adherent,invasive and metastatic abilities(p<0.05). TGF-β1 significantly promoted the adhesiveness,invasiveness and migration of NT and CON cells.However,TGF-β1 showed no effect on the adherent,invasive and metastatic abilities in siFascin1 cells.In vivo, the migration rate of the siFascin1 cells was decreased than NT and CON cells(p<0.05).In vivo,TGF-β1 pretreatment could increase liver metastasis in NT and CON cells.However,TGF-β1 treatment had no effect on the metastatic potential in siFascin1 cells.
     To address whether smad2 and smad4 were involved in TGF-β1-mediated fascin1 expression,the levels of fascin1 expression in the cells were detected by western blotting after silencing smad2 and smad4.We found both smad2 and smad4 expressions were suppressed successsfuly(p<0.05),but fascin1 expression was not altered significantly.
     The specific inhibitors of P38,JNK and Erk,SB203580,SP600125, and PD98059 were used in our study,PD98059 and SP600125 decreased the TGF-β1-induced fascin1 production(by 78%and 75%,respectively), but SB203580 showed no effect on fascin1 expression.
     Conclusion
     1.It is the first time to address that TGF-β1 can induce the fascin1 expression in gastric carcinomacells MKN45.
     2.siRNA plasmid targeted against fascin1,pGen-1-FSCN1,was successfully constructed and transfected into MKN45 cells,and cell model steadily suppressing fascin1 was obtained.
     3.We for the first time revealed that RNAi plasmid targeted against fascin1 could obviously suppress the invasion and metastasis of GC cells MKN45 mediated by TGF-β1,in vitro and in vivo.
     4.TGF-β1 promoted the invasion and metastasis of MKN45 cells by increasing fascin1 expression through JNK and ErK signaling mediated.
引文
[1]孙秀娣,牧人,周有尚等.中国1990~1992年胃癌死亡调查分析.中华肿瘤杂志.2002,24(1):4-8.
    [2]Webb CP,VanAelst L,Wigler MH,et al.Signaling pathways in Ras-mediated tumorigenicity and metastasis.Proc Natl Acad Sci USA,1998,95(15):8773-8.
    [3]Massagne J.TGF-β signal transduction.Annu Rev Biochem 1998;67:753-91.
    [4]周京旭,杨希山,周殿元.TGF-β及其受体与肿瘤关系研究进展.肿瘤,1998.304-6.
    [5]Massague,J.How cells read TGF-beta signals.Nat.Rev.Mol.Cell.Biol.2000,1(3),169-178.
    [6]Holting T,Zielke A,Siperstein AE,et al.Transforming growth factor-beta 1 is a negative regulator for differentiated thyroid cancer:studies of growth,migration,invasion,and adhesion of cultured follicular and papillary thyroid cancer cell lines.J Clin Endocrinol Metab,1994,79(3):806-13.
    [7]Otani N,Tsukamoto T,Kumamoto Y,etal.Study on in vitro invasive potential of renal cell carcinoma cell lines and effect of growth factors(EGF and TGF-beta 1)on their in invasions.Nippon Hinyokika Gakkai Zasshi,1991,82(4):613-9.
    [8]Sheen-Chen SM,Chen HS,Sheen CW,etal.Serum levels of transforming growth factor betal in patients with breast cancer.Arch Surg,2001,136(8):937-40.
    [9]Shariat SF,Kattan MW,Traxel E,etal.Association of pre-and postoperative plasma levels of transforming growth factor beta(l)and interleukin 6 and itssoluble receptor with prostate cancer progression.Clin Cancer Res,2004,10(6):1992-9.
    [10]Parsons R,Myeroff LL,Liu B,et al.Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer.Cancer Res,1995,55(23):5548-50.
    [11]Markowitz S,Wang J,Myeroff L,et al.Inactivation of the type Ⅱ TGF-beta receptor in colon cancer cells with mierosatellite instability.Science,1995,268(5215):1336-8.
    [12]Gorsch SM,Memoli VA,Stukel TA,et al.Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer.Cancer Res,1992,52(24):6949-52.
    [13]Walker RA,Dearing S J,Gallacher B.Relationship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma.Br J Cancer,1994,69(6):1160-5.
    [14]Huang F,Newman E,Theodorescu D,et al.Transforming growth factor β1(TGFβ1)is an autocrine positive regulator of colon carcinoma U9 cells in vivo as shown by transfection of a TGFβ1 antisense expression plasmid.Cell Growth Differ,1995,6:1635-42.
    [15]Hoefer M,Anderer FA.Anti-(transforming growth factor beta)antibodies with predefined specificity inhibit metastasis of highly tumorigenic human xenotransplants in nu/nu mice.Cancer Immunol Immunother.1995Nov;41(5):302-8.
    [16]Javelaud D,Delmas V,Moiler M,Sextius P,Andre J,Menashi S,Larue L,Mauviel A.Stable overexpression of Smad7 in human melanoma cells inhibits their tumorigenicity in vitro and in vivo.Oncogene.2005 Nov 17;24(51):7624-9.
    [17]Zhang F,Lee J,Lu S,Pettaway CA,Dong Z.Blockade of transforming growth factor-beta signaling suppresses progression of androgen-independent human prostate cancer in nude mice.Clin Cancer Res.2005 Jun 15;11(12):4512-20.
    [18]陈颖,朱明华,于观贞,李芳梅,刘晓红.转化生长因子-β1的Smad4非依赖性途径对胰腺癌细胞生长的影响.中华病理学杂志,2005,34(7):413-416.
    [19]鲍同柱,赵红卫,郑启新,刘万军,刘勇.反义转化生长因子-β1基因对骨肉瘤细胞表达转移相关因子的影响.中华实验外科杂志,2005,22(4):477-478.
    [20]Wang KS,Hu ZL,Li JH,Xiao DS,Wen JE Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor β1.Acta Biochim Biophys Sin,2006,38(3):179-86.
    [21]Yainasliiro-Matsurnura S,Matsumura F.Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin,alpha-actinin, tropoinposin, and finnbrin. J Cell Biol, 1986,103(2): 631-640.
    [22] Kureishy N, Sapountzi V, Prag S, Anilkumar N, Adams JC. Fascins, and their roles in cell structure and function [J]. Bioessays, 2002,24(4): 350-361.
    [23] Ono S, Yamakita Y, Yamashiro S, Matsudaira PT, Gnarra JR, Obinata T,Matsumura F. Identification of an actin binding region and a protein kinase C phosphorylation site on human fascin. J Biol Chem, 1997,272(4): 2527- 2533.
    [24] Adams JC, Clelland JD, Collett GD, Matsumura F, Yamashiro S, Zhang L.Cell-matrix adhesions differentially regulate fascin phosphorylation. Mol Biol Cell, 1999,10(12):4177-4190.
    [25] Yamashiro S, Yamakita Y, Ono S, Matsumura F. Fascia, actin-bundling protein,induces membrane protrusions and increases cell motility of epithelial cells. Mol Biol Cell, 1998, 9(5): 993-1006.
    [26] Jawhari AU, Buda A, JenkinsM, Shehzad K, Sarraf C, Noda M, Farthing MJ,Pignatelli M, Adams JC. Fascin, actin-bundling protein,modulates colonic epitheial cell invasiveness and differentiation in vitro. Am J Pathol, 2003,162(1):69-80.
    [27] Hu W, McCrea PD, Deavers M, kavanagh JJ, Kudelka AP, Verschraegen CF.Increases expression of fascin, motility associated protein, in cell cultures derived from ovarian cancer and in borderline and carcinomatous ovarian tumors.Clin Exp Metastasis 2000; 18:83-8.
    [28] Grothey A, Hashizume R, Sahin AA, McCrea PD. Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer. Br J Cancer 2000;83:870-3.
    [29] Maitra A, Iacobuzio-Donahue C, Rahman A, Sohn TA, Argani P, Meyer R, Yeo CJ, Cameron JL, Goggins M, Kern SE, Ashfag R, Hruban RH, Wilentz RE.Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays:sea urchin fascin homolog and heat shock protein 47.Am J Clin Pathol 2002;118:52-9.
    [30]Pelosi G,Pastorino U,Pasini F,Maissoneuve P,Fraggetta F,Iannucci A,Sonzogni A,De Manzoni G,Terzi A,Durante E,Bresaola E,Pezzella F,Viale G.Independent prognostic value of fascin immunoreactivity in stage I nonsmall cell lung cancer.Br J Cancer 2003;88:537-47.
    [31]Goncharuk VN,Ross JS,Carlson JA.Actin-bundling protein fascin expression in skin neoplasia.J Cutan Patho12002;29:430-8.
    [32]Hashimoto Y,Shimada Y,Kawamura J,Yamasaki S,Imamura M.The prognostic relevance of fascin expression in human gastric carcinoma.Ontology 2004,67:262-70.
    [33]Hashimoto Y,Ito T,Inoue H,Okumura T,Tanaka E,Tsunoda S,Higashiyama M,Watanabe G,Imamura M,Shimada Y.Prognostic significance of fascin overexpression in human esophageal squamous cell carcinoma.Clin Cancer Res 2005;11:2597-605.
    [34]Tong GX,Yee H,Chiriboga L,Hernandez O,Waisman J.Fascin-1 expression in papillary and invasive urothelial carcinomas of the urinary bladder.Hum Pathol 2005;36:741-6.
    [35]Keshamouni VG,Jagtap P,Michailidis G,Strahler JR,Kuick R,Reka AK,Papoulias P,et al.Temporal Quantitative Proteomics by iTRAQ 2D-LC-MS/MS and Corresponding mRNA Expression Analysis Identify Post-Transcriptional Modulation of Actin-Cytoskeleton Regulators During TGF-β-Induced Epithelial-Mesenchymal Transition.J Proteome Res 2009,8:35-47
    [36]Hammond SM,Bernstein E,Beach D,et al.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature,2000;404(6755):293-296.
    [37]Brummelkamp TR,Bernards R,Agami R.A system for stalbe expression of short interfering RNAs in mammalian cells.Science,2002;296(5 567):550-553.
    [38]Yu JY,DeRuiter SL,Turner DL.RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells.Proc Natl Acad Sci USA,2002,99(9):6047-6052
    [39]Sui GC,Soohoo C,Affar EIB,et al.A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.Proc Natl Acad Sci USA,2002;99(8):5515-5 520.
    [40]Xie JJ,Xu LY,Zhang HH,Cai W J,Mai RQ,Xie YM,Yang ZM,Niu YD,Shen ZY,Li EM.Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells.Biochem Biophys Res Commun 2005,337:355-362.
    [41]Muraoka-Cook RS,Kurokawa H,Koh Y,Forbes JT,Roebuck LR,Barcellos-Hoff MH,Moody SE,Chodosh LA,Arteaga CL.Conditional overexpression of active transforming growth factor betal in vivo accelerates metastases of transgenic mammary tumors.Cancer Res.2004 Dec 15;64(24):9002-11.
    [42]Welch DR,Fabra A,Nakajima M.Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential.Proc Natl Acad Sci USA.1990 Oct;87(19):7678-82.
    [43]Akhurst,RJ,Derynck,R.TGF-beta signaling in cancer a-double-edged sword.Trends Cell BioL 2001,11(11),S44-S51.
    [44]Domagala-Kulawik,J.;Hoser,G.;Safianowska,A.;et al.Elevated TGF-betal concentration in bronchoalveolar lavage fluid from patients with primary lung cancer.Arch.Immunol.Ther.Exp.2006,54(2),143-147.
    [45]Kong,F.;Jirtle,R.L.;Huang,D.H.;et al.Plasma transforming growth faetor-betal level before radiotherapy correlates with long term outcome of patients with lung carcinoma.Cancer 1999,86(9),1712-1719.
    [46]Saji,H.;Nakamura,H.;Awut,I.;et al.Significance of expression of TGF-beta in pulmonary metastasis in non-small cell lung cancer tissues.Ann.Thorac.Cardiovasc.Surg.2003,9(5),295-300.
    [47]许洪卫,王元和,谭龙益.组织和血清TGF β-1水平升高与胃癌侵袭性增强的相互关系.癌症,1999,18(2):156-158
    [48]Maehara Y,Kakeji Y,Kabashima A,et al.Role of transforming growth factor beta 1 in invasion and metastasis in gastric carcinoma.J Clin Oncol,1999,17(2):607-614.
    c[49]ChoiP J,Yang DK,Son CH,Lee KE,Lee JI,Roh MS.Fascin immunoreactivity
    for preoperatively predicting lymph node metastases in peripheral
    adenocarcinoma of the lung 3 cm or less in diameter.European Journal of
    Cardio-thoracic Surgery 2006,30:538-542
    
    [50]Keshamouni VG,Jagtap P,Michailidis G,Strahler JR,Kuick R,Reka AK,Papoulias P,et al.Temporal Quantitative Proteomics by iTRAQ 2D-LC-MS/MS and Corresponding mRNA Expression Analysis Identify Post-Transcriptional Modulation of Actin-Cytoskeleton Regulators During TGF-β-Induced Epithelial-Mesenchymal Transition.J Proteome Res 2009,8:35-47
    [51]胡海燕,张沅.肿瘤治疗的新领域—siRNA.生命科学,2005;17(3):271-276.
    [52]Agrawal N,Dasaradhi PV,Mohmmed A,et al.RNA interference:biology,mechanism,and applications.Microbiol Mol Biol Rev,2003;67(4):657-685.
    [53]Lee NS,Dohjima T,Bauer G,et al.Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.Nat Biotechnol,2002;20(5):500-5.
    [54]Castanotto D,Li H,Rossi JJ.Functional siRNA expression from transfected PCR products.RNA,2002;8(11):1454-60.
    [55]俞富军,陈永平.RNA干扰技术.温州医学院学报,2005,35(2):168-170.
    [56]Hwang JH,Smith CA,Salhia B,et al.The Role of Fascin in the Migration and Invasiveness of Malignant Glioma Calls.Neoplasia,2008;10(2):149-159.
    [57]Imamichi Y,Waidmann O,Hein R,et al.TGF beta-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4.Biol Chem,2005,386(3):225-36.
    [58]Dumont N,Bakin AV,Arteaga CL.Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells.J Biol Chem,2003,278(5):3275-85.
    [59]Bakin AV,Rinehart C,Tomlinson AK,et al.p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration.J Cell Sei,2002,115(Pt 15):3193-206.
    [60]Prehn JH,Bindokas VP,Marcuccilli C J,et al.Regulation of neuronal Bcl-2 protein expression and calcium homeostasis by transforming growth factor type β confers wide ranging protection on rat hippocampal neurons.Proc Natl Acad Sci USA,1994,91:12599-12603.
    [61]Yu L,Hebert MC,Zhang YE.TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses.EMBO J 2002,21:3749-3759.
    [62]Hung WC,Chang HC,Chuang LY.Transforming growth factor beta 1 potently activates CPP32-1ike proteases in human hepatoma cells.Cell Signal,1998,10:511-515.
    [63]McGinnis KM,Gnegy ME,Park YH,et al.Procaspase-3 and poly(ADP)ribose polymerase(PARP)are calpain substrates.Biochem Biophys Res Commun,1999,263:94-99.
    [64]Li X,Zhang YY,Wang Q,et al.Association between endogenous gene expression and growth regulation induced by TGF-β1 in human gastric cancer cells.World J Gastroenterol,2005,11(1):61-68.
    [65]Sanna-Maria Ka"ko" hen,Katri S.Selander,John M.Chirgwin,Juan Juan Yin,Suzanne Bums,Wayne A.Rankin,Barry G.Grubbs,et al.Transforming Growth Factor-β Stimulates Parathyroid Hormone-related Protein and Osteolytic Metastases via Smad and Mitogen-activated Protein Kinase Signaling Pathways.J Biol Chem 2002,277:24571-24578
    [66]Elbashir SM,Harborth J,Weber K,et al.Analysis of gene function in somatic mammalian cells using small interfering RNAs.Methods,2002,26:199-213.
    [67]叶绿,张红英,杨光华,等.转化生长因子-β/Smad信号对人横纹肌肉瘤细胞RD生长和凋亡的调控.中华病理学杂志,2005,34(7):407-412.
    [68]Gao ZY,Wang ZM,Shi Y,et al.Modulation of Collagen Synthesis in Keloid Fibroblasts by Silencing Smad2 with siRNA.Plastic and Peconstructive Suegery,2006,118(6):1328-1337.
    [69]王守立,杨光华,步宏,等.TGF-β1信号通路蛋白在横纹肌肉瘤中的表达.肿瘤,2004,24(5):440-443.
    [70]Itoh S,Itoh E,Goumans MJ,et al.Signaling of transforming growth factor-βfamily members through Smad proteins.Eur J Biochem,2000;267:6954-6967.
    [71]Moustakas A,Souchelnytskyi S,Heldin CH,S mad regulation in TGF-β signal transduction.J Cell Sci,2001;114:4359-4369.
    [72]Blanchctte F,Rivard N,Rudd P,ct al.Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gcne transactivation,J.Biol.Chem.2001;276:33986-33994.
    [73]Yuc J,Mulder KM,Requirement of Ras/MAPK pathwayactivation by transforming growth factor beta for transforming growth factor beta 1 production in a smad-depcndent pathway,J.Biol.Chem.2000;275:35656.
    [74]Derynck R,Zhang YE.Smad-dependent and Smad-independent pathways in TGF-β family signaling.Nature 2003,425:577-584
    [75]Ju HR,Jung U,Sonn CH,et al.Aberrant signaling of TGF-β1 by the mutant Smad4 in gastric cancer cells.Cancer Lett,2003,196:197-206.
    [76]Sane Y,Harada J,Tashiro S,Gotoh MR,Maekawa T,Ishii S.ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling.J Biol Chem 1999,274:8949-8957
    [77]Massague J,Chen YG.Controlling TGF-beta signaling.Genes Dev 2000,14:627-644.
    [78]Han EH,Hwang YP,Lee K J,Jeong TC,Jeong HG.1-Bromopropane induces macrophage activation via extracellilar signal-regulated kinase 1/2 MAPK and NF-Kb pathways.Cancer Lett 2008,262:28-36.
    [79]Southby J,Murphy LM,Martin T J,et al.Cell-specific and regulator-induced promoter usage and messenger dbonucleic acid splicing for parathyroid hormone-related protein.Endocrinology,1996,137:1349-1357.
    [80]Engel ME,McDonnell MA,Law BK,et al.Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription.J Biol Chem,1999,274:37413- 37420.
    [81]Watanabe,H.,de Caestecker,M.P.,and Yamada Y.Transcriptional cross-talk between Smad,ERK1/2,and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells.J Biol Chem.2001,276:14466-14473.
    [82]Yakymovych I,Dijke PT,Heldin CH,et al.Regulation of Smad signaling by protein kinase C,FASEB J.2001,15:553-555.
    [83]Engel ME,McDonnell MA,Law B,et al.Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription.J Biol Chem,1999,(274):37413-37420.
    [84]Imamura T,Kanai F,Kawakami T,et al.Proteomic analysis of the TGF-βsignaling pathway in pancreatic carcinoma cells using stable RNA interference to silence Smad expression.Biochem Biophys Res Commun.2004,318:289-296.
    [1]KBryan J,Fame RE.Separation and interaction of the major components of sea urchin actin gel.J Mol Biol,1978,125(2):207-224.
    [2]Hashimoto Y,Ito T,Inoue H,et al.Prognostic significance of fascin overexpression in human esophageal squamonscell carcinoma.Clin Cancer Res,2005,11(7):2597-2605.
    [3]Hashimoto Y,Shimada Y,Kawamum J,et al.The prognostic relevance of fascin expression in human gastric carcinoma.Oncology,2004,67(3-4):262-270.
    [4]Jawhari AU,Buda A,Jenkins M,et al.Fascin,an actin-bunding protein,modulates colonic epithelial cell invasiveness and differentiation in vitro.Am J Pathol,2003,162(1):69-80.
    [5]Yainasliiro-Matsurnura S,Matsurnura F.Intraceilular localization of the 55-kD actin-bundling protein in cultured ceils:spatial relationships with aetin,alpha-aetinin,tropoinposin,and finnbdn.J Ceil Biol,1986,103(2):631-640.
    [6]Ono S,Yamakita Y,Yamashim S,et al.Dentifieation of an actin binding region and a protein kinase C phoep horylation site on human fascin.J Biol Chem,1997,272(4):2527-2533.
    [7]Adams JC,Clelland JD,Collett GD,et al.Cell-matrix adhesions differentially regulate fasein phosphorylation.Mol Biol Cell,1999,10(12):4177-4190.
    [8]GuoW,Giancotti FG.Integrin signalling during tumour p rogression.Nat RevMol Ceil Biol,2004,5(10):816-826.
    [9]Kureishy N,Sapountzi V,Prag S.Fascins,and their roles in ceil structure and function.Bioessays,2002,24(4):350-361.
    [10]Yamashiro S,Yamakita Y,Ono S,et al.Fascin,an actin-bundling protein,inducesmembrane protrusions and increases eellmotility of epithelial cells.Mol Biol Cell,1998,9(5):993-1006.
    [11]荣举,许丽艳,蔡唯佳,等.Fascinl基因在永生化食管上皮细胞癌变中的表达.癌症,2004,23(3):243-248.
    [12]Xie JJ,Xu LY,Zhang HH,et al.Role of fascin in the proliferation and invasiveness of esophageal carcinoma cells.Biochem Biophys Res Commun 2005,337:355-362
    [13]张连海,牛兆建,仲西瑶,等.利用组织芯片研究Fascin在食管癌中的表达.中国临床医学,2006,13(6):924-926.
    [14]王蓓,李凯,封国生.Fascin蛋白在76例胃癌中的表达及其与临床、病理因素的关系.中日友好医院学报,2007,21(1):12-14.
    [15]Hashimoto Y,Parsons M,Adams JC.Dual Actin-bundling and Protein Kinase C-binding Actvifies of Fascin Regulate Carcinoma Cell Migration Downstream of Rac and Contribute to Metastasis.Mol Biol Cell,2007,18:4591-4602.
    [16]杨强,卢朝辉,罗玉凤,等.Fascin蛋白在结、直肠腺瘤和癌中的表达及意义.诊断病理学杂志,2006,13(5):359-361.
    [17]Grothey A,Hashizume R,Sahin AA,et al.Fascin,an actin-bundling protein associated with cellmotility,is up regulated in hormone receptor negative breast cancer.Br J Cancer,2000,83(7):870-873.
    [18]Yoder BJ,Tso E,SkaceLM,et al.The expression of fascin,an actin-bundlingrnotility p rotein,correlateswith hormone receptor-negative breast cancer and a more aggressive clinical course.Clin Cancer Res,2005,11(1):186-192
    [19]Rodriguez - Pinilla SM,Sarrio D,Honrado E,et al.Prognostic significance of basal-like phenotype and fascin expression in node - negative invasive breast carcinomas.Clin Cancer Res,2006,12(5):1533-1539
    [20]Grothey A,Hashizume R,J i H,et al.C-erbB22/HER22 up regulates fascin,an actin-bunding protein associated with cellmotility,in human breast cancer cell lines.Oncogene,2000,19(42):4864-4875.
    [21]GuvakovaMA,BoettigerD,Adams JC.Induction of fascin spikes in breast cancer cells by activation of the insulin-like growth factor-I receptor.Int J Biochem Cell Biol,2002,34(6):685-698.
    [22]Pelosi G,Pastorino U,Pasini F,et al.Independent prognostic value of fascin immunoreactivi-ty in stage I nonsmall cell lung cancer.Br J Cancer,2003,24(88)4:537-547.
    [23]Goncharuk VN,Ross JS,Carlson JA.Actin2binding protein fascin exp ression in skin neop lasia.J CutanPathol,2002,29(7):430-438.
    [24]Hu W,McCrea PD,Deavers M,et al.Increased expression of fascin,motility associated p rotein,in cell cultures,derived from ovarian cancer and in borderline and carcinomatous ovarian tumors.Clin Exp Metastasis,2000,18(1):83-88.
    [25]张殊,林其德,狄文.BRMS1和fascin基因在卵巢上皮癌中的表达及其意义.2003,12(3):167-169.
    [26]Pinkus GS,Pinkus JL,Langhoff E,et al.Fascin,a sensitive new marker for Reed2Sternberg cells of Hodgkin's disease:evidence for a dendritic or B cell derivation.Am J Pathol,1997,150(2):543.
    [27]Fan G,Kotylo P,Neiman RS,et al.Comparison of fascin expression in anaplastic large cell lymphoma and Hodgkindisease.Am J Clin Pathol,2003,119(2):199.
    [28]Bakshi NA,Finn WG,Schnitzer B,et al.Fascin expression in diffuse large B-cell lymphoma,anaplastic large cell lymphoma,and classical Hodgkin lymphoma.Arch Pathol Lab Med,2007,131(5):742.
    [29]Lee TK,Poon RTP,Man K,et al.Fascin over-expression is associated with aggressiveness of oral squamous cell carcinoma.Cancer Lett,2007,254:308-315.
    [30]王永来,郑玉霞,陈双,等.子宫内膜癌中人类Fascinl基因的表达及临床意义.山东医药,2007,47(27):52-54.
    [31]刘秋雨,韩安家,游淑源,等.鼻咽癌组织中髓病毒LMPl与Fascin及磷酸化Stat3表达的相关性.癌症,2008,27(10):1070-1076.
    [32]Maitra A,Iacobuzio-Donahue C,Rahman A,et al.Immunohistochemical validation of a novel epithelial and a novel stromalmarker of pancreatic ductal adenocarcinoma identified by global expression microarrays:sea urchin fascin homolog and heat shock protein 47.Am J Clin Pathol,2002,118(1):52-59.
    [33]Hashimoto Y,Skacel M,Adams JC.Roles of fascin in human carcinoma motility and signaling:p rospects for a novel biomarker? Int J Biochem Cell Biol,2005,37(9):1787-1804
    [34]Tao YS,Edwards RA,Tubb B,et al.beta-Catenin associates with the actin-bunding protein fascin in a noncadherin complex.J Cell Biol,1996,134(5):1271-1281.
    [35]Keshamotmi VG,Jagtap P,Michailidis G,Strahler JR,Kuick R,Reka AK,Papoulias P,et al.Temporal Quantitative Proteomics by iTRAQ 2D-LC-MS/MS and Corresponding mRNA Expression Analysis Identify Post-Transcriptional Modulation of Actin-Cytoskeleton Regulators During TGF-β-Induced Epithelial-Mesenchymal Transition.J Proteome Res,2009,8:35-47.
    [36]杨强,卢朝辉,罗玉凤,等.Fascin蛋白在结、直肠腺瘤和癌中的表达及意义.诊断病理学杂志,2006,13(5):359-361.
    [1] Tatarelli C,Linnenbach A, Mimori K,et al.; Characterization of the human TESTIN gene localized in the FRA7G region at 7q31.2[ J ]. Genomics, 2000,68(1):1-12.
    [2] Zong SD, Bardin CW, Phillips D,et al.; Testins are localized to the junctional complexes of rat Sertoli and epididymal cells[ J ]. Biol Reprod, 1992,47(4):568-72.
    [3] Grima J,Zhu LJ,Zong SD, et al.; Rat Testin Is a Newly Identified Component of the Junctional Complexes in VariousTissues Whose mRNA Is Predominantly Expressed in the Testis and Ovary[J]. Biol Reprod, 1995, 52(2):340-55.
    [4] Cheng C K, Cheung C H, Lee W.Mouse Testin: Complementary DNA Cloning,Genomic Organization,and Characterization of Its Proximal Promoter Region[ J ].Biol Reprod, 2003, 68(4):1376-86
    [5] Grima J,Zhu L,Cheng CY. Testin is tightly associated with testicular cell membrane upon its secretion by sertoli cells whose steady-state mRNA level in the testis correlates with the turnover and integrity of inter-testicular cell junctions[ J ]. Biol Chem, 1997, 272(10):6 499-509.
    [6] Grima J, Cheng CY. Testin induction: the role of cyclic 3' , 5' -adenosine monophosphate/protein kinase A signaling in the regulation of basal and lonidamine-induced testin expression by rat Sertoli cells[ J ]. Biol Reprod,2000, 63(6):1648-60.
    [7] Grima J, Wong CC, Zhu LJ, Zong SD,et al.Testin secreted by Sertoli cells is associated with the cell surface, and its expression correlates with the disruption of Sertoli-germ cell junctions but not the inter-Sertoli tight junction[ J ].BiolChem , 1998, 273(33):21040-21053.
    [8] Cheng CY, Grima J, Stahler MS,et al.Testins are structurally related Sertoli cell proteins whose secretion is tightly coupled to the presence of germ cells [ J ].Biol Chem, 1989, 264(35):21386-93.
    [9] Alessandra Drusco, Nicola Zanesi, Claudia Roldo,et al。; Knockout mice reveal a tumor suppressor function for Testin[ J ].Proc Natl Acad Sci U S A., 2005,102(31):10947-51.
    [10] Sarti M, Sevignani C, Calin GA,et al.Adenoviral transduction of TESTIN gene into breast and uterine cancer cell lines promotes apoptosis and tumor reduction in vivo [J].Clin Cancer Res, 2005, 11(2Pt 1):806-13.
    [11] ohkouchi S, Kawamoto N, Koga M,et al.Identification of a CTL-directed epitope encoded by an intron of the putative tumor suppressor gene Testin of the common fragile site 7G region:a peptide vaccine candidate for HLA-B52+and HLA-62+cancer patients.[J].Eur J Immunol,2003,33(11):2964-73.
    [12]Cheng C.Y.,Morals I.and Bardin C.W.Testins Are Structurally Related to the Mouse Cysteine Proteinase Precursor But Devoid of Any Protease/Anti-Protease Activity.Biochem Biophys Res Commun,1993,191(1):224-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700