用户名: 密码: 验证码:
基于AMESim和ADAMS联合仿真的钢轨打磨平台的气动系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速铁路迅速发展,国内对国产打磨车的需求越来越迫切。本文以国产打磨车的研发为背景,针对打磨车气动系统压力输出和打磨车运行速度等关键问题进行了理论研究、仿真分析和实验验证,并为今后的研究提供实用的仿真平台和实验平台。
     首先,在研究原有打磨实验台的基础上,对其进行简化,并对简化后方案的位置和受力进行了理论分析。之后利用PRO/E和ADAMS等软件建立机械仿真模型,利用AMESim建立气动和控制仿真模型,并完成ADAMS与AMESim联合仿真的设置。
     其次,通过对搭建的实验平台进行性能测试实验,对数学模型和仿真模型的正确性进行了验证。在将实验结果与理论计算结果对比后,进行了误差分析,并依此对数学模型和仿真模型进行了修正。修正后的结论与实验结果基本一致,证明了本文建立的数学模型和仿真模型的正确合理性。
     再次,对原有方案的静态接触和抗冲击性能进行联合仿真,根据所得到的仿真数据对方案进行分析,并结合气缸、管路和阀等重要元件的影响机理研究,确定了基于阀的优化方案。通过对基于阀的优化方案的仿真分析发现,其静态接触和抗冲击性能都得到了较大提升,证明了优化后系统的可靠性与实用性均得到提高。
     最后在基于阀的优化方案的基础上,重点研究了钢轨打磨车的行进速度对打磨效果的影响。通过理论分析获得并验证了理想条件下,打磨作业的最高速度计算方法,并通过一系列仿真分析进一步验证了该计算方法的正确性。
With the rapid development of the high-speed railway, the requirements of the railway grinding machines are becoming urgent in China. The research and development for the railway project focused on the domestic railway grinding machine, the pressure output of the pneumatic system and the influence of the grinding vehicle's running speed. All of the research was based on theoretical studies, simulation analysis and experimental verification.
     First of all, research on the original design of the experimental grinding platform allowed the mechanical structure of the design to be simplified. With PRO/E, ADAMS and AMESim, the simulation models were then established. After that, the mathematical models were built, and included analysis of pressure and position.
     Secondly, the correctness of the mathematical models and simulation models were verified through experimentation. Comparing the results of both theoretical calculations and actual experimentation, the deviations were analyzed. Based on the analysis, the results of the modified mathematical and simulation models were the same as the results of the experiments. The correctness of mathematical and simulation models was thus verified.
     Then, with the co-simulation data, the original design was analyzed and improved. According to the mathematical analysis of the air cylinder, pipeline and valve, a new type of valve was used. The deviation of the pressure output in the experiment of contact decreased11%, and the maximum pressure output in the shock resistance experiment decreased6.94%. The superiority and effectiveness of the improvement was validated from the simulation analysis.
     Finally, the grinding effect of the platform was studied, based on the optimized system. According to the results of the calculations, the equation was verified as correct. This equation represents the maximum speed of the grinding operation under ideal conditions. Thus, the correctness of the theory was verified via the simulations.
引文
[1]郭福安,张梅.客运专线钢轨打磨的思考[J].中国铁路,2008,(3):53-54.
    [2]Kumar. S, Espling. U, Kumar. U.Holistic Procedure for Rail Maintenance in Sweden [J].Journal of Rail and Rapid Transit. Sage Publications Limited2008-12:331-344.
    [3]刘增杰.高速铁路的钢轨打磨技术[C].加快铁路现代化建设适应全面建设小康社会的要求.沈阳.2003北京,中国铁道学会.2003:243-249.
    [4]Rolf Dollevoet, ZiliLi, Marija Molodova, Xin Zhao. The Validation of Some Numerical Prediction on Squats Growth [J]. 8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009), Firenze。Italy, September 15-18.2009:69-377.
    [5]Zili Li, XinZhao, Rolf Dollevoet. The Determination of A Critical Size for Rail Top Surface Defects to Grow Into Squats[J].8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems(CM2009).Firenze, Italy, September 15—18,2009:379-388.
    [6]刘启跃.减缓曲线钢轨侧磨的方法探讨[J].铁道建筑,1997(05):28-30.
    [7]曹岩.我国高速铁路用钢轨打磨列车选型及应用研究[J].铁道标准设计,2011,(8):31-34.
    [8]Coetzer, S. The history of rail grinding in southern Africa [J], Civil Engineering (Yeoville).2003(1):15-17.
    [9]周亮节,刘建新,崔大宾等.铁路钢轨预防性打磨型面及其对车辆运行性能的影响[J].铁道机车车辆,2010,30(5):34-39.
    [10]雷晓燕.钢轨打磨原理及其应用[J].铁道工程学报,2000,(1):31-37.
    [11]NILS SON R. On wear in rolling/sliding contacts [D]. Stockholm:Royal Institute of Technology, Department of Machine Design.2005.
    [12]王文健,陈明韬,郭俊等.高速铁路钢轨打磨技术及其应用[J].西南交通大学学报,2007,42(5):574-577.
    [13]Sidney Coetzer. The history of rail grinding in southern Africa [J]. CIVIL ENGINEERING. Jan2003:15-17.
    [14]贺振中.国外钢轨打磨技术的应用与思考[J].中国铁路,2000,(10):38-40.
    [15]RICK A. Rail grinding operations in Sweden [J]. Track & Signal, 2007,11(4):16-19.
    [16]ARICH S. Rail grinding strategies adopted In Australia [J]. Rail Engineering International, 2005,9 (4):4-6.
    [17]SHARMAS. Positive results from rail Grinding in India [J]. International Rail/ray Journal, 2004,XLIV(5):41.
    [18]ROBAP, RONEY M. Rail Grinding best Practices [C]//2003 Conference. http://www.arema/library/2003_Conference_Proceedings/0062.pdf.
    [19]KRAUSE H, LEHNAH.Investigation Of tribological characteristics of willing/sliding friction systems by mesJID of systematic west experiments under well-defined conditions [J]. Wear, 1987, 119(2):153-174.
    [20]MAGELE, SROBAP, SAWLEYK, et a 1. Control of rolling contact Fatigue ofmils[C]//2004 Conference. http://www.arema.org/eseries/scriptcontent/custom/e_arema/library/2004_Conference_Proce edings//00011.pdf.
    [21]KALOUSEK J,MAGEL E. Achieving a balance: the "magic" wear rate [J].Railway Track & Structures,1997,93(5):50-52.
    [22]许建明.钢轨打磨列车的打磨工艺及标准[C].//中国铁道学会大型养路机械学术研讨会论文集.昆明.1999.北京,中国铁道学会.1999:7-11.
    [23]叶民.铁路风动K车的技术性优化[J].铁道标准设计,2001,21(5):42-43.
    [24]赵凤德.钢轨打磨列车国产化研制[J].铁道标准设计,2001,21(5):43-44.
    [25]张铭达.高速重载线路钢轨打磨方法优化研究[D].西南交通大学,2006.
    [26]王朋.钢轨打磨车在200kn/h提速线路中的应用[C].2008年工务机械装备和应用创新学术研讨会论文集.湖北襄樊.2008.北京,中国铁道学会.2008:61-62.
    [27]苏晓声.德国试用高速轨道打磨车[J].铁道知识.2006(3):21-21.
    [28]金学松,杜星,郭俊等.钢轨打磨技术研究进展[J].西南交通大学学报,2010,45(1):1-11.
    [29]ASMUSSEN B, ONNICH H, STRUBE R, et al. Status and perspectives of the "specially monitored track"[J]. Journal of Sound and Vibration, 2006,293(3-5):1070-1077.
    [30]JUDGE T. To grind, or not to grind?[J].Railway Age,2002,203(11):33-36.
    [31]刘学毅.不对称打磨技术减缓钢轨侧磨效果触探[J].中国铁路,1993(10):12-14.
    [32]Chen Peng,Gao Liang,and Hao Jianfang. Dynamics Simulation on Asymmetrical Rail Grinding in Railway Curve[J].ICTE 2007:406-411.
    [33]牛道安,李志强.提速线路钢轨打磨作业方案的探讨[J].铁道建筑.2006(8):91-93.
    [34]郭俊,刘启跃,王文健.钢轨打磨对轮轨滚动接触斑行为影响研究[J],铁道建筑,2009(12):92-94.
    [35]毛文力,汤国华.钢轨打磨车打磨作业后轨顶不平顺度的研究[J].铁道建筑,2009,(10):98-100.
    [36]王智深.汽车气动制动系统制动性能及其控制电磁阀动态特性的研究[D].武汉理工大学,2009.
    [37]徐炳辉.气动手册[M].上海:上海科学技术出版社,2005:1-2.
    [38]王德顺.液压气动电气三种控制的对比及展望[J].本钢技术,1997,(4):32-33.
    [39]杨尔庄.我国液压气动技术的现状与展望[J].液压与气动,1998,(6):1-6.
    [40]http://baike.baidu.com/view/1712448.htm#4.
    [41]丁海波.基于模糊控制的气动比例阀缸系统的位置控制[D].苏州大学,2009.
    [42]刘正雷.闭环气动位置控制方法的研究[D].贵州大学,2008.
    [43]卫荣编.气动技术[M].北京:中国轻工业出版社,2005:2-8.
    [44]SMC(中国)有限公司编.现代实用气动技术[M].北京:机械工业出版社,2004:25-32.
    [45]许菁主编.液压与气动技术[M].北京:机械工业出版社,2005:19-24.
    [46]温明成.气动电磁阀可靠性试验方法的研究[D].大连海事大学.2008.
    [47]李月月.基于ADAMS和MATLAB的机器人联合仿真[D].河北大学,2010.
    [48]雷刚.基于ADAMS的麦弗逊式悬架系统的虚拟仿真分析及其优化设计[D].武汉理工大学,2010.
    [49]Lino P:Maione B, Rizzo A. Nonliner modeling and control of a common rail injection system for diesel engines [J]. Applied Mathematical Modeling.2007,31(9):1770-1784.
    [50]Yu Youhong:Chen Lingen:Sen Fengrui, et al. Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine [J]. Applied Energy,2005,80:1-10.
    [51]余建国,赵同铭.基丁Adams和AMESim的海下平台拖缆系统的设计与联合仿真[J].江苏科技大学学报(自然科学版),2010,24(2):116-119.
    [52]陈立萍等.机械系统动力学分析及ADAMS应用教程[M].清华大学出版社.2005:1-3:
    [53]周鑫.基于Adams与Matlab的汽车电动助力转向系统的联合仿真[D].武汉理工大学,2009.
    [54]郑建荣ADAMS——虚拟样机技术入门与提高[M].机械工业出版社.2002:190-203.
    [55]付永领,齐海涛LMS Imagine. Lab AMESim系统建模和仿真实例教程[M].北京:北京航空航天大学出版社,2011:1-2.
    [56]马长林,黄先祥,郝琳等.基于AMESim的电液伺服系统仿真与优化研究[J].液压气动与密封,2006,(1):32-34.
    [57]付永领,祁晓野LMS Imagine. Lab AMESim系统建模和仿真参考手册[M]北京:北京航空航天大学出版社,2011:1-3.
    [58]刘延俊.气动比例位置系统的控制方法及动态特性研究[D].山东大学.2008.
    [59]莫林,卢光灿.钢轨打磨质量控制因素及恒压恒流系统的应用[J].湖南科技学院学报,2009,30(8):129-134.
    [60]刘昌斌.精确定位和压力控制在气动系统中的研究与实现[D].同济大学.2009.
    [61]段剑峰.道岔综合打磨技术探讨[J].铁道建筑,2008,(11):75-76.
    [62]刘清.铁路磨轨车打磨工艺及打磨质量的制订[C].第八届物流工程学术年会论文集.太原,2008,北京,中国机械工程学会,2008:366-370.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700