氯喹体外抗肝细胞癌作用的实验研究及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌是目前严重威胁人类生命安全的疾病之一。寻求高效低毒的抗肿瘤药物及治疗方法一直是科学界研究的热点。氯喹是老药,具有广泛的生理学效应,以往主要用来治疗疟疾、自身免疫性疾病等,近年来发现氯喹具有治疗肿瘤的作用。本研究旨在研究氯喹的抗肝细胞癌作用并对其作用机制进行探讨。采用MTT法检测氯喹对人肝细胞癌HepG2细胞生长抑制作用;采用流式细胞术检测氯喹对人肝细胞癌HepG2细胞周期和凋亡的影响;采用免疫印迹法检测氯喹对HepG2细胞周期蛋白cyclinB1及NF-кB、p-IкBa、ERK、p-JNK和P38蛋白表达水平的影响。结果表明,氯喹可抑制HepG2细胞生长,诱导细胞发生G2/M期阻滞而影响细胞周期进程以及通过抑制HepG2细胞周期蛋白cyclinB1表达、抑制NF-кB、p-IкBa及ERK和诱导p-JNK蛋白表达水平促进细胞凋亡和抑制细胞增殖有关。本研究结果将为肝细胞癌的治疗提供新的药物,并且对老药氯喹用于治疗肝细胞癌的临床应用提供重要的实验依据。
Up to date, hepatocellular carcinoma therapy is still one of the serious problems that puzzle the scientists in the world. It is an important topic to seek an efficient way to treat hepatocellular carcinoma in the study of hepatocellular carcinoma. In this study, we explored the topic.
     1. Influence of chloroquine on apoptosis and cell cycle and the proliferation.
     First: HepG2 cells were divided into six groups:control group and chloroquine (8、16、32、64 and 128uM ) groups. The cell viability was determined by MTT; The cell cycle and apoptosis was detected by flow cytometry. Results showed that the cell viabilities were inhibited significantly 24h after chloroquine (32-128 uM) or 48-72h after chloroquine (8-128 uM) (P<0.01) ,compared with control group; HepG2 cells treated with chloroquine (32-128uM) for 24h were obviously arrested at G2/M phases,compared with control group (P<0.01). we concluded that chloroquine can suppress the activities of hepatoma HepG2 cells by inhibiting cells proliferation, inducing cells apoptosis and arresting cell cycle in vitro. So chloroquine is probably the drug for hepatocellular carcinoma.
     2. The study found that cell apoptosis was different with different chloroquine and blockers.The apoptosis increased when the cells were treated by chloroquine and PDTC;The apoptosis decreased when the cells were treated by chloroquine and sp600125;The apoptosis was not changed by chloroquine and SB203580 and PD98059.
     3. Measurement of protein level
     Four protein were studied, including NF-кB、p-IкBa、P38、ERK and p-JNK. Western Blot assay was employed for the measurement of protein level 3.1 Changes in NF-кB protein expression
     Results showed that NF-кB protein expression tended to decrease with the increase of chloroquine , the most effective inhibitory occurred at 128 uM. The inhibitor of NF-кB increased the chloroquine effect.
     3.2 Changes in p-IкBa protein expression
     Results showed that p-IкBa protein expression tended to decrease with the increase of chloroquine , the most effective inhibitory occurred at 128 uM.
     3.3 Changes in P38 protein expression
     Results showed that no any change was observed in P38 protein expression.
     3.4 Changes in p-JNK protein expression
     Results showed that p-JNK protein expression tended to increase with the increase of chloroquine , the most effection occurred at 128 uM.
     3.5 Changes in ERK protein expression
     Results showed that ERK protein expression tended to decrease with the increase of chloroquine , the most effective inhibitory occurred at 128 uM. 3.6 By application of blockers, the study further confirmed that the apoptosis was increased due to the inhibitory of NF-кB and p-IкBαby chloroquine. The apoptosis was increased due to the increase of p-JNK by chloroquine.The proliferation of cells was inhibited owing to the ERK protein decrease by chloroquine.
     Taken together, the chloroquine can suppress the activities of hepatoma HepG2 cells by inhibiting cells proliferation, inducing cells apoptosis and arresting cell cycle in vitro. So chloroquine is probably the drug for hepatocellular carcinoma. By inhibiting the protein expression of NF-кB、p-JNK and ERK. But there was no change in the express of P38 protein.
引文
[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002[J]. CA Cancer J Clin, 2005,55(2):74-108.
    [2] Yu AS, Keeffe EB. Management of hepatocellular carcinoma [J]. Reviews in Gastroenterological Disorders, 2003,3(1):8-24.
    [3] Chou YY, ChengAL, Hsu HC. Exp ression of P-glycop rotein and p53 in advanced hepatocellular carcinoma treated by single agent chemotherapy: Clinical correlation. J Gastroeterol Hepatol, 1997, 12 (8):569.
    [4]杨甲梅.经皮酒精注射治疗原发性肝癌[J].肝胆外科杂志, 1998,6(5):285-288.
    [5] Llovet JM, RealMI, Montana X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomized controlled trial[J]. Lancet, 2002,359(9319):1734- 1739.
    [6]吴孟超,周伟平,刘辉.肝细胞癌早期诊断与治疗对策新进展.传染病信息, 2009,22(2),65.
    [7] Goldberg SN, Ahmed M. Minimally invasive image guided therapies for hepatocellularr carcinoma[J]. J Clin Gastroenterol, 2002,35 (5Suppl 2):S115-S129.
    [8]杨永平.肝细胞癌非手术治疗的现状和进展.传染病信息, 2009,22(2),73-77.
    [9] Daniele B, De Sio I, Izzo F, et al. Hepatic resection and percutaneous ethanol infection as treatments of small hepatocellular carcinoma: a Cancer of the Liver Italian Program (CLIP08) retrospective case-control study[J]. J Clin Gastroenterol, 2003,36(36):63-67.
    [10] Hemming AW, Reed AI, Howard RJ, et al. Preoperative portal vein embolization for extended hepatectomy[J]. Ann Surg, 2003,237(5):686-691.
    [11]吴沛宏,张福君,赵明,等.肝动脉栓塞化疗联合CT导向射频消融术治疗中晚期肝癌的评价[J].中华放射学杂志, 2003,37(10):901-904.
    [12]张福君,吴沛宏,赵明,等.肝动脉栓塞化疗后射频消融联合酒精消融对原发性肝癌的疗效评价[J].中华肿瘤杂志, 2005,27(4):248-250.
    [13] Huang GT, Lee PH, Tsang YM, et al. Percutaneous ethanolinjection versus surgical resection for the treatment of small hepatocellular carcinoma: a prospective study[J]. Ann Surg, 2005,242(1):36- 42.
    [14] Rilling WS, Drooz A. Multidisciplinary management of hepatocellular carcinoma[J]. Journal of Vascular and Interventional Radiology, 2002,13(9Pt2):S259-S263.
    [15]郑树森.肝移植的适应证与手术时机[J].消化外科, 2006,5(1):7-10.
    [16]沈锋,吴孟超.肝癌切除术后的抗复发治疗[J].中华医学杂志, 2005,85(41):2886- 2888.
    [17] Shetty K, Timmins K, Brensinger C, et al. Liver transplantation for hepatocellular carcinoma validation of present selection criteria in predictingoutcome[J]. Liver Transpl, 2004,10(7):911-918.
    [18] Vaux DL, Korsmeyer SJ. Cell death in development. Cell, 1999,96:245-254.
    [19] Kerr JFR, Wyllie AH, Currie AR. Apoptosis:a basicbiological phenomenon with wide ranging implicationsin tissue kinetics[J]. Br J Cancer, 1972,26(4):239-257.
    [20] Danial, N.N., Korsmeyer, S.J. Cell death: critical control points. 2004, Cell 116(2): 205-219.
    [21] Peter ME and Krammer PH. The CD95 (APO-1/Fas) DISC and beyond. Cell Death Differ. 2003,10,26-35.
    [22] Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003 Jul 25;114(2):181-90.
    [23] Hengartner MO.The biochemistry of apoptosis. Nature. 2000 Oct 12;407(6805):770-6.
    [24] Leist M, Jaattela M. Four deaths and a funeral: Nat Rev Mol Cell Biol. 2001,2:589-98.
    [25] Jaattela M, Tschopp J. Caspase-independent cell death in T lymphocytes. Nat Immunol. Nat Immonol. 2003;4,416-423.
    [26] Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251-306.
    [27] Kerr J FR, Wyllie AH, Currie AR, et al. Apoptosis:a basic biologicalphenomenon with wideranging imolications in tissue kinetics[J]. Br J Cancer, 1972,26:239-242.
    [28] Sarafan-Vasseur N, Lamy A, Bourguignon J, et al. Overexpression of Btype cyclins alters chromosomal segregation [J]. Oncogene, 2002,21(13):2051-2057.
    [29] Soria JC, Jang SJ, Khuri FR, et al. Over-expression of cyclin B1 in early-stage non-small cell lung cancer and it s clinical implication [J]. Cancer Res, 2000,60(15):4000-4004.
    [30] Wang A, Yoshimi N, Ino N, et al. Over-expression of cyclin B1 in human colorectal cancers [J]. J Cancer Res Clin Oncol, 1997,123 (2):124-127.
    [31] Mashal RD, Lester S, Corless C, et al. Expression of cell cycle-regulated proteins in prostate cancer [J]. Cancer Res, 1996,56:4159-4163.
    [32]于良,孙中杰,吴胜利,等.白藜芦醇对小鼠移植性肝癌组织中细胞周期蛋白的影响[J].第四军医大学学报, 2002;23(23):2172- 2174.
    [33]童彤,郭素萍.抗肿瘤抗生素云南霉素对细胞周期的作用及分子机理[J].癌症, 2000;19(4):289-292.
    [34]袁静萍,袁修学,凌晖,等.中国药理学通报, 2009 Oct;25(10): 1396-1397.
    [35]李龙江,陈志琼,汤为学,等.德氮吡格对人肝癌细胞株增殖抑制的体外研究.重庆医科大学学报, 2005,30(3).
    [36]谢贤和,林银英. Cyclin B1与肿瘤关系的研究进展.海南医学院学报2007 ,13.
    [37] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation[J]. Physiol Rev, 2001,81(2):807-869.
    [38] Wei Cui, Eugenia M. Yazlovit skaya et al. Cisplatin-Induced Responseof c-J un N-Terminal Kinase 1 and Ext racellure Sigal-Regulated Protein Kinase 1 and 2 in a Series of isplatin-Resistant Ovarian Carcinoma Cell Lines. Molecular Carcinogenesis 2000,29:219-228.
    [39] Takaaki Koyama, Takashi Mikami, Takashi Koyama, et al. Apoptosis Induced by Chemot herapeutic Agent s Involves c-Jun N-Terminal Kinase Activation in Sarcoma Cell Lines. Wiley InterScience, 2006,10:1153-1162.
    [40] Lin A. Activation of JNK signaling pathway: breaking the brake on apoptosis[J]. Bioessays, 2003, 25:17-24.
    [41] Tournier C, Hess P, Yang D D, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway[J]. Science, 2000, 288(5467):870-874.
    [42] Ferrer I, Planas AM. Signaling of cell deat h and cell survival following focal cerebral ischemia: life and deat h st ruggle in the penumbra. J Neropat hol Exp Neurol, 2003,62:329-339.
    [43] Takamura M, Matsuda Y, Yamagiwa S. An inhibitor of c-Jun NH2-terminal kinase, SP600125, protects mice from d-galactosamine/ lipopolysaccharide-induced hepatic failure by modulating BH3-only proteins[J].Life Sci, 2007,80(14):1335-1344.
    [44] Kabuyama Y, Homma MK, Sekimata M, Homma Y. Wave-length-specific activation of MAP kinase family proteins by monochromatic UV irradiation. Photochem Photobiol 2001;73:147-152.
    [45] Chen YH, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-J un N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell deat h and proliferation. J Biol Chem 1996;271:31929-31936.
    [46] Tournier C, Hess P, Yang DD, et al. Requirement of JNK for stress-induced activation of t he cytochrome c-mediated death pathway. Science 000;288:870-874.
    [47] SHIM H Y, PARKJ H, PAIK H D, et al. Acacetin-induced apoptosis of human breast cancer MCF-7 cells involves caspase cascade mitochondria-mediated death signaling and SAPK/JNK1/2-c-Jun activation [J]. Mol Cells, 2007,24(1):95-104.
    [48] Brewster JL, De Valoir T, Dwyer NC et al. An osmosensing signal transduction pathway in yeast[J]. Science, 1993,259(5102):1760-1763.
    [49]梁先敏,杨克敌. Caspase和JNK/SAPK、p38 MAPK与细胞凋亡.国外医学卫生学分册, 2008,35(1):5-10.
    [50] LIU S I, HUANG C C, HUANG C J, et al. Thimerosal-induced apoptosis in human SCM1 gastric cancer cells :activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2 +] i elevation[J]. ToxicolSci, 2007,100(1):109-117.
    [51] FAN Y, CHEN H, QIAO B, et al. Opposing effects of ERK and p38 MAP kinases on HeLa cell apoptosis induced by dipyrithione[J]. Mol Cells, 2007,23(1):30-38.
    [52] Ito Y, Sasak Y, Horimoto M, et al. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in human hepatocellular carcinoma. Hepatology, 1998,27(4):951-958.
    [53] Besson A, Davy A, Robbins SM, et al. Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene, 2001, 20(50):7398-7407.
    [54] Zaffran Y, Destaing O, RouxA, et al. CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol, 2001,167(12):6780-6785.
    [55] Johnson GL, Lapadal R. Mitogen-activated protein kinase pathways mediated by ERK, JNK and P38 protein kinase. Science, 2002;298;1911-1912.
    [56] Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature, 1997, 385(6616):544-548.
    [57] Van den BrinkMR, Kapeller R, Pratt JC, et al. The extracellular signal regulated kinase pathway is required for activation-induced cell death ofT cells. J Biol Chem, 1999, 274(16):11178-11185.
    [58]赵艳,吴坤,于颖惠,等. ERK1/2在维生素E琥珀酸酯诱导人胃癌细胞凋亡中的作用.卫生研究, 2003,32(6):573-575.
    [59] Dutta J, Fan Y, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-kappaB, Oncogene. 2006 Oct 30;25(51):6800-16.
    [60] Kucharczak J, Simmons MJ, Fan Y. To be, or not to be: NF- B is the answer–role of Rel/NF- B in the regulation of apoptosis. Oncogene (2003) 22, 8961–8982.
    [61] Bruce-Chwatt LJ, editor. Chemotherapy of malaria. WHO Monograph Series 27. Geneva: World Health Organization; 1981.
    [62] Radl S. From chloroquine to antineoplastic drugs? The story of antibacterial quinolones. Arch Pharm Med Chem Res 1996;329: 115-9.
    [63] Munjeri O, Hodza P, Osim EE, Musabayane CT. An investigation into the suitability of amidated pectin hydrogel beads as a delivery matrix for chloroquine. J Pharm Sci 1998;87:905-8.
    [64] Pandey AV, Bisht H, Babbarwal VK, Srivastava J, Pandey KC, Chauhan VS. Mechanism of malarial haem detoxification inhibition by chloroquine. Biochem J 2001;355:333-8.
    [65] Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin Pharmacokinet 1996; 30:263-99.
    [66] Wetsteyn JCFM, de Vries PJ, Oosterhuis B, van Boxtel CJ. The pharmacokinetics of three multiple dose regimens of chloroquine: implications for malaria chemoprophylaxis. Br J Clin Pharmacol 1995;39:696-9.
    [67] Adelusi SA, Salako LA. Tissue and blood concentrations of chloroquine following chronic administration in the rat. J Pharm Pharmacol 1982;34:733-5.
    [68] Gustafsson LL, Walker O, Alvan G, Beermann B, Estevez F, Gleisner L, et al. Disposition of chloroquine in man after single intravenous and oral doses. Br J Pharmacol 1983;15:471-9.
    [69] HouzéP, de Reynies A, Baud FJ, Benatar MF, Pays M. Simultaneous determination of chloroquine and its three metabolites in human plasma, whole blood and urine by ionpair high-performance liquid chromatography. J Chromatogr 1992;574:305-12.
    [70] Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 1996;31:257-74.
    [71] Kim KA, Park JY, Lee JS, Lim, S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 2003;26:631-7.
    [72] Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, et al. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Disposition 2003;31:748-54.
    [73] Aderounmu AF. In vitro assessment of the antimalarial activity of chloroquine and its major metabolites. Am J Trop Med Parasitol 1984;78:581-5.
    [74] Verhoef H, Hodgins E, Eggelte TA, Carter JY, Lema O, West CE, et al. Anti-malarial drug use among pre-school children in an area of seasonal malaria transmission in Kenya. Am J Trop Med Hyg 1999; 61:770-5.
    [75] Back DJ, Purba HS, Park BK, Ward SA, Orme ML. Effect of chloroquine and primaquine on antipyrine metabolism. Br J Clin Pharmacol 1983;16:497-502.
    [76] McChesney EW, Banks WF Jr., Fabian RJ. Tissue distribution of chloroquine, hydroxychloroquine, and desethylchloroquine in the rat. Toxicol Appl Pharmacol 1967;10:501-13.
    [77] Knox JM, Owens DW. The chloroquine mystery. Arch Dermatol 1966;94:205-14.
    [78] Sofola OA, Olude IO, Adegoke F. The effects of chronic chloroquine toxicity on blood pressure of rats. J Trop Med Hyg 1981; 84:249-52.
    [79] Chesney RW, Budreau AM. Chloroquine, a novel inhibitor of amino acid transport by rat renal brush border membrane vesicles. Amino Acids 1995; 8:141-58.
    [80] Musabayane CT, Ndhlovu CE, Balment RJ. The effects of oral chloroquine administration on kidney function. Renal Fail 1994;16: 221-8.
    [81] Ogilvie KM, Lee S, Weiss B, Rivier C. Mechanisms mediating the influence of alcohol on the hypothalamic-pituitary-adrenal axis responses to immune and non-immune signals. Alcohol Clin Exp Res 1998;22:2435-75.
    [82] Novoa E, Rodrigo R. Renal handling of electrolytes and (Na+K)-ATPase activity after unilateral ephrectomy during long-term ethanol feeding. Acta Physiol Pharmacol Ther Latinoamer 1989;39: 15-26.
    [83] Musabayane CT, Cooper RG, Prasada Rao PVV, Balment RJ. Effects of ethanol on the changes in renal fluid and electrolyte handling and kidney morphology induced by long-term chloroquine administration to rats. Alcohol 2000;22:129-38.
    [84] Ahmed MH, Osman MM. Why does chloroquine impair renal function? Chloroquine may modulate the renal tubular response to vasopressin either directly by inhibiting cyclic AMP generation, or indirectly via nitric oxide. Med Hypotheses 2007;68:140-3.
    [85] Ahmed MH. Insulin resistance and nitric oxide and associated renal injury: innocent bystanders or ccessories to the crime? NZ Med J 2006;119:U2112.
    [86] Ling H, Edelstein C, Gengaro P, Meng X, Lucia S, Knotek M, et al. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol 1999;277:F383-90.
    [87] Cooper RG, Musabayane CT. The acute effects of combined chloroquine and ethanol on renal electrolyte handling. Proceedings of the 2nd International MIM African Malaria Conference; 1999, March 14-19; Durban, South Africa; 1999. p. C-42-3.
    [88] Cooper RG, Musabayane CT. Effects of ethanol on plasmachloroquine, arginine vasopressin (AVP) concentrations and renal hydro-electrolyte handling in the rat. Renal Fail 2000;22:785-98.
    [89] Musabayane CT, Musvibe A, Wenyika J, Munjeri O, Osim EE. Chloroquine influences renal function in rural Zimbabweans with acute transient fever. Renal Fail 1999;21:189-97.
    [90] Liang MY, Knox FG. Nitric oxide activates PKC alpha and inhibits Na+-K+-ATPase in opossum kidney cells. Am J Physiol-Renal Physiol 1999;277:F859-65.
    [91] Kang DG, Kim JW, Lee J. Effects of nitric oxide synthesis inhibition on the Na, K-ATPase activity in the kidney. Pharmacol Res 2000;41:121-5.
    [92] Abraham R, Hendy R, Grasso P. Formation of myeloid bodies in rat liver lysosomes after chloroquine administration. Exp Mol Path 1968;9:212-29.
    [93] Wisner-Gebhart AM, Brabec RK, Gray RH. Morphometric studies of chloroquine-induced changes in hepatocytic organelles in the rat. Exp Mol Path 1980;33:144-52.
    [94] Ericsson JL. Mechanism of cellular autophagy. In: Dingle JT, Fells HB, editors. Lysosomes in biology and pathology, Vol. 2. New York: Wiley; 1969. p. 345-94.
    [95] Schneider P, Korolenko TA, Busch U. A review of druginduced lysosomal disorders of the liver in man and laboratory animals. Microsc Res Tech 1997;36:253-75.
    [96] Allison AC, Young MR. Uptake of dyes and drugs by living cells inculture. Life Sci 1964;3:1407-14.
    [97] MacIntyre AC, Cutler DJ. Kinetics of chloroquine uptake into isolated rat hepatocytes. J Pharm Sci 1993;82:592-600.
    [98] Weissmann G. Lysosomes and joint disease. Arthritis Rheum 1966;9:834-40.
    [99] Zhao H, Cai Y, Santi S, Lafrenie R, Lee H. Chloroquinemediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis. Radiat Res 2005;164:250-7.
    [100] Singh KP, Krause W, David H, von Zglinicki J. Effects of chloroquine on hepatocyte organelles in rat. Exp Pathol 1985;28: 119-24.
    [101] Deepalakshmi PD, Parasakthy K, Shanthi S, Devaraj NS. Effect of chloroquine on rat liver mitochondria. Indian J Exp Biol 1994;32: 797-9.
    [102] Hostetler KY, Richman DD. Studies on the mechanism of phospholipid storage induced by amantadine and chloroquine in Madin Darby canine kidney cells. Biochem Pharmacol 1982;31: 3795-9.
    [103] Prasada Rao PVV, Cooper RG, Musabayane C. Histopathological changes in kidneys of rats exposed to chloroquine and ethanol in combination. In: Sharp B, editor. Proceedings of the 2nd International MIM African Malaria Conference; 1999. March 14-19; Durban, South Africa; 1999. p. C-140-1.
    [104] Teixeira RA, Filho MM, Benvenuti LA, Costa R, Pedrosa AA, Nishióka SAD. Cardiac damage from chronic use of chloroquine. A case report and review of the literature.Arq Bras Cardiol 2002;79: 85-8.
    [105] McChesney EW, Conway WD, Banks WF, Rogers JE, Shekosky JM. Studies of the metabolism of some compounds of the 4-amino-7-chloroquinoline series. J Pharmacol Exp Ther 1966;151: 482-93.
    [106] Musabayane CT, Ndhlovu CE, Mamutse G, Bwititi P, Balment RJ. Acute chloroquine administration increases renal sodium excretion. J Trop Med Hyg 1993;96:305-10.
    [107] Cotton DW, Sutorius AH. Inhibiting effect of some antimalarial substances on glucose-6-phosphate dehydrogenase. Nature 1971;233: 197.
    [108] Emerole GO, Thabrew MI. Changes in some rat hepatic microsomal components induced by prolonged administration of chloroquine. Biochem Pharmacol 1983;32:3005-9.
    [109] Loffler BM, Bohn E, Hesse B, Kunze H. Effects of antimalarial drugs on phospholipase A and lysophospholipase activities in plasma membrane, mitochondrial, microsomal and cytosolic subcellular fractions of rat liver. Biochim Biophys Acta 1985;835:448-55.
    [110] Katewa SD, Katyare SS. Treatment with antimalarials adversely affects the oxidative energy metabolism in rat liver mitochondria. Drug Chem Toxicol 2004;27:41-53.
    [111] Magwere T, Naik YS, Hasler JA. Effects of chloroquine treatment on antioxidant enzymes in rat liver and kidney. Free Radical Biol Med 1997;22:321-7.
    [112] Magwere T, Hasler JA. The role of xenobiotics in the modulation ofantioxidant status and susceptibility to oxidative damage. In: Bahorun T, Gurib-Fakim A, editors. Molecular and therapeutic aspects of Redox biochemistry, London: OICA International (UK) Limited; 2003. p. 78-86.
    [113] Toler SM. Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy. Exp Biol Med (Maywood) 2004;229:607-15.
    [114] Farombi EO. Genotoxicity of chloroquine in rat liver cells: protective role of free radical scavengers. Cell Biol Toxicol 2006;22: 159-67.
    [115] Chen TH, Chang PC, Chang MC, Lin YF, Lee HM. Chloroquine induces the expression of inducible nitric oxide synthase in C6 glioma cells. Pharmacol Res 2005;51:329-36.109.
    [116] Ghigo D, Aldieri E, Todde R, Costamagna C, Garbarino G, Pescarmona G, et al. Chloroquine stimulates nitric oxide synthesis in murine, porcine, and human endothelial cells. J Clin Invest 1998;102: 595-605.
    [117] Park YC, Pae HO, Yoo JC, Choi BM, Jue DM, Chung HT. Chloroquine inhibits inducible nitric oxide synthase expression in murine peritoneal macrophages. Pharmacol Toxicol 1999;85:188-91.
    [118] van den Borne BE, Dijkmans BA, de Rooij HH, le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol 1997; 24:55-60.
    [119] Park J, Kwon D, Choi C, Oh JW, Benveniste EN. Chloroquineinduces activation of nuclear factor-kappaB and subsequent expression of pro-inflammatory cytokines by human astroglial cells. J Neurochem 2003;84:1266-74.
    [120] Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol 2000;165:1534-40.
    [121] Zhu X, Ertel W, Ayala A, Morrison MH, Perrin MM, Chaudry IH. Chloroquine inhibits macrophage tumour necrosis factor-alpha mRNA transcription. Immunology 1993;80:122-6.
    [122] Weber SM, Chen JM, Levitz SM. Inhibition of mitogenactivated protein kinase signalling by chloroquine. J Immunol 2002;168: 5303-9.
    [123] Jang CH, Choi JH, Byun MS, Jue DM. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide- stimulated human monocytes/macrophages by different modes. Rheumatology 2006;45:703-10.
    [124] Hong Z, Jiang Z, Liangxi W, Guofu D, Ping L, Yongling L, et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int Immunopharmacol 2004;4:23-34.
    [125] Nishimura M, Hidaka N, Akaza T, Tadokoro K, Juji T. Immunosuppressive effects of chloroquine: potential effectiveness for treatment of post-transfusion graftversus-host disease. Transfusion Medicine 1998;8:209-14.
    [126] Seth P, Mani H, Singh AK, Banaudha KK, Madhavan S, Sidhu GS, et al. Acceleration of viral replication and upregulation of cytokine levels by antimalarials: implications in malaria-endemic areas. Am J Trop Med Hyg 1999;61:180-6.
    [127] Chen X, Xiao B, Xu H, Shi W, Gao K, Rao J. Procedure and clinical assessments of malariotherapy: recent experience in 20 HIV patients. Chin Med J (Engl.) 2003;116:1016-21.
    [128] Paton NI, Aboulhab J, Karin F. Hydroxychloroquine, hydroxycarbamide, and didanosine as economic treatment for HIV-1. Lancet 2002;359:1667-8.
    [129] Sperber K, Louie M, Kraus T, Proner J, Sapira E, Lin S, et al. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin Ther 1995;17:622-36.
    [130] Pardridge WM, Yang J, Diagne A. Chloroquine inhibits HIV-1 replication in human peripheral blood lymphocytes. Immunol Lett 1998;64:45-7.
    [131] Savarino A, Gennero L, Chen HC, Serrano D, Malavasi F, Boelaert JR, et al. Anti-HIV effects of chloroquine: mechanisms of inhibition and spectrum of activity. AIDS 2001;15:2221-9.
    [132] Savarino A, Gennero L, Sperber K, Boelaert JR. The anti-HIV-1 activity of chloroquine. J Clin Virol 2001; 20 :131-5.
    [133] Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects ofchloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003;3:722-7.
    [134] Boelaert JR, Sperber K, Piette J. Chloroquine exerts an additive in vitro anti-HIV type 1 effect when associated with didanosine and hydroxyurea. AIDS Res Hum Retrovirus 1999;15:1241-7.
    [135] de Clercq E. Potential antivirals and antiviral strategies against SARS coronavirus infections. Expert Rev Anti Infect Ther 2006;4: 291-302.
    [136] Boyer, M.J., Tannock, I.F., 1992. Regulation of intracellular pH in tumor cell lines:influence of microenvironmental conditions. Cancer Res. 52, 4441–4447.
    [137] Newell, K., Franchi, A., Pouyssegur, J., Tannock, I., 1993. Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity.Proc. Natl. Acad. Sci. U. S. A. 90, 1127-1131.
    [138] Vaupel, P., Kallinowski, F., Okunieff, P., 1989. Blood flow, oxygen and nutrient supply,and metabolic microenvironment of human tumors: a review. Cancer Res. 49,6449–6465.
    [139] Jensen, P.B., Sorensen, B.S., Sehested, M., Grue, P., Demant, E.J., Hansen, H.H., 1994.Targeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumor cells in acidic environments. Cancer Res. 54, 2959–2963.
    [140] Bork, E., Ersboll, J., Dombernowsky, P., Bergman, B., Hansen, M., Hansen, H.H., 1991.Teniposide and etoposide in previously untreated small-celllung cancer: a randomized study. J. Clin. Oncol. 9, 1627–1631.
    [141] Sehested, M., Jensen, P.B., Sorensen, B.S., Holm, B., Friche, E., Demant, E.J., 1993. Antagonistic effect of the cardioprotector (+)-1, 2-bis(3, 5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochem. Pharmacol. 46, 389–393.
    [142] Lee, C.M., Tannock, I.F., 2006. Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br. J. Cancer 94, 863–869.
    [143] Hurwitz, S.J., Terashima, M., Mizunuma, N., Slapak, C.A., 1997. Vesicular anthracycline accumulation in doxorubicin-selected U-937 cells: participation of lysosomes.Blood 89, 3745-3754.
    [144] Mayer, L.D., Bally, M.B., Cullis, P.R., 1986. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim. Biophys. Acta 857,123–126.
    [145] Schindler, M., Grabski, S., Hoff, E., Simon, S.M., 1996. Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycinresistant cells (MCF-7adr). Biochemistry 35, 2811–2817.
    [146] Phillips, R.M., Loadman, P.M., Cronin, B.P., 1998. Evaluation of a novel in vitro assay for assessing drug penetration into a vascular regions of tumours. Br. J. Cancer 77,2112-2119.
    [147] Tannock, I.F., Lee, C.M., Tunggal, J.K., Cowan, D.S., Egorin, M.J., 2002. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. 8, 878-884.
    [148] Wang, S., Melkoumian, Z.,Woodfork, K.A., Cather, C., Davidson, A.G.,Wonderlin,W.F., Strobl, J.S., 1998. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J. Cell. Physiol. 176, 456–464.
    [149] Woodfork, K.A., Wonderlin, W.F., Peterson, V.A., Strobl, J.S., 1995. Inhibition of ATPsensitive potassium channels causes reversible cell-cycle arrest of human breast cancer cells in tissue culture. J. Cell. Physiol. 162,163-171.
    [150] Zhou, Q., Melkoumian, Z.K., Lucktong, A., Moniwa, M., Davie, J.R., Strobl, J.S., 2000. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J. Biol. Chem. 275,35256-35263.
    [151] Melkoumian, Z.K.,Martirosyan, A.R., Strobl, J.S., 2002.Myc protein is differentially sensitive to quinidine intumor versusimmortalized breast epithelial cell lines. Int. J. Cancer 102,60-69.
    [152] Munster, P.N., Troso-Sandoval, T., Rosen, N., Rifkind, R., Marks, P.A., Richon, V.M., 2001.The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res. 61, 8492–8497.
    [153] Michael, R.O., Williams, G.M., 1974. Chloroquine inhibition of repair of DNA damage induced in mammalian cells by methyl methanesulfonate. Mutat. Res. 25, 391-396.
    [154] O'Brien, R.L., Allison, J.L., Hahn, F.E., 1966. Evidence for intercalation of chloroquine into DNA. Biochim. Biophys. Acta 129, 622–624.
    [155] Solary, E., Bertrand, R., Pommier, Y., 1994. Apoptosis induced by DNA topoisomerase I and II inhibitors in human leukemic HL-60 cells. Leuk. Lymphoma 15,21-32.
    [156] Sorensen, M., Sehested, M., Jensen, P.B., 1997. pH-dependent regulation of camptothecininduced cytotoxicity and cleavable complex formation by the antimalarial agent chloroquine. Biochem. Pharmacol. 54, 373–380.
    [157] Snyder, R.D., 2000. Use of catalytic topoisomerase II inhibitors to probe mechanisms of chemical-induced clastogenicity in Chinese hamster V79 cells. Environ.Mol.Mutagen.35, 13–21.
    [158] Martirosyan, A., Leonard, S., Shi, X., Griffith, B., Gannett, P., Strobl, J., 2006. Actions of a histone deacetylase inhibitor NSC3852 (5-nitroso-8-quinolinol) link reactive oxygen species to cell differentiation and apoptosis in MCF-7 human mammary tumor cells. J. Pharmacol. Exp. Ther. 317, 546–552.
    [159] Fan, C.,Wang, W., Zhao, B., Zhang, S., Miao, J., 2006. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg.Med. Chem. 14, 3218–3222.
    [160] Zheng, Y., Zhao, Y.L., Deng, X., Yang, S., Mao, Y., Li, Z., Jiang, P., Zhao, X., Wei, Y., 2009.
    [161] Jiang, P.D., Zhao, Y.L., Shi, W., Deng, X.Q., Xie, G., Mao, Y.Q., Li, Z.G., Zheng, Y.Z., Yang, S.Y.,Wei, Y.Q., 2008. Cell growth inhibition, G2/M cell cycle arrest, and apoptosis induced by chloroquine in human breast cancer cell line Bcap-37. Cell. Physiol.Biochem. 22, 431–440.
    [162] Loehberg, C.R., Thompson, T., Kastan, M.B., Maclean, K.H., Edwards, D.G., Kittrell, F.S.,Medina, D., Conneely, O.M., O'Malley, B.W., 2007. Ataxia telangiectasia-mutated and p53 are potential mediators of chloroquine-induced resistance to mammary carcinogenesis. Cancer Res. 67, 12026–12033.
    [163] McNeil, C.M., Sergio, C.M.,Anderson, L.R., Inman,C.K., Eggleton, S.A., Murphy,N.C., Millar, E.K.,Crea, P., Kench, J.G., Alles,M.C., Gardiner-Garden, M., Ormandy, C.J., Butt, A.J.,Henshall, S.M., Musgrove, E.A., Sutherland, R.L., 2006. c-Myc overexpression and endocrine resistance in breast cancer. J. Steroid Biochem.Mol. Biol. 102, 147-155.
    [164] Yang, S., Zhou, Q., Yang, X., 2007. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells.Biochim. Biophys. Acta 1773, 903–911.
    [165] Reagan-Shaw, S., Ahmad, N., 2005. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosismachinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 19, 611–613.
    [166] Erikson, E., Haystead, T.A., Qian, Y.W., Maller, J.L., 2004. A feedback loop in the polo-like kinase activation pathway. J. Biol. Chem. 279, 32219–32224.
    [167] Boya, P., Gonzalez-Polo, R.A., Poncet, D., Andreau, K., Vieira, H.L., Roumier, T., Perfettini, J.L.,Kroemer, G., 2003. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine.Oncogene 22, 3927–3936.
    [168] [168]Green, D.R., Reed, J.C., 1998. Mitochondria and apoptosis. Science 281, 1309–1312.
    [169] Zamzami, N., Susin, S.A., Marchetti, P., Hirsch, T., Gomez-Monterrey, I., Castedo, M.,Kroemer, G., 1996. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183,1533–1544.
    [170] Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J.,Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D.R., Aebersold, R.,Siderovski, D.P., Penninger, J.M., Kroemer, G., 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.
    [171] Amaravadi, R.K., Yu, D., Lum, J.J., Bui, T., Christophorou, M.A., Evan, G.I., Thomas-Tikhonenko, A., Thompson, C.B., 2007. Autophagy inhibition enhances therapyinduced apoptosis in aMyc-inducedmodel oflymphoma. J. Clin. Invest. 117, 326–336.
    [172] Kroemer, G., Jaattela, M., 2005. Lysosomes and autophagy in cell death control. Nat. Rev.,Cancer 5, 886–897.
    [173] Treatment doses of 131-I-labeled chloroquine analog in normal and malignant melanoma dogs. J. Nucl. Med. 12, 153–159.
    [174] Lockshin, R.A., Zakeri, Z., 2004. Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol. 36, 2405–2419.
    [175] Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.L.,Mizushima, N., Ohsumi, Y., Cattoretti, G., Levine, B., 2003. Promotion of tumorigenesis by heterozygous disruption of the beclin-1 autophagy gene. J. Clin.Invest. 112, 1809–1820.
    [176] Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E.H., Lenardo, M.J., Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 2004,304, 1500–1502.
    [177] Beardsley, D.I., Kim, W.J., Brown, K.D., 2005. N-methyl-N′- nitro-N-nitrosoguanidine activates cell-cycle arrest through distinctmechanisms activated in a dose-dependent manner. Mol. Pharmacol. 68, 1049–1060.
    [178] Walenta, S., Schroeder, T., Mueller-Klieser, W., 2004. Lactate in solid malignant tumors:potential basis of a metabolic classification in clinical oncology. Curr. Med. Chem.11, 2195–2204.
    [179] Maclean, K.H., Dorsey, F.C., Cleveland, J.L., Kastan, M.B., 2008. Targeting lysosomal degradation induces p53-dependent cell death and preventscancer inmouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88.
    [180] Paludan, C., Schmid, D., Landthaler, M., Vockerodt, M., Kube, D., Tuschl, T., Munz, C., 2005.EndogenousMHC class II processing of a viral nuclear antigen after autophagy. Science 307, 593–596.
    [181] Shacka, J.J., Klocke, B.J., Shibata, M., Uchiyama, Y., Datta, G., Schmidt, R.E., Roth, K.A.,2006. Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule neurons. Mol. Pharmacol. 69, 1125–1136.
    [182] Bissonnette, R.P., Echeverri, F., Mahboubi, A., Green, D.R., 1992. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554.
    [183] Fanidi, A., Harrington, E.A., Evan, G.I., 1992. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556.
    [184] Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B., Korsmeyer, S.J., 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.
    [185] Luo, R.Z., Peng, H., Xu, F., Bao, J., Pang, Y., Pershad, R., Issa, J.P., Liao,W.S., Bast Jr., R.C., Yu, Y.,2001. Genomic structure and promoter characterization of an imprinted tumor suppressor gene ARHI. Biochim. Biophys. Acta 1519, 216–222.
    [186] Lu, Z., Luo, R.Z., Peng, H., Rosen, D.G., Atkinson, E.N.,Warneke, C., Huang,M., Nishmoto, A., Liu, J., Liao, W.S., Yu, Y., Bast Jr., R.C., 2006.Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin. Cancer Res. 12, 2404–2413.
    [187] Wang, L., Hoque, A., Luo, R.Z., Yuan, J., Lu, Z., Nishimoto, A., Liu, J., Sahin, A.A., Lippman, S.M., Bast Jr., R.C., Yu, Y., 2003. Loss of the expression of the tumor suppressor gene ARHI is associated with progression of breast cancer. Clin. Cancer Res. 9, 3660–3666.
    [188] Lu, Z., Luo, R.Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G.B.,Liao, W.S., Bast Jr., R.C., 2008. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917–3929.
    [189] Mishima, Y., Terui, Y., Mishima, Y., Taniyama, A., Kuniyoshi, R., Takizawa, T., Kimura, S.,Ozawa, K., Hatake, K., 2008. Autophagy and autophagic cell death are next targets for elimination of the resistance to tyrosine kinase inhibitors. Cancer Sci. 99, 2200–2208.
    [190] Fader, C.M., Savina, A., Sanchez, D., Colombo, M.I., 2005. Exosome secretion and red cell maturation: exploring molecular components involved in the docking and fusion of multivesicular bodies in K562 cells. Blood Cells Mol. Dis. 35, 153–157.
    [191] Fader, C.M., Sanchez, D., Furlan,M., Colombo, M.I., 2008. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9, 230–250.
    [192] Chau, I., Cunningham, D., 2006. Adjuvant therapy in colon cancer-what, when and how? Ann. Oncol. 17, 1347–1359.
    [193] Faivre, S., Djelloul, S., Raymond, E., 2006. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol. 33, 407–420.
    [194] Hennig, R., Ding, X.Z., Tong, W.G., Witt, R.C., Jovanovic, B.D., Adrian, T.E., 2004. Effect of LY293111 in combinationwith gemcitabine in colonic cancer. Cancer Lett. 210, 41–46.
    [195] Hosoya, Y., Kitoh, Y., Kobayashi, E., Okabe, R., Fujimura, A., Kanazawa, K., 1999.Combination effects of tamoxifen plus 5-fluorouracil on gastric cancer cell lines in vitro. Cancer Lett. 140, 139–143.
    [196] Ocana, A., Cruz, J.J., Pandiella, A., 2006. Trastuzumab and antiestrogen therapy: focus on mechanisms of action and resistance. Am. J. Clin. Oncol. 29,90–95.
    [197] Thomsen, A., Kolesar, J.M., 2008. Chemoprevention of breast cancer. Am. J. Health Syst.Pharm. 65, 2221–2228.
    [198] Abrams, J.S., Moore, T.D., Friedman, M., 1994. New chemotherapeutic agents for breast cancer. Cancer 74, 1164–1176.
    [199] Bonadonna, G., 1996. Current and future trends in the multidisciplinary approach for high-risk breast cancer. The experience of the Milan Cancer Institute. Eur. J. Cancer 32A, 209–214.
    [200] Hu, C., Solomon, V.R., Ulibarri, G., Lee, H., 2008. The efficacy andselectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg. Med. Chem. 16, 7888–7893.
    [201] Zhao, H., Cai,Y., Santi, S., Lafrenie,R., Lee,H., 2005. Chloroquine- mediated radiosensitization is due to the destabilization of the lysosomal membrane and subsequent induction of cell death by necrosis. Radiat. Res. 164, 250–257.
    [202] Kim, S.H., Kim, J.H., Fried, J., 1973. Enhancement of the radiation response of cultured tumor cells by chloroquine. Cancer 32, 536–540.
    [203] Beierwaltes, W.H., Varma, V.M., Counsell, R.E., Lieberman, L.M., 1968. Scintillation scanning of malignant melanomas with radioiodinated quinoline derivatives.J. Nucl. Med. 9, 489–491.
    [204] Lieberman, L.M., Boyd, C.M., Varma, V.M., Bergstrom, T.J., Beierwaltes, W.H., 1971.
    [205] Zhang, H., Solomon,V.R.,Hu,C., Ulibarri,G., Lee,H., 2008. Synthesis and in vitro cytotoxicity evaluation of 4-aminoquinoline derivatives. Biomed. Pharmacother. 62,65–69.
    [206] Degtyarev, M., De, M.A., Orr, C., Lin, J., Lee, B.B., Tien, J.Y., Prior, W.W., Van, D.S., Wu, H.,Gray, D.C., Davis, D.P., Stern, H.M., Murray, L.J., Hoeflich, K.P., Klumperman, J.,Friedman, L.S., Lin, K., 2008. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183, 101–116.
    [207] Samuels, Y., Ericson, K., 2006. Oncogenic PI3K and its role incancer. Curr. Opin. Oncol. 18,77–82.
    [208] Stambolic, V., Woodgett, J.R., 2006. Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol. 16, 461–466.
    [209] Giampietri, A., Fioretti, M.C., Goldin, A., Bonmassar, E., 1980. Drug-mediated antigenic changes in murine leukemia cells: antagonistic effects of quinacrine, an antimutagenic compound. J. Natl. Cancer Inst. 64, 297–301.
    [210] Reyes, S., Herrera, L.A., Ostrosky, P., Sotelo, J., 2001. Quinacrine enhances carmustine therapy of experimental rat glioma. Neurosurgery 49, 969–973.
    [211] Briceno, E., Reyes, S., Sotelo, J., 2003. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg. Focus 14, e3.
    [212] Briceno, E., Calderon, A., Sotelo, J., 2007. Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg. Neurol. 67, 388–391.
    [213] Sotelo, J., Briceno, E., Lopez-Gonzalez, M.A., 2006. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 144, 337–343.
    [214] Inaba, M., Maruyama, E., 1988. Reversal of resistance to vincristine in P388 leukemia by various polycyclic clinical drugs, with a special emphasison quinacrine. Cancer Res.48, 2064–2067.
    [215] Cho, J., Rando, R.R., 2000. Specific binding of Hoechst 33258 to site 1 thymidylate synthase mRNA. Nucleic Acids Res. 28, 2158–2163.
    [216] Dalpke, A.H., Opper, S., Zimmermann, S., Heeg, K., 2001. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate cytokine responses in APCs. J. Immunol. 166, 7082–7089.
    [217] Filippov, A., Skatova, G., Porotikov, V., Kobrinsky, E., Saxon, M., 1989. Ca2+-antagonistic properties of phospholipase A2 inhibitors, mepacrine and chloroquine. Gen.Physiol. Biophys. 8, 113–118.
    [218] Weber, S.M., Levitz, S.M., 2000. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J. Immunol. 165, 1534–1540.
    [219] Zamora, J.M., Beck,W.T., 1986. Chloroquine enhancement of anticancer drug cytotoxicity inmultiple drug resistant human leukemic cells. Biochem. Pharmacol. 35, 4303–4310.
    [220] Zamora, J.M., Pearce, H.L., Beck, W.T., 1988. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells. Mol. Pharmacol. 33, 454–462.
    [221] Hagihara, N., Walbridge, S., Olson, A.W., Oldfield, E.H., Youle, R.J., 2000. Vascular protection by chloroquine during brain tumor therapy with Tf-CRM107. Cancer Res. 60, 230–234.
    [222] Greenfield, L., Johnson, V.G., Youle, R.J., 1987. Mutations in diphtheria toxin separate binding from entry and amplify immunotoxin selectivity. Science 238, 536–539.
    [223] Johnson, V.G., Wilson, D., Greenfield, L., Youle, R.J., 1988. The role of the diphtheria toxin receptor in cytosol translocation. J. Biol. Chem. 263, 1295–1300.
    [224] Laske, D.W., Ilercil, O., Akbasak, A., Youle, R.J., Oldfield, E.H., 1994. Efficacy of direct intratumoral therapy with targeted protein toxins for solid human gliomas in nude mice. J. Neurosurg. 80, 520–526.
    [225] Laske, D.W., Youle, R.J., Oldfield, E.H., 1997. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat.Med. 3, 1362–1368.
    [226] Leppla, S., Dorland, R.B., Middlebrook, J.L., 1980. Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine. J. Biol. Chem. 255, 2247–2250.
    [227] Sivaraman, L., Stephens, L.C., Markaverich, B.M., Clark, J.A., Krnacik, S., Conneely, O.M., O'Malley, B.W., Medina, D., 1998. Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis 19, 1573–1581.
    [228] Sivaraman, L., Conneely, O.M., Medina, D., O'Malley, B.W., 2001. p53 is a potentialmediator of pregnancy and hormone-induced resistance to mammary carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 98, 12379–12384.
    [229] Sivaraman, L., Medina, D., 2002. Hormone-induced protection against breast cancer.J. Mammary Gland Biol. Neoplasia 7, 77–92.
    [230] Pharoah, P.D., Day, N.E., Caldas, C., 1999. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Br. J. Cancer 80, 1968–1973.
    [231] Renwick, A., Thompson, D., Seal, S., Kelly, P., Chagtai, T., Ahmed,M., North, B., Jayatilake,H.,Barfoot, R., Spanova, K., McGuffog, L., Evans, D.G., Eccles, D., Easton, D.F., Stratton, M.R., Rahman, N., 2006. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat. Genet. 38, 873–875.
    [232] Krajewski, S., Krajewska, M., Turner, B.C., Pratt, C., Howard, B., Zapata, J.M., Frenkel, V.,Robertson, S., Ionov, Y., Yamamoto, H., Perucho, M., Takayama, S., Reed, J.C., 1999.Prognostic significance of apoptosis regulators in breast cancer. Endocr.-Relat.Cancer 6, 29–40.
    [233] Djordevic B, Lange CS, Rotman M. Potentiation of radiation lethality in mouse melanoma cells by mild hyperthermia and chloroquine. Melanoma Res 1992;2:321-6.
    [234] Fan C, Wang W, Zhao B, et al. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 2006; 14 : 3218-22.
    [235] Leu A.J, Berk D.A, Lymboussaki A,et al.Absence of functional lymphatics within a murine sarcoma:a molecular and functional evaluation[J].Cancer Res, 2000,60:4324-4327.
    [236] Partanen T A, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors[J]. Cancer,1999, 86(11):2406-2412.
    [237] Pajusola, K., Aprelikova, O., Armstrong, E., et al. Two human FLT4 receptor tyrosine kinase isoforms with distinct carboxy terminal tails are produced by alternative processing of primary transcripts.) Oncogene,1993, Nov;8(11):2931–2937.
    [238] Galland F, Karamysheva A, Pebusque MJ, Borg JP, Rottapel R, Dubreuil P, Rosnet O, Birnbaum D. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene. 1993 May; 8(5):1233–1240.
    [239] Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 1423-1425
    [240] Karri P, Pauli P, Lotta J,et al.Vascular Endothelial Growth Factor Receptor-3 in Lymphangiogenesis in Wound Healing.Am J Pathol 2000 156: 1499-1504.
    [241] Dolcet X, Llobet D, Pallares J, et al. NF-kB in development and progression of human cancer [ J] . Virchows Arch, 2005, 446( 5) : 475- 482.
    [242] L I Ya-qing, ZHANG Zhen-xiang, XU Yong-jian, et al. N-AcetylL-cysteine and pyrrolidine dithiocarbamate inhibited nuclear factor-κB activation in alveolar acrophages by different mechanisms [J]. Acta PharmacolSin, 2006,27 (3) : 339 - 346.
    [243] Bennet t B L, Sasaki D T, Murray B W, et al. SP600125, an an thrapyrazolone inhibitor of c-J un N-terminal Kinase [J]. Proc Natl cad Sci USA, 2001, 98(24):13681-13686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700