常温下短程硝化反硝化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用SBR反应器中研究有机物氧化、生物脱氮过程中pH变化规律及其作为反应过程指示参数的可能性,探讨低溶解氧选择抑制来实现短程硝化反硝化,并在基础上探讨温度降低对短程硝化的影响,实验得到以下结论:
     1.反应过程pH值的变化具有一定的规律。当好氧反应阶段DO>1mg/L时,pH变化曲线上的特征点,辅以DO的变化才可以指示SBR反应器的有机物氧化、硝化和反硝化反应的结束;当好氧反应阶段DO≤1mg/L时,单独的pH变化曲线上的特征点,可以指示硝化、反硝化反应的结束。
     2.在25℃下控制SBR反应器的DO浓度在0.35-0.8mg/L,经过三十二天驯化亚硝酸累积率达到64.29%(>50%)实现了短程硝化。
     3.利用pH的变化曲线上的特征点来判断反应进程,及时的结束反应阶段。与其它研究相比,在相似进水氨氮浓度,可以增加亚硝酸累积率。
     4.低溶解氧浓度下,好氧硝化反应过程中发生短程硝化型的SND。
     5.温度从25向14℃降低,亚硝酸累积率也随着降低,16℃是低溶解氧短程硝化的临界温度。
     6.污水中营养成分充足的情况下,缺氧选择作用和反硝化后短暂曝气,可以有效的防止SBR低溶解氧降温过程污泥的膨胀。
This thesis studies on the regulations of pH variation during organic oxidation, nitrifying and denitrifying in Sequencing Batch Reactor (SBR), and discuses the possibility of pH serving as parameter to judge reactive end. This thesis also studies on achieving short-cut nitrification and denitrification by making use of low DO selective restrain, and discusses that reducing temperature affects on short-cut nitrification and denitrification. The main conclusions are as follows:
    1.The regulation of pH variation occurs during reaction. The characteristic points of pH curve may judge the close of organic oxidation, nitrifying and denitrifying in SBR on assistant DO variation at DO>lmg/L, while these characteristic points can judge the close of nitrifying and denitrying in SBR at DO lmg/L.
    2. Through controlling DO=0.35-0.80mg/L at 25 C ,the short-cut nitrification and denitrification is achieved in SBR after thirty-two day's domestication, at this time the accumulation rate of nitrite is 64.29% ( > 50%) .
    3.Comparing to other study, it increases the accumulation rate of nitrite under the same influent ammonia that making use of characteristic points of pH curve judges to the nitrifying close.
    4.SND of shortened nitrification occurs at aerobic reaction under low DO.
    5. When temperature reduces from 25 C to l4 C, the accumulation rate of nitrite also reduces; the critical of temperature of short-cut nitrification at low DO is 16 C.
    6.Under abundant nutrition in wastewater, anoxic selector and short time aeration after denitrification may efficiency prevent sludge from bulking during reducing temperature in low dissolved oxygen SBR.
引文
[1] 孙锦宜编著.含氮废水处理技术与应用(M).北京:化学工业出版社,2003.
    [2] 徐亚同,史家樑,张明编著.污染控制微生物工程(M).北京:化学工业出版社,2002,93-101.
    [3] 张自杰,林荣枕,金儒霖编.排水工程(下册)(M).北京:中国建筑工业出版社,2000,306-315.
    [4] 郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系[J].环境污染治理技术与设备,2000,1(1):8-15.
    [5] 徐亚同.废水反硝化除氮工艺及其设计[J].环境与开发,1994,9(2):241-247.
    [6] 黄翔峰,李春鞠,陈树斌.城市污水生物脱氮除磷技术的发展[J].中国沼气,2000,18(4):9-15.
    [7] 陆轶峰.城市污水生物脱氮除磷工艺研究进展[J].云南环境科学,2001,20(增刊):70-73.
    [8] 梁刘艳,汪苹.废水脱氮处理方法研究[J].北京轻工业学院学报,2001,19(1):29-35.
    [9] 华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水, 2000,26(12):1-4.
    [10] 王凯军,贾立敏编著.城市污水生物处理新技术开发与应用[M].北京:化学工业出版社,2002,138-178.
    [11] 冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学报,2001,28(4):88-91.
    [12] 王建龙.生物脱氮新工艺及其技术原理[J].中国给水排水,2000,16(02):25-28.
    [13] Kuenen J. G, Robertson L. S. Combined nitrification-denitrification processes[J]. FEMS Microbiology Reiviews, 1994,15:109-117.
    [14] M(?)nch E. V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J]. Wat. Res, 1996,30(2):277-284.
    [15] Siegrrist H, Reithaar G. K, Lais P. Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon[J]. Wat. Sci. Tech, 1998,38(8-9):241-248.
    [16] Mulder A, Van de graaf A. A, Robertson L. A, Kuenen J. G. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS
    
    Microbiology Ecology, 1995,16:177-184.
    [17] Mchmidt I, Sliekers O, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reiviews, 2003,27:481-492.
    [18] Verstraete W, Philips S. Nitrification-denitrification processes and technologies in new contexts[J]. Environmental Pollution, 1998, S1:717-726.
    [19] Loosdrecht M. C. M. V, Jetten M. S. M. Microbiological conversions in nitrogen removal[J]. Wat. Sci. Tech, 1998,38(1): 1-7.
    [20] 耿艳楼,钱易,顾夏声.简捷硝化—反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2-6.
    [21] 徐冬梅,聂梅生,金承基.亚硝酸型硝化试验研究[J].给水排水,1999,25(7):37-39.
    [22] Tseng Chie-Chien Potter T. G, Koopman B. Effect of influent chemical oxygen demand to nitrogen ratio on a partial nitrification/complete denitrification process[J]. Wat. Res.,1998,32(1): 165-173.
    [23] Turk N, Manila D S. Maintaining nitrite build-up in a system acclimated to free ammonia [J]. Wat. Res, 1989, 23(02):1383-1388.
    [24] 刘俊新,王秀衡.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究[J].工业用水与废水,2002,33(3):1-4.
    [25] 刘俊新,李伟光,金承基,聂梅生.亚硝酸型硝化—反硝化工艺处理煤气废水研究[J].中国给水排水,1998,14(1):6-8.
    [26] Jetten M S. M, Strous M, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reiviews, 1999,22:421-437.
    [27] 沈耀良,赵丹,黄勇.废水生物脱氮新技术—氨的厌氧氧化[J].苏州城建环保学院学报,2002,15(1):19-24.
    [28] 周少奇,周吉林,范家明.同时硝化反硝化生物脱氮技术研究进展[J].环境技术,2002,2:38-44.
    [29] 曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水,2000,16(02):20-24.
    [30] 周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-19.
    [31] Kuai L, Verstaete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system[J]. Applied and Environmental Microbiol ogy, 1998,64(1):4500-4506.
    [32] Sliekers A. O, Derwort N, et al. Completely autotrophic nitrogen removal
    
    over nitrite in one single reactor[J]. Wat. Res, 2002, 36:2475-2482.
    [33] 袁林江,彭党聪,王志盈.短程硝化—反硝化脱氮[J].中国给水排水,2000,16(02):29-31.
    [34] 施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21-24
    [35] Anthonisen A C. Inhibition of nitrification by ammonia and nitrous acid [J]. J. W. P. C. F, 1976, 48 (05): 835-852.
    [36] Abeling U, Seyfried C F. Anaerobic-aerobic treatment of high-strength ammonia wastewater nitrogen removal via nitrite [J]. Wet. Sci. Tech, 1992, 26(5-6): 1007-1015.
    [37] Manretet M, Paul E et el. Application of experimental research methodology to the study of nitrification in mixed culture [J]. Wat. Sci. Tech, 1998, 34(1-2): 245-252.
    [38] Villaverde S, Fdz-Polanco F, et el. Nitrifying biofilm acclimation to free ammonia in submerged biofiters: start-up influence[J]. Wet. Res, 2000, 34(02):602-610.
    [39] Balmelle B, Nguyen M, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat. Sci. Tech, 1992 26(5-6):1017-1025.
    [40] Villaverde S, Garcia-Encina P A, et el. Influence of pH over nitrifying biofilm activity in submerged biofilters [J]. Wat. Sci. Tech, 1997,31(05):1180-1186.
    [41] Wett B, Rauch W. The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater [J]. Wat. Res, 2003,37:1100-1110.
    [42] 于德爽,彭永臻等.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,17(09):40-42.
    [43] 方士,李筱焕.pH值对高氨氮废水亚硝化/反亚硝化速率的影响[J].高校化学工程学报,2001,15(4)346-350.
    [44] Pollice A, Tandoi V, et al. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Wat. Res, 2002, 36:2541-2546.
    [45] 彭党聪,Berent N.供氧模式对序批式活性污泥反应器硝化性能的影响[J].环境工程,1999,17(6):10-12.
    [46] Ruiz G, Jeison D, et al. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration [J]. Wat. Res. 2003, 37:1371-1377.
    
    
    [47] Lisbon K, Mckean M, Shekar S, Svoronos S A, Koopman B. Effect of dissolved oxygen on oxic/anoxic diauxic lag of P. denitrificans[J]. J Environ Eng ASCE, 2002,128(4):391-394.
    [48] Yang L, Alleman J. E. Investigation of batch wise nitrite build-up by an enriched nitrification culture [J]. Wat. Sci. Tech, 1992,26(5-6):997-1005.
    [49] Surmacz-G6rska J, Cichon A, Miksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification [J]. Wat. Sci. Tech, 1997,36(10):73-78.
    [50] 潘桂珉,陈风岗,金承基等.煤气废水亚硝化型硝化的研究[J].水处理技术, 1994,20(4):230-235.
    [51] 于德爽,彭永臻,宋学起等.含海水污水的短程硝化反硝化[J].环境科学,2003,24(3):50-55.
    [52] 王志盈,刘超翔等.高氨浓度下生物流化床内亚硝化过程的选择性研究[J].西安建筑科技大学学报,2000,32(3):1-3.
    [53] 王志盈,袁林江,彭党聪等.内循环生物流化床硝化过程的选择特性研究[J].中国给水排水,2000,16(04):1-4.
    [54] Hellinga C, Schellen A. A. J. C, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water [J]. Wat. Sci. Tech, 1998, 37(9):135-142.
    [55] 王淑莹,曾薇,董文艺等.SBR法短程硝化及过程控制研究[J].中国给水排水,2002,18(10):1-5.
    [56] 曾薇,彭永臻,王淑莹等.两段SBR法处理有机物及短程硝化反硝化[J].环境科学,2002,23(2):50-54.
    [57] Berent N, Peng Dangcong, et al. Nitrification at low oxygen concentration in biofilm reactor[J] J Environ Eng ASCE, 2001,127(3):266-271.
    [58] Hanaki k, Wantawin C, et al. Nitrification at low level of dissolved oxygen with and without organic loading in a suspended-growth reactor [J]. Wat. Res, 1990, 24(3):297-302.
    [59] 袁林江,王志盈,彭党聪等生物流化床亚硝酸累积试验[J].中国环境科学,2000,20(3):207-210.
    [60] 王志盈,刘超翔等.低溶氧下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(3):4-7.
    [61] Cecen F, C(?)nenc I. E. Nitrogen removal characteristics of nitrification and denitrification filters [J]. War. Sci. Tech, 1994, 29(10-11) :409-416.
    [62] 张小玲,王志盈等低溶解氧下活性污泥法的短程硝化研究[J].中国给水排水,
    
    2003,19(07):1-4.
    [63] 赵旭涛,顾国维.硝化作用特性分析及讨论[J].环境科学研究,1995,8(1): 45-47.
    [64] 张小玲,彭党聪,王志盈等.低DO紊动床内有机物对硝化过程的影响[J].中国给水排水,2002,18(05):10-13.
    [65] 国家环保局编.水和废水监测分析方法(第三版)(M).北京:中国环境科学出版社,1997.
    [66] 彭永臻,王淑莹,周利等.生物电极脱氮工艺在线模糊控制研究(一)[J].中国给水排水,1999,15(2).
    [67] 彭永臻,王淑莹,周利等.生物电极脱氮工艺在线模糊控制研究(二)[J].中国给水排水,1999,15(4):5-10.
    [68] 高景峰,彭永臻,王淑莹等.以pH、DO、ORP控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11.
    [69] 高景峰,彭永臻,王淑莹.SBR法去除有机物、硝化和反硝化过程中pH变化规律[J].环境工程,2001,19(5):21-24.
    [70] 高景峰,彭永臻,王淑莹.以pH作为SBR法硝化过程模糊控制参数的基础研究[J].应用与环境生物学报,2003,9(5):549-553.
    [71] 曾薇,彭永臻,王淑莹.以pH、DO、ORP作为两段SBR工艺的实时控制参数[J].环境科学学报,2003,23(2):252-256.
    [72] 徐亚同.废水的硝化作用[J].环境科学进展,1994,2(3):44-49
    [73] 王淑莹,丁峰,吕宏德,余敏,欧阳红.低值与有机负荷引起的活性污泥膨胀及其恢复[J].哈尔滨建筑大学学报,2000,33(2):53-57.
    [74] 高俊发.SBR设计方法及评述[J].河南化工,1994,4:32-35.
    [75] 胡大锵.SBR反应器容积基计算方法及评价[J].中国给水排水,2002,18(6):61-63.
    [76] 徐亚同.pH值、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-313.
    [77] 高景峰,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响[J].高技术通讯,2002,12:88-93.
    [78] 唐光临,孙国新,徐楚韶.焦化废水的亚硝化反硝化研究[J].水处理技术,2002,28(2):98-100.
    [79] 陈韬,王淑莹,彭永臻,田文军.常温下A/O工艺的短程硝化反硝化[J].中国给水排水,2002,18(1):5-8.
    [80] 邱立军,马军.曝气生物滤池的短程硝化反硝化机理研究[J].中国给水排水,2002,18(11:1-4.
    [81] Cecgen F. Investigation of partial and full nitrification characteristics of fertilizer wstewaters in a submerged biofilm reactor [J]. War. Sci. Tech,
    
    1996, 34 (11): 77-85.
    [82] Cecen F, Orak E, G(?)kcin P. Nitrification studies on fertilizer wastewaters in activated sludge and biofolm reators[J]. War. Sci. Tech, 1995, 32 (12): 141-148.
    [83] 符斌主编.常用化学手册(M).北京:地质出版社出版,1997.
    [84] Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification ofwastewater[J]. Wat. Sci. Tech, 1992,26:1027
    [85] Pochana K, Keller J, Lant P. Model development for simultaneous nitrification and denitrification[J]. Wat. Sci. Tech, 1999, 39 (1): 235-243.
    [86] 吕锡武,稻森悠平,水路元之.同步硝化反硝化脱氮级处理过程中N_2O的控制研究[J].东南大学学报(自然科学版)2001,31(1):95-99.
    [87] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrificafion(SND) [J]. Wat. Sci. Tech, 1999, 39 (6): 61-68.
    [88] 赵玲,张之源.复合SBR系统中同步硝化反硝化现象及其脱氮效果[J].工业用水与废水,2002,33(2):4-6.
    [89] 辛明秀,周培谨.低温微生物研究进展[J].微生物学报,1998,38(5):400-403.
    [90] Oleszkiewicz J. A, Berquist S. A. Low temperature nitrogen removal in sequencing batch reactors [J]. Wat. Res, 1988, 22(9): 1163-1171.
    [91] Andersson A, Laurent P, Kihn A, Prevost M, Servais P. Impact of temperature on nitrification in biological activated carbon (BAC)filters used for drinking water treatment[J]. War. Res, 2001,35(12):2923-2934.
    [92] 白晓慧,陈英旭,王宝贞.活性污泥法低温硝化及其运行控制条件研究[J].环境科学学报,2001,21(5):569-572.
    [93] Xie Shu-guang, Zhang Xiao-jian, Wang Zhan-sheng. Temperature effect on aerobic denitrification and nitrification [J]. Journal of Environmental Sciences, 2003, 15(5): 669-673.
    [94] S(?)r(?)c(?) G, Cetin F. D. Effect of temperature, pH and DO concentration on filterability and compressibility of activated sludge[J]. Wat. Res, 1989, 23(11):1389-1395.
    [95] Knoop S, Kunt S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix Parvicella[J]. Wat. Sci. Tech, 1998, 37 (4-5): 27-35.
    [96] 孟雪征.冷适应微生物处理寒冷地区低温生活污水的研究.哈尔滨工业大学博士学位论文,2001.
    [97] 高春娣.营养物质与有机负荷及溶解氧对活性污泥膨胀的影响.哈尔滨工业大学博士学位论文,2001.
    
    
    [98] Martins A M.. P, Pagilla K, Heijnen J J, Van Loosdreeht MC. M. Filamentous bulking sludge—a critical review[J]. War. Res, 2004, 793-817.
    [99] 鞠宇平,张林生,余静.有机负荷和溶解氧的变化对SBR污泥澎胀的影响及控制方法[J].环境污染治理技术与设备,2002,13(12):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700