仿生射流表面减阻性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的快速发展,能源问题日益严峻,能源与阻力息息相关,减阻即意味着节约能源,国内外正在不断加快各种减阻技术的研究。减阻技术的研究对于节约能源、提高能源的利用率具有重要作用,在海陆运输、航空、油气管道输送等诸多领域具有广泛的应用前景。通过仿生表面减阻方法来降低物体在流体介质中的表面摩擦阻力已经成为减阻领域研究的一个热点问题,开辟新的减阻途径对于节约能源、提高能源利用率、完善减阻理论体系具有重要意义。
     论文在国家自然科学基金项目:仿生射流表面减阻特性及减阻机理研究(51275102)的资助下,针对流体流经固体后在接触界面间存在着较大的摩擦阻力、消耗大量能量这一问题进行研究。受鲨鱼鳃部射流现象的启发,基于仿生学原理,为探索射流表面的减阻问题,以鲨鱼鳃部射流特征为生物原型,建立类似于鲨鱼鳃部射流特征的仿生射流结构模型,通过理论分析、数值模拟及实验的方法,研究仿生射流的减阻性能,揭示仿生射流表面相关因素对其减阻特性的影响规律,阐明仿生射流表面的减阻机理。
     提出仿生射流表面减阻方法,建立了具有鲨鱼鳃部特征的仿生射流模型,在主流场速度一定、射流速度在特定范围内变化的条件下,研究了仿生射流表面的减阻特性,得到了射流速度对减阻效果的影响规律;分析了仿生射流表面对模型壁面黏性阻力和压差阻力的影响特性,从壁面所受的剪应力、压应力以及边界层的变化情况,探究了仿生射流表面的减阻机理。
     针对仿生射流表面零射流情况,建立具有半球形凹坑的仿生零射流表面模型,分析其减阻特性,并以气动灭火炮弹体橡胶密封圈为载体,考虑到橡胶密封圈与炮管之间的密封及摩擦问题,建立具有仿生零射流表面特征的橡胶密封圈模型,通过数值模拟的方法,研究橡胶密封圈仿生零射流表面的密封特性及减阻特性。
     针对仿生射流表面流场问题,建立了基于圆形射流孔形状的仿生射流表面结构模型及可拓模型,利用SST k-ω湍流模型对仿生射流表面模型进行数值模拟,在主流场入口速度一定时,分析了射流孔径与射流速度耦合情况下仿生射流表面对壁面摩擦阻力及减阻率的影响规律,揭示了射流孔径与射流速度耦合情况下仿生射流表面对边界层的控制行为。对仿生射流表面射流角度与射流速度耦合情况进行分析,建立了射流角度与射流速度耦元、耦合方式的可拓模型,利用SST k-ω湍流模型对仿生射流表面射流角度与射流速度耦合情况下的减阻特性进行数值模拟,研究了射流角度与射流速度耦合情况下的仿生射流表面减小压差阻力和黏性阻力的原因及仿生射流表面对边界层的控制行为。对仿生射流表面主流场速度与射流速度耦合情况进行分析,建立了主流场速度与射流速度耦元、耦合方式的可拓模型,利用RNG k-ε湍流模型对仿生射流表面主流场速度与射流速度耦合情况下减阻特性进行数值模拟,研究了主流场速度与射流速度耦合情况下的仿生射流表面对黏性阻力和压差阻力的影响规律,分析了耦合情况下仿生射流表面对减阻及节能特性的影响,阐明了主流场速度与射流速度耦合情况下仿生射流表面对射流孔附近壁面流域边界层的控制行为。
     基于同轴旋转测试原理,建立了同轴旋转测试与平面测试下模型壁面所受摩擦阻力间的关系的数学模型,设计了回转体实验模型。研制了仿生射流表面减阻测试实验平台,并对实验平台的数据采集系统进行设计,基于LabVIEW环境下编写图形用户界面,实现对数据流程的软件控制,采集实验过程中不同实验模型下流体对其表面的摩擦扭矩值,达到对数据采集的自动化及数据监控的实时化。
     通过仿生射流表面减阻测试实验平台对仿生射流表面和光滑表面的回转体模型进行实验研究,采用对比分析的方法,分析射流孔径、旋转速度、射流速度以及射流角度等因素对仿生射流表面模型所受摩擦扭矩的影响,计算仿生射流表面的减阻效果,分析实验数据,从实验角度验证仿生射流表面的减阻特性,并将实验结果与数值模拟结果进行对比分析。
With the rapid development of economy, the energy crises are increasing day by day andit is becoming more and more imperative to carry out all the processes by consuming lessamount of energy. The energy consumption is meticulously related with the resistancebetween the mating surfaces and is widely used in a lot of fields, like ocean and rail, aviation,oil and gas pipeline etc. Drag reduction also means energy conservation and a variety of dragreduction techniques has been researched; in china as well as overseas. The research of dragreduction technology plays a key role in saving energy and improving the utilization ofexisting energy. The surface frictional resistance of an object in the fluid medium was reducedwith the method of bionic surface drag reduction in this research, which has become a hotissue in drag reduction field, and the findings of this technique will be of importance in savingenergy, increasing the utilization of energy and improving the theory system of dragreduction.
     This research was supported by the department of theory studies on drag reductioncharacteristic of bionic jet surface of the national natural science foundation of china(51275102), whose research was aimed at the problem of the consumption of plenty of energyexisting in the contact interface of two objects when moving relatively. Inspired by jetfunction of shark gills, based on the bionic theory, bionic jet structure model similar to the jetcharacteristic of shark gills was established; it treats the jet characteristic of shark gills asbiological prototype, in order to explore the drag reduction problem of jet surface. The dragreduction function of bionic jet was studied with the methods of theoretical analysis,numerical simulation and experimentation, which reveals the influential rules of the relevantfactors of bionic jet surface on drag reduction characteristics and clarifies the drag reductionmechanism of bionic jet.
     Aimed at the flow field characteristics of shark gills jet surface, the bionic jet model wasestablished with the characteristics of shark gills, and the drag reduction characteristics ofbionic jet surface were researched at a constant main flow field velocity. The jet velocityvaried in a certain range, which has got the guiding rule of the jet velocity on drag reductioneffect. The influence characteristics of bionic jet surface on the viscous resistance andpressure resistance of model wall were analyzed and the drag reduction principle of bionic jetsurface was deeply researched based on the changing situation of shearing strength andpressure stress on the wall and boundary layers.
     Based on the non-jet state of bionic jet surface, the bionic non-jet surface model with hemispherical pits was established to analyze the drag reduction characteristics. Aimed at theseal and friction problem between the rubber ring and barrel, the rubber sealing ring modelwith bionic non-jet surface characteristics based on the shell rubber seal of aerodynamicextinguishing cannon was established, and numerical simulation was used to research the sealand drag reduction characteristics of the rubber sealing ring of bionic non-jet surface.
     In consideration of the problem of flow field of bionic jet surface, the bionic jet surfacestructure model and extension model was established based on a circular jet hole. Numericalsimulation was used with the SST k-ω turbulent model in bionic jet surface model, whichanalyzed the influential principle of bionic jet surface on wall frictional resistance and dragreduction rate and exposed the control behavior of bionic jet surface on boundary layer at aconstant inlet velocity of main flow field whereas, the jet aperture and jet velocity werecoupled. Coupling elements and coupling scheme extension model of jet angle and jetvelocity were established to analyze the situation when the jet angel of bionic jet surface andjet velocity were coupled, and numerical simulation was used with SST k-ω turbulent modelin drag reduction characteristics at coupled jet angel of bionic jet surface and jet velocity. Thereason that bionic jet surface could reduce the pressure resistance and viscous resistances aswell as the control behavior of bionic jet surface on boundary layer was investigated.Coupling elements and coupling scheme extension model of main flow field velocity and jetvelocity were established to analyze the situation when the main flow field velocity of bionicjet surface and jet velocity were coupled and then numerical simulation was used with RNGk-ε turbulent model in drag reduction characteristics when the main flow field velocity ofbionic jet surface and jet velocity were coupled. the influence principle that bionic jet surfacecould affect the pressure resistance and viscous resistance was researched; the influencecharacteristics in coupling case of the bionic jet surface on drag reduction and energy savingwas analyzed; the control behavior of bionic jet surface on boundary layer of wall flow fieldnear jet aperture was clarified.
     Based on the test principle of coaxial rotation, the relationship between the mathematicalmodel of the frictional resistance stressed on the wall between the coaxial rotation test andplane test was established, and an experimental model was designed for gyrorotor.Experimental prototype and the data acquisition system was designed and developed to testthe drag reduction effect of bionic jet surface. The graphical user interface was written in theenvironment of LabVIEW as well as the software control of data flow. Frictional torque of thesurface against the flow of different experimental models in experiment process was acquired,and was utilized in the automation of data acquisition and the real-time of data monitor.
     The gyrorotor models with bionic jet surface and smooth surface were investigatedthrough the experimental prototype of bionic jet surface drag reduction test, and the contrastanalyze method was used to analyze the influence of the jet aperture, rotational speed, jetvelocity and jet angle on the frictional torque stressed bionic jet surface model and tocalculate the drag reduction effect of bionic jet surface. Meanwhile the experimental data wasanalyzed, the drag reduction characteristics of bionic jet surface were verified according to theexperimental view, and the experimental results and numerical simulation results werecompared and evaluated.
引文
[1] Moore A R, Lowson M V. Drag reduction in a rectangular duct using riblets.Aeronautical Journal.1995,99(985):187-193P
    [2]潘光,郭晓娟,胡海豹.半圆形随行波表面流场数值仿真及减阻机理分析.系统仿真学报.2006,18(11):3073-3094页
    [3] Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wallriblets. Experiments in Fluids.2002,33(2):346-350P
    [4] Lu Y X. Significance and progress of bionics. Journal of Bionics Engineering.2004,1(1):1-3P
    [5]张成春,任露泉,刘庆平,等.旋成体仿生凹坑表面减阻试验研究.空气动力学学报.2008,26(1):79-84页
    [6]张成春.旋成体仿生非光滑表面流场控制减阻研究.长春:吉林大学博士学位论文.2007:1-30页
    [7]丛茜,任露泉,吴连奎,等.几何非光滑生物体表形态的分类学研究.农业工程学报.1992,8(2):7-12页
    [8] Tong J, Ren L Q, Chen B C.Geometrical morphology, chemical constitution andwettability of body surfaces of soil animals. International Agricultural EngineeringJournal.1994,3(1&2):59-68P
    [9]孙久荣,程红,丛茜,等.蜣螂(Copris ochus Motschulsky)减粘脱附的仿生学研究.生物物理学报.2001,17(4):785-793页
    [10]刘国敏,李建桥,田喜梅,等.蚯蚓非光滑体表减粘降阻试验.农业机械学报.2008,39(9):138-143页
    [11]蔡明,崔小朝,汪靓,等.高尔夫球绕流流场数值研究.力学与实践.2011,33(3):63-66页
    [12] Bearman P W, Harvey J K. Control of circular cylinder flow by the use of dimples.AIAA Journal.1993,31(10):1753-1756P
    [13]任露泉,王云鹏,李建桥,等.土壤动物柔性非光滑体表及其防粘降阻特性.科学通报.1997,42(17):1887-1890页
    [14] Ren L Q, Cong Q, Tong J, et al. Reducing adhesion of soil against loadingshovel usingbionic electro-osmosis method. Journal of Terramechanics.2001,38(4):211-219P
    [15]张成春,任露泉,王晶,等.旋成体仿生凹坑表面流场控制减阻仿真分析.兵工学报.2009,30(8):1066-1072页
    [16] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as anidealized model of shark skin. Experiments in Fluids.2000,28(5):403-412P
    [17] Wang J J, Lan S L, Chen G. Experimental study on the turbulent boundary layer. FluidDynamics Research.2000,27(4):217-219P
    [18] Walsh M J. Riblets in viscous drag reduction in boundary layers. Progress inAstronautics and Aeronautics.1990,123:203-61P
    [19] Viswanath P R. Aircraft viscous drag reduction using riblets. Progress in AerospaceSciences.2002,38(6):571-600P
    [20] Bechert D W, Bruse M, Hage W, et al. Fluid mechanics of biological surfaces and theirtechnological application. Naturwissenschaften.2000,87(4),157-171P
    [21] Bechert D W, Bruse M, Hage W. Experiments with three-dimensional riblets as anidealized model of shark skin. Experiments in Fluids.2000,28(5),403-412P
    [22] Lee S J, Jang Y G. Control of flow around a NACA0012airfoil with a micro-ribletfilm. Journal of Fluids and Structures.2005,20(5):659-672P
    [23] Konovalov S F, Lashkov Yu A, Mikhailow V V. Effect of longitudinal riblets on theaerodynamic characteristics of a straight wing. Fluids Dynamics.1995,30(2):183-187P
    [24] Sanders R B, Rushall H, Toussaint H, et al. Bodysuit yourself, but first think about it.American Swimming Magazine.2001,5:23-32P
    [25] Park S R, Wallace J M. Flow alteration and drag reduction by riblets in a turbulentboundary layer. AIAA Journal.1994,32(1):31-38P
    [26]张德远,李元月,韩鑫,等.高精度复合减阻鲨鱼皮复制成形研究.科学通报.2010,55(32):3122-3127页
    [27]韩鑫,张德远.鲨鱼皮微电铸复制工艺研究.农业机械学报.2011,42(2):229-234页
    [28]丛茜,封云,任露泉.仿生非光滑沟槽形状对减阻效果的影响.水动力学研究与进展.2006,21(2):232-238页
    [29]刘志华,董文才,夏飞. V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析.水动力学研究进展.2006,21(2):223-231页
    [30]李新华,董守平,赵志勇.平板及减阻沟槽表面雷诺切应力的实验研究.实验流体力学.2006,20(1):40-44页
    [31]田丽梅,任露泉,刘庆平,等.仿生非光滑旋成体表面减阻特性数值模拟.吉林大学学报(工学版).2006,36(6):909-913页
    [32] Srivastava B. Lateral jet control of a supersonic missile: computational andexperimental comparisons. Journal of Spacecraft and Rockets.1998,35(20):140-146P
    [33]杨彦广,章起华,刘君.高超声速主流中完全气体横向喷流干扰特性研究.空气动力学学报.2005,23(3):299-306页
    [34]吴海玲,陈听宽,罗毓珊,等.支管带套管的横向射流流动特性的实验研究.西安交通大学学报.2002,36(9):886-889页
    [35] Gruber M R, Goss L P. Surface pressure measurements in supersonic transverseinjection flowfields. Journal of Propulsion and Power.1999,15(5):633-641P
    [36] Srivastava B. Asymmetric divert jet performance of a supersonic missile computationaland experimental comparisons. Journal of Spacecraft and Rockets.1999,36(5):621-632P
    [37]孙得川,胡春波,蔡体敏.带有横向射流的三维超声速湍流流场分析.应用数学和力学.2002,23(1):99-105页
    [38] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes. Journal ofComputational Physics.1996,126(1):202-228P
    [39]关晖,吴锤结.湍流横向射流的大涡模拟及其涡结构特性.中国科学G辑物理学力学天文学.2006,36(6):662-677页
    [40]高旭东,武晓松,王晓鸣.高速旋转侧喷流场数值分析.弹道学报.2005,17(2):8-12页
    [41]肖中云,牟斌,陈作斌,等.零质量射流与分离控制的数值模拟.空气动力学学报.2006,24(1):46-49页
    [42]蔡晋生,刘秋洪.超声速流场中侧向射流的数值研究.空气动力学学报.2010,28(5):553-558页
    [43]张威,林永峰,陈平剑.基于零质量射流技术的旋翼翼型流场主动控制研究.直升机技术.2010,(161):15-20页
    [44]陈坚强,江定武,张毅锋.侧向喷流数值模拟精度及实验验证研究.空气动力学学报.2010,28(4):421-425页
    [45]陈坚强,张毅锋,江定武,等.侧向多喷口干扰复杂流动数值模拟研究.力学学报.2008,40(6):735-743页
    [46]刘君,杨彦广.带有横喷控制的导弹非定常流场数值模拟.空气动力学学报.2005,23(1):25-28页
    [47]刘君,杨彦广.带有横喷控制的导弹流场数值模拟.空气动力学学报.2004,22(3):309-312页
    [48]杨彦广,刘君.高超声速主流中横向喷流干扰非定常特性研究.空气动力学学报.2004,22(3):295-302页
    [49] Weston P R, Thames F C. Properties of aspect-ratio-4.0rectangular jets in a subsoniccross-flow. Journal of Aircraft.1979,16(10):701-707P
    [50] Barber M, Schetz J, Roe L. Normal sonic helium injection thorough a wedge shapedorifice into a supersonic flow. Journal of Propulsion and Power.1997,13(2):257-263P
    [51] Cortelezzi L, Karagozian A R. On the formation of the counter-rotating vortex pair intransverse jets. Journal of Fluid Mechanics.2001,446:347-373P
    [52] Kelso R M, Lim T T, Perry A E. An experimental study of round jets in cross-flow.Journal of Fluid Mechanics.1996,306:111-144P
    [53] Yuan L L, Street R L, Ferziger J H. Large-eddy simulations of a round jet in crossflow.Journal of Fluid Mechanics.1999,379:71-104P
    [54] Rivero A, Ferré J A, Giralt F. Organized motions in a jet in crossflow. Journal of FluidMechanics.2001,444:117-149P
    [55] Lim T T, New T H, Luo S C. On the development of large-scale structures of a jetnormal to a cross flow. Physics of Fluids.2001,13(3):770-775P
    [56] Graham M J, Weinacht P. Numerical investigation of supersonic jet interaction foraxisymmetric bodies. Journal of Spacecraft and Rockets.2000,37(5):675-683P
    [57] Mahmud Z, Bowersox R D W. Aerodynamics of low-blowing-ratio fuselage injectioninto a supersonic freestream. Journal of Spacecraft and Rockets.2005,42(1):30-37P
    [58] Min B Y, Lee J W, Byun Y H. Numerical investigation of the shock interaction effecton the lateral jet controlled missile. Aerospace Science and Technology.2006,10(5):385-393P
    [59] Meyer B, Nelson H F, Riggins D. Hypersonic drag and heat-transfer reduction using aforward-facing jet. Journal of Aircraft.2001,38(4):680-684P
    [60]刘云峰,姜宗林.高超声速钝头体支杆侧向射流减阻新机理试验研究.第十三届中国力学学会北方七省、市、区(北京、天津、河北、内蒙、山西、山东、河南)力学学术交流会:力学与工程应用,郑州,2010,13:65-68页
    [61]黎作武,张涵信.高超声速前向喷射流动的减阻特性研究.第十一届全国分离流、旋涡和流动控制会议论文集,湖南大庸,2006,11:256-262页
    [62]耿湘人,桂业伟,王安龄,等.利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究.空气动力学学报.2006,24(1):85-89页
    [63] Geng X R, Gui Y W, He L X, et al. Investigation on hypersonic heat-transfer reductionusing an upstream-directed jet. Proceedings of the3rd International Symposium onHeat Transfer and Energy Conservation, Guangzhou,2004,1:18-21P
    [64]石清,李桦.增升减阻流动控制技术的数值模拟研究.空气动力学学报.2011,29(3):280-287页
    [65] Endwell O D, Victor E P, Wang Ten-see, et al. Dynamics of shock dispersion andinteractions in supersonic freestreams with counterflowing jets. AIAA Journal.2009,47(6):1313-1326P
    [66] Ganiev Y C, Gardeev V P, Krasilinikov A V, et al. Aerodynamic drag reduction byplasma and hot-gas injection. Journal of Thermophysics and Heat Transfer.2000,14(1):10-17P
    [67] Shang J S, Haes J, Menart J. Hypersonic flow over a blunt body with plasma injection.Journal of spacecraft and rocket.2002,39(3):367-375P
    [68] Venukumar B, Jagadeesh G, Reddy K P J. Counterflow drag reduction by supersonicjet for a blunt body in hypersonic flow. Physics of Fluids.2006,18(11):118104-1-118104-4P
    [69] Fomin V M, Fomichev V P, Korotaeva T A, et al. Influence of a counterflow plasmajet on supersonic blunt-body pressures. AIAA Journal.2002,40(6):1170-1177P
    [70] Chen L W, Wang G L, Lu X Y. Numerical investigation of a jet from a blunt bodyopposing a supersonic flow. Journal of Fluid Mechanics.2011,684:85-110P
    [71]周超英,纪文英,张兴伟,等.超声速钝体逆向喷流减阻的数值模拟研究.应用力学学报.2012,29(2):159-163页
    [72]何开锋,董维中,陈坚强,等.超声速钝体空气和钾元素混合物喷流流场的数值研究.空气动力学学报.2006,24(1):90-94页
    [73]王兴,裴曦,陈志敏,等.超声速逆向喷流的减阻与降热.推进技术.2010,31(3):261-264页
    [74]何琨,陈坚强,董维中.逆向喷流流场模态分析及减阻特性研究.推进技术.2010,31(3):438-445页
    [75] Yang Y, Liu X Q, Asif S. Transonic drag reduction on supercritical wing section usingshock control bumps. Transactions of Nanjing University of Aeronautics&Astronautics.2012,29(3):207-214P
    [76] Meyer B, Nelson H F, Riggins D W. Hypersonic drag and heat-transfer reduction usinga forward-facing jet. Journal of Aircraft.2001,38(4):680-686P
    [77] Eswar J, Mark P, William B B. Applications of a counterflow drag reduction techniquein high-speed systems. Journal of Spacecraft and Rockets.2002,39(4):605-614P
    [78] Bushnell D M. Shock wave drag reduction. Annual Review Fluid Mechanics.2004,36(1):81-96P
    [79] Jiang Z L, Liu Y F, Han G L, et al. Experimental demonstration of a new concept ofdarg reduction and thermal protection of hypersonic vehicles. Acta Mechanic Sinica.2009,25(3):417-419P
    [80] Yonezawa M, Yamashita H, Obayashi S. Investigation of supersonic wing shape usingBusemann biplane airfoil. AIAA Paper.2007,2007-686
    [81] Kusunose K. A fundamental study for the development of boomless supersonictransport aircraft. AIAA Paper.2006,2006-654
    [82] Maruyama D, Matsuzawa T. Consideration at off-design conditions of supersonicflows around biplane airfoils. AIAA Paper.2007,2007-687
    [83]华如豪,叶正寅.基于Busemann双翼构型的超音速导弹减阻技术研究.应用力学学报.2012,29(5):535-540页
    [84]傅强.跨音速细长体理论及其在减阻问题中的应用.工程力学.1999,16(3):64-69页
    [85]田婷,阎超.跨超声速场中的反向喷流数值模拟.北京航空航天大学学报.2008,34(1):9-12页
    [86]王江峰,伍贻兆.非机构网格高超声速绕流数值模拟及涵道构型减阻特性分析.南京航空航天大学学报.2004,36(6):671-676页
    [87] Miles R B, Macheret S O, Shneider M N, et al. Plasma-enhanced hypersonicperformance enabled by MHD power extraction. AIAA Paper.2005,2005-561
    [88] Menart J, Shang J, Atzbach C, et al. Total drag and lift measurements in a Mach5flowaffected by a plasma discharge and a magnetic field. AIAA Paper.2005,2005-947
    [89]耿云飞,阎超.高超声速自适应激波针数值研究.力学学报.2011,43(3):441-446页
    [90] Riggings D, Johnson E, Nelson H F. Blunt body wave drag reduction using focusedenergy deposition. AIAA Journal.1999,37(4):460-467P
    [91] Georgievsky P Y, Levin V A. Effective flow-over-body control by energy inputupstream. AIAA Paper.2003,2003-38
    [92] Satheeshl K, Jagadeesh G. Experimental investigations on the effect of energydeposition in hypersonic blunt body flow field. Shock waves.2008,18(1):53-70P
    [93] Mehta R C. Numerical heat transfer study over spiked blunt bodies at Mach6.80.Journal of Spacecraft and Rockets.2000,37(5):700-703P
    [94] Yan C, Gao R, Li J. A new method for estimating the first normal grid spacing in heatflux computations. AIAA Paper.2009,2009-832
    [95] Kobayashi H, Maru Y, Fukiba K. Experiment study on aerodynamic characteristics oftelescopic aerospikes with multiple disks. Journal of spacecraft and Rockets.2007,44(1):33-41P
    [96]耿云飞,阎超.联合激波针—逆向喷流方法的新概念研究.空气动力学学报.2010,28(4):436-440页
    [97] Srulijes J, Gnemmi P, Seiler F, et al. Experiments on spike-tipped bodies at the ISLshock tube laboratory compared to CFD results. Computational Fluid DynamicsJournal.2003,12(2):441-452P
    [98] Gnemmi P, Srulijes J, Roussel K, et al. Flowfield around spike-tipped bodies for highattack angles at Mach4.5. Journal of spacecraft and Rockets.2003,40(5):622-631P
    [99] Schülein E. Wave drag reduction approach for blunt bodies at high angles of attack:proof-of-concept experiments. AIAA Paper.2008,2008-4000
    [100] Bletzinger P, Ganguly B N, Wie D V, et al. Plasmas in high speed aerodynamics.Journal of Physics D: Applied Physics.2005,38(4):33-57P
    [101]孙宗祥.等离子体减阻技术的研究进展.力学进展.2003,33(1):87-94页
    [102] Hartley C S, Portwood T W, Filippelli M V, et al. Experimental and computationalinvestigation of drag reduction by electric-arc airspikes at Mach10. Proceeding of3rdInternational Symposium on Beamed Energy Propulsion, New York,2005:499-513P
    [103] Misiewicz C, Myrabo L N, Shneider M N. Combined experimental and numericalinvestigation of electric-arc airspikes for blunt body at Mach3. Proceeding of3rdInternational Symposium on Beamed Energy Propulsion, New York,2005:528-541P
    [104]罗金玲,徐敏,戴梧叶,等.高速飞行器等离子体减阻的数值模拟研究.宇航学报.2009,30(1):119-122页
    [105]毛枚良,董维中,邓小刚,等.强激光与高超声速球锥流场干扰数值模拟研究.空气动力学学报.2001,19(2):172-176页
    [106]李倩,金星,曹正蕊,等.激光等离子体点源减阻技术中入射能量对气动阻力的影响.推进技术.2010,31(3):377-380页
    [107] Ganiew Y C, Gordeev V P, Krasilnikov A V, et al. Theoretical and experimental studyof the possibility of reducing aerodynamic drag by employing plasma injection. AIAAPaper.1999,1999-0603
    [108]赵华琳.仿生射流表面减阻特性及减阻机理研究.哈尔滨:哈尔滨工程大学硕士学位论文.2011:7-20页
    [109]罗惕乾.流体力学.第三版.北京:机械工业出版社,2007:274-278页
    [110]孙久荣,戴振东.仿生学的现状和未来.生物物理学报.2007,23(2):109-115页
    [111] Arena P, Fortuna L, Frasca M, et al. Climbing obstacles via bio-inspired CNN-CPGand adaptive attitude control. Circuits and Systems.2005,23(5):5214-5217P
    [112] Ishiguro H. Android science: conscious and subconscious recognition. ConnectionScience.2006,18(4):319-332P
    [113] Yan Y Y, Ren L Q, Li J Q. The electro-osmotically driven flow near an earthworm’sbody surface and the inspired bionic design in engineering. International Journal ofDesign and Nature and Ecodynamics.2007,1(2):135-145P
    [114] Ren L Q, Tong J, Li J Q, et al. Soil adhesion and biomimetics of soil-engagingcomponents a review. Journal of Agricultural Engineering Research,2001,79(3):239-263P
    [115]孟庆闻,苏锦祥,李婉端.鱼类比较解剖.北京:科学出版社,1987:193-209页
    [116]孟庆闻,缪学祖,愈泰济,等.鱼类学[形态分类].上海:上海科学技术出版社,1989:87-92页
    [117]冯昭信.鱼类学.第二版.北京:中国农业出版社,1998:49-53页
    [118] Zhao G, Zhao H L, Shu H S, et al. Simulation study of bionic jetting directioninfluence on drag reduction effect. Advances in Nature Science.2010,3(2):17-26
    [119]张春华.基于信鸽体表的减阻降噪功能表面耦合仿生.长春:吉林大学博士学位论文.2008:47-83页
    [120]傅德熏.流体力学数值模拟.北京:国防工业出版社,1993:1-16页
    [121]李进良,李成曦,胡仁喜,等.精通FLUENT6.3流场分析.北京:化学工业出版社,2009:7-11页
    [122]王瑞金,张凯,王刚. Fluent技术基础与应用实例.北京:清华大学出版社,2007:33-49页
    [123]王福军.计算流体动力学-CFD软件原理与应用.北京:清华大学出版社,2004:113-142页
    [124] Chuang S H. Numerical simulation of an impinging jet on a flat plate. InternationalJournal for Numerical Methods in Fluids.2005,9(11):1413-1426P
    [125] Daly B J, Harlow F H. Transport equations in turbulence. Physics of Fluids.1970,13(11):2634-2649P
    [126]郭鸿志.传输过程数值模拟.北京:治金工业出版社,1998:1-13页
    [127] Wilcox D C. Turbulence modeling for CFD. DCW Industries, Inc., La Canada,California,1998:73-170P
    [128] Menter F R. Two-equation eddy-viscosity turbulence models for engineeringapplications. AIAA Journal.1994,32(8):1598-1605P
    [129] Pietro C, Marcello A. An evaluation of RANS turbulence modeling for aerodynamicapplications. Aerospace Science and Technology.2003,7(7):493-509P
    [130]张兆顺.湍流.北京:国防工业出版社,2002:248-314页
    [131]江帆,黄鹏. Fluent高级应用与实例分析.北京:清华大学出版社,2008:19-45页
    [132]朱红钧,林元华,谢龙汗. FLUENT流体分析及仿真实用教程.北京:人民邮电出版社,2010:13-18页
    [133] Pavlov V V. Dolphin skin as a natural anisotropic compliant wall. Bioinspiration&Biomimetics.2006,1(2):31-40P
    [134] Tian L M, Ren L Q, Liu Q P, et al. The mechanism of drag reduction around bodies ofrevolution using bionic non-smooth surfaces. Journal of Bionic Engineering.2007,4(2):109-116P
    [135]孔珑.工程流体力学.第三版.北京:中国电力出版社,2007:4-16页
    [136]黄卫星,李建明,肖泽仪.工程流体力学.第三版.北京:化学工业出版社,2008:38-232页
    [137]吴晓明,李国君,丰镇平,等. SST k-ω-kp两相湍流模型及其在湿蒸汽凝结流动数值模拟中的应用.西安交通大学学报.2007,41(5):526-530页
    [138] Catalano P, Amato M. An evaluation of RANS turbulence modeling for aerodynamicapplications. Aerospace Science and Technology.2003,7(7):493-509P
    [139]张成春,任露泉,王晶.旋成体仿生凹环表面减阻试验分析及数值模拟.吉林大学学报(工学版).2007,37(1):100-105页
    [140]赵刚,舒海生,孙春阳,等.一种基于摩擦吸能原理的气动灭火炮用缓冲系统.沈阳工业大学学报.2011,33(4):387-393页
    [141]王伟,赵树高.橡胶O形密封圈的接触变形及应力分析.弹性体.2005,15(4):28-31页
    [142]任全彬,陈汝训,杨卫国.橡胶O形密封圈的变形及应力分析.航空动力学报.1995,10(3):241-244页
    [143]陈汝训.固体发动机的密封问题.强度与环境.1995,22(4):1-5页
    [144] Wang H Y, He G W, Xia M F, et al. Multiscale coupling in complex mechanicalsystems. Chemical Engineering Science.2004,59(8-9):1677-1686P
    [145] Liu E T. Systems Biology, Integrative Biology, Predictive Biology. Cell.2005,121(4):505-506P
    [146]孙娜.不同仿生耦合单元体对蠕墨铸铁摩擦磨损性能的影响.长春:吉林大学博士学位论文.2010:11-16页
    [147] Baumgartner W, Saxe F, Weth A, et al. The sandfish’s skin: morphology, chemistryand reconstruction. Journal of Bionic Engineering.2007,4(1):1-9P
    [148] Perssona B N J. On the mechanism of adhesion in biological systems. Journal ofChemical Physics.2003,118(16):7614-7621P
    [149] Wood J. Superhydrophobic polymers cast from lotus leaves: fabrication and precessing.Materials Today.2005,8(10):15P
    [150] Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties ofartificial superhydrophobic surfaces. Langmuir.2005,21(3):956-961P
    [151] Zu Y Q, Yan Y Y. Numerical simulation of electroosmotic flow near earthwormsurface. Journal of Bionic Engineering.2006,3(4):179-186P
    [152]高峰,黄河,任露泉.新疆岩蜥三元耦合耐冲蚀磨损特性及其仿生试验.吉林大学学报(工学版).2008,38(3):586-590页
    [153] Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction ofterrain machines. Science in China Series E: Technological Sciences.2009,52(2):273-284P
    [154]任露泉,梁云虹.生物耦合及其分类学与特征规律研究.中国科学:技术科学.2010,40(1):5-13页
    [155]洪筠,钱志辉,任露泉.多元耦合仿生可拓模型及其耦元分析.吉林大学学报(工学版).2009,39(3):726-730页
    [156]蔡文.可拓论及其应用.科学通报.1999,44(7):673-681页
    [157] Cai W. Extension theory and its application. Chinese Science Bulletin.1999,44(17):1538-1548P
    [158]蔡文,石勇.可拓学的科学意义及未来发展.哈尔滨工业大学学报.2006,38(7):1079-1086页
    [159]杨春燕,蔡文.可拓工程.北京:科学出版社,2007:18-71页
    [160]洪筠.多元耦合仿生可拓研究及其效能评价.长春:吉林大学博士学位论文.2009:15-50页
    [161]谷云庆.减阻测试实验装置结构设计及仿真分析.哈尔滨:哈尔滨工程大学硕士学位论文,2010,1-7页
    [162]周先桃.旋转管式微滤膜流动特性及分离强化机理研究.成都:四川大学博士学位论文.2004:34-44页
    [163]朱爱华,朱成九,张卫华.滚动轴承摩擦力矩的计算分析.轴承.2008,(7):1-3页
    [164]夏冬来.小型减阻测试试验平台的研究.哈尔滨:哈尔滨工程大学硕士学位论文.2011:27-35页
    [165]沙定国.误差分析与测量不确定度评定.北京:中国计量出版社,2003:68-72页
    [166]陈魁.试验设计与分析.第二版.北京:清华大学出版社,2005:72-90页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700