狗牙根干旱相关蛋白及代谢产物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是限制植物生长的主要非生物因素之一,能够引起植物细胞在各个水平上发生改变。目前,与狗牙根抗旱相关的研究多集中在形态与生理方面,对干旱相关蛋白及代谢产物的研究甚少。本论文以抗旱性不同的狗牙根基因型为试验材料,借助蛋白质组、免疫印迹分析、代谢组等技术,开展了以下三个方面的工作:一、狗牙根干旱相关蛋白的研究;二、狗牙根干旱相关蛋白的免疫印迹分析;三、狗牙根干旱相关代谢产物的研究。主要研究内容与结果如下:
     1、以狗牙根基因型‘Tifway’与‘C299’为试验材料,在生长箱内进行了为期15 d的干旱处理。干旱胁迫降低了狗牙根2个基因型的叶片相对含水量(RWC)与光化学效率(Fv/Fm),提高了相对电导率(EL)的水平,但上述指标在‘Tifway’中的变化幅度比在‘C299’中要小。在试验处理第10 d时,分别选取正常生长与干旱处理的2个基因型叶片,进行了全蛋白的提取与双向电泳分离(2-DE)。凝胶图像分析结果显示,干旱胁迫总共引起了54个蛋白表达量的显著性改变,其中有32个蛋白的表达量上调,有22个蛋白的表达量下调。质谱(MS)分析结果显示,这些干旱响应蛋白的功能涉及到代谢、能量、细胞生长/分化、蛋白合成以及逆境防御等多个过程。通过对抗旱性不同的‘Tifway’与‘C299’进行差异蛋白比较,发现狗牙根的抗旱性可能与光合作用相关蛋白(Chl a-b、ATPSα、PRK、Rubisco)表达量的维持,抗氧化蛋白酶(SOD、APX、DHAR、MDHAR、Prx)表达量的升高有关。
     2、以狗牙根基因型‘Midrion’、‘Tifgreen’、‘Tifway’、‘Champion’、‘Pariot’、‘Celebration’为试验材料,在生长箱内进行了为期15 d的干旱处理。通过测定目测质量、叶片RWC、Fv/Fm、净光合速率(Pn)以及EL的变化差异,综合评价了狗牙根6个基因型的抗旱性。在干旱处理第0 d与10 d时,选取较抗旱的‘Midrion’、‘Tifway’与干旱敏感的‘Pariot’、‘Celebration’为试验材料,用免疫印迹的方法验证了干旱相关蛋白Rubisco LSU、SOD、DHAR以及MDHAR的表达。与干旱敏感的基因型相比,抗旱基因型的Rubisco LSU下降幅度较小,而SOD、DHAR以及MDHAR的上升幅度较大。
     3、以狗牙根基因型‘Tifway’与‘C299’为试验材料,比较了干旱胁迫下2个基因型的叶片RWC、叶绿素含量、Fv/Fm以及EL的变化差异,所有测定指标均表明‘Tifway’较‘C299’更抗旱。在试验处理第5、10、15 d时,分别选取2个基因型的干旱处理叶片与相应的正常生长的对照叶片,以甲醇为溶剂进行代谢产物的提取。在狗牙根2个基因型的叶片或根系中,GC-MS分析总共鉴定出44种代谢产物:15种有机酸、14种氨基酸、10种糖与糖醇、3种脂肪酸以及2种含氮化合物。通过对抗旱性不同的‘Tifway’与‘C299’进行差异代谢产物比较,发现狗牙根的抗旱性可能与某些代谢产物的高水平表达或者含量维持有关,这些代谢产物包括:3种有机酸(阿魏酸、甘油酸、衣康酸),3种氨基酸(丙氨酸、脯氨酸、缬氨酸),5种糖与糖醇(半乳糖、蔗糖、蜜二糖、山梨醇、甘露醇)、2种不饱和脂肪酸(α-亚麻酸、亚油酸)以及2种含氮化合物(乙醇胺、腐胺)。
Drought is one of the major abiotic factors limiting plant growth, which induces various changes at different cellular levels. Although morphological and physiological mechanisms of drought tolerance have been examined extensively in bermudagrass, limited information is available on the drought-responsive proteins or metabolites. By technologies of proteomics, western blotting and metabolomics, three experiments were carried out with different bermudagrass genotypes. The first was study of drought-responsive proteins in bermudagrass leaves. The second was responses of protein expression to drought stress in bermudagrass leaves. The third was study of drought-responsive metabolites in leaf and root of bermudagrass. The main contents and results were as follows:
     1. Plants of bermudagrass‘Tifway’and‘C299’were exposed to drought stress for 15 d by withholding irrigation in a growth chamber. Leaf electrolyte leakage increased and photochemical efficiency and relative water content declined under drought stress, but the extent of changes in each of the physiological parameters for‘Tifway’was less pronounced than those for‘C299’. Total proteins of leaves were extracted from well-watered and drought-stressed plants at 10 d of treatment, and separated by two-dimensional gel electrophoresis. According to the quantitative analysis of protein gels, a total of 54 protein spots in the two genotypes showed reproducible and significant changes in the abundance, with 32 increasing and 22 decreasing. All drought-responsive proteins were subjected to mass spectrometry analysis, which were mainly involved in metabolism, energy, cell growth/division, protein synthesis, and stress defense. Functional analysis of differential drought-responsive proteins between the two genotypes suggested that the superior drought tolerance in‘Tifway’could be mainly associated with less severe decline in the abundance level of proteins involved in photosynthesis (Chl a-b, ATPSα, PRK and Rubisco) and greater increase in the abundance level of antioxidant defense proteins (SOD, APX, DHAR, MDHAR and Prx).
     2. Plants of bermudagrass‘Midrion’,‘Tifgreen’,‘Tifway’,‘Champion’,‘Pariot’and‘Celebration’were exposed to drought stress for 15 d by withholding irrigation in a growth chamber. Evaluation of drought tolerance in different genotypes of bermudagrass was based on turf quality, leaf relative water content, photochemical efficiency, net photosynthetic rate and electrolyte leakage. Expression of Rubisco LSU, SOD, DHAR and MDHAR under well-watered and drought-stressed conditions was detected by western blotting analysis. Drought-tolerant‘Midrion’and‘Tifway’had lower degradation of Rubisco LSU and greater increase of SOD, DHAR and MDHAR compared to drought-sensitive‘Pariot’and‘Celebration’.
     3. Physiological responses to drought stress were evaluated by measuring leaf relative water content, chlorophyll content, photochemical efficiency and cell membrane leakage, and all parameters indicated that‘Tifway’exhibited better drought tolerance than‘C299’. Methanol was used for metabolites extraction from well-watered and drought-stressed plants at 5, 10 and 15 d of treatment. The gas chromatography-mass spectrometry analysis identified 44 drought-responsive metabolites in leaves or roots of two genotypes, including 15 organic acids, 14 amino acids, 10 sugar and sugar alcohols, 3 fatty acids and 2 N-compounds. The differential metabolic expression pattern between two genotypes differing in drought tolerance demonstrated that the superior drought tolerance in‘Tifway’could be related to the accumulation or maintenance of a series of metabolites, including 3 organic acids (ferulate, glycerate and itaconate), 3 amino acids (alanine, proline and valine), 5 sugar and sugar alcohols (galactose, sucrose, melibiose, gluticol and mannitol), 2 unsaturated fatty acids (α-linolenate and linoleate), and 2 N-compounds (ethanolamine and putrescine).
引文
[1]黎祜琛,印治军.树木抗旱性及抗旱造林技术研究综述[J].世界林业研究, 2003, 16(4): 17-22.
    [2]胡龙兴.草坪草抗旱生理及相关基因的分析[D].上海:上海交通大学, 2010.
    [3]许国旺,杨军.代谢组学及其研究进展[J].色谱, 2003, 21(4): 316-320.
    [4] Katia G. Some mechanisms of damage and acclimation of the photosynthetic apparatus to high temperature [J]. Bulg. J. Plant Physiol., 1999, 25: 89-99.
    [5] Matos M C, Campos P S, Ramalho J C, et al. Photosynthetic activity and cellular integrity of the Andean legume Pachyrhiz us ahipa (Wedd.) Parodi under heat and water stress [J]. Photosynthetica, 2002, 40: 493-501.
    [6] Jiang Y, Huang B. Drought and heat stress injury to two cool-season turfgrass in relation to antioxidant metabolism and lipid peroxidation [J]. Crop Science, 2001, 41: 436-442.
    [7]卢少云,郭振飞.草坪草逆境生理研究进展[J].草业学报, 2003, 12(4): 7-13.
    [8]杨鹏辉,李贵全,郭丽,等.干旱胁迫对不同抗旱大豆品种质膜透性的影响[J].山西农业科学, 2003, 31(3): 23-26.
    [9]郭龙彪,钱前.栽培稻抗旱性的田间评价方法[J].中国稻米, 2003, 2: 26-27.
    [10]马秀芳,沈秀瑛,杨德光,等.不同耐旱性玉米品种对干旱的生理生化反应[J].沈阳农业大学学报, 2002, 33(3): 167-170.
    [11]宋海鹏,刘君,李秀玲,等.干旱胁迫对5种景天属植物生理指标的影响[J].草业科学, 2010, 27(1): 11-15.
    [12]王忠,王三根,李合生,等.植物生理学[M].北京:中国农业出版社, 2000.
    [13]彭立新,李德全,束怀瑞.园艺植物水分胁迫生理及耐旱机制研究进展[J].西北植物学报, 2002, 22(5): 1275-1281.
    [14]柯世省.干旱胁迫对夏蜡梅光合特性的影响[J].西北植物学报, 2007, 27(6): 1209-1215.
    [15]何广礼,忠乃.干旱胁迫对盆栽小黑麦生物学特性及叶绿素含量的影响[J].畜牧与饲料科学, 2010, 31(10): 54-55.
    [16] Hu L, Wang Z, Huang B. Diffusion limitations and metabolic factors associatedwith inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species [J]. Physiologia Plantarum, 2010, 139: 93-106.
    [17] Hu L, Wang Z, Huang B. Photosynthetic responses of bermudagrass to drought stress associated with stomatal and metabolic limitations [J]. Crop Science, 2009, 49: 1902-1909.
    [18] Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon [J]. Physiologia Plantarum, 2011, 141: 40-55.
    [19]赵丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报, 2005, 25(2): 413-418.
    [20] Halliwell B. Toxic effect of oxygen on plant tissues. In Chloroplast Metabolism [M]. Edited by Halliwell B, Clarendon Press, Oxford, 1984, pp. 180-206.
    [21]韩蕊莲,李丽霞,梁宗锁,等.干旱胁迫下沙棘膜脂过氧化保护体系研究[J].西北林学院学报, 2002, 17(4): 1-5.
    [22]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报, 2007, 23(1): 105-110.
    [23] Zhang J, Kirkham M B. Antioxidant responses to drought in sunflower and sorghum seedlings [J]. New Phytologist, 1996, 132(3): 361-373.
    [24]李德全,邹琦,程炳嵩.植物在逆境下的渗透调节.山东农业大学学报[J]. 1989, (2): 75-80.
    [25]汤章城,王育启,吴亚华.不同抗旱品种高梁苗中脯氨酸积累的差异[J].植物生理与分子生物学学报, 1986, 12: 154-162.
    [26]张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展[J].西北植物学报, 2004, 24(9): 1765-1771.
    [27]马千全,邹琦,李永华,等.根施甜菜碱对水分胁迫下小麦幼苗水分状况和抗氧化能力的改善作用[J].作物学报, 2004, 30 (4): 321-328.
    [28]张红萍,牛俊义,轩春香,等.干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响[J].甘肃农业大学学报, 2008, 43(5): 50-54.
    [29]马祎,王彩云.几种引进冷季型草坪草的生长及抗旱生理指标[J].草业科学, 2001, 18(2): 57-61.
    [30] Crowe J, Carpenter J, Crowe L, et al. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules [J]. Cryobiology, 1990, 27(3): 219-231.
    [31] Crowe J, Crowe L, Carpenter J, et al. Stabilization of dry phospholipid bilayers and proteins by sugars [J]. Biochemical Journal, 1987, 242(1): 1-10.
    [32] Wolfe J, Bryant G. Freezing, drying, and/or vitrification of membrane-solute-water systems [J]. Cryobiology, 1999, 39(2): 103-129.
    [33] Jiang Y, Huang B. Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass [J]. Crop Science, 2001, 41: 1168-1173.
    [34]高蕾,刘丽君,董守坤,等.干旱胁迫对大豆幼苗叶片生理生化特性的影响[J].东北农业大学学报, 2009, 40(8): 1-4.
    [35]孙萍,段喜华.干旱胁迫对长春花光合特性及可溶性糖的影响[J].东北林业大学学报, 2010, 38(8): 54-56.
    [36]王霞,侯平,尹林克.柽柳植物对干旱胁迫的生理响应和适应性的研究[J].干旱地区研究. 2000, 10(3): 13-17.
    [37]张宏一,朱志华.植物干旱诱导蛋白研究进展[J].植物遗传资源学报, 2004, 5(3): 268-270.
    [38] Singh N K, Handa A K, Hasegawa P M, et al. Proteins associated with adaptation of cultured tobacco cells to NaCl [J]. Plant Physiology, 1985, 79: 126-137.
    [39] King G, Tumer V, Hussey C, et al. Isolation and characterization of a tomato cDNA clone which codes for a salt-induced protein [J]. Plant Molecular Biology, 1988, 10: 401-412.
    [40] Liu D, Rhodes D, D’Urzo M P, et al. In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix [J]. Plant Science, 1996, 121: 123-131.
    [41] Wilkinson J R, Spradling K D, Yoder D W, et al. Molecular cloning and analysis of a cotton gene cluster of two genes and pseudo genes for the PR5 proteinosmotin [J]. Physiological and Molecular Plant Pathology, 2005, 67: 68-82.
    [42] Dure L III, Greenway S C, Galau G A. Developmental biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis [J]. Biochemistry, 1981, 20: 4162-4168.
    [43]周桂,李杨瑞.植物干旱诱导蛋白研究进展[J].广西农业科学, 2007, 38(4): 379-385.
    [44] Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles [J]. Plant, Cell & Environment, 2002, 25: 173-194.
    [45] Santoni V, Gerbeau P, Javot H, et al. The high diversity of aquqporins reveals novel facets of plant membrane functions [J]. Current Opinion in Plant Biology, 2000, 3(6): 476-481.
    [46]杨淑慎,山仑,郭蔼光,等.水通道蛋白与植物的抗旱性[J].干旱地区农业研究, 2005, 23(6): 214-218.
    [47] Zhang J, Jia W, Yang J, et al. Role of ABA in intergrating plant responses to drought and salt stresses [J]. Field Crops Research, 2006, 97: 111-119.
    [48]徐晓辉,刘延吉,王淼,等.干旱胁迫对杨树幼苗叶片内ABA和CaM含量的影响[J].安徽农业科学, 2006, 34(11): 2332-2335.
    [49]曲泽洲主编.植物栽培学总论(第二版) [M].北京:农业出版社, 1985: 120-142.
    [50] Holmberg N, Bülow L. Improving stress tolerance in plants by gene transfer [J]. Trends in Plant Science, 1998, 3(2): 61-66.
    [51]朱学艺,张承烈.植物响应水分胁迫的主要功能蛋白[J].西北植物学报, 2003, 23(3): 503-508.
    [52]周建明,朱群,白永延,等.高等植物水分胁迫诱导的基因及其表达调控[J].细胞生物学杂志, 1999, 21(1): 1-6.
    [53] Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice [J]. Plant Physiology, 1996, 110: 249-257.
    [54]严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究[D].上海:中国科学院上海生命科学研究院植物生理生态研究所, 2006.
    [55]陈姗.蛋白质组学研究方法[J].基础医学, 2005, 14(1): 52-58.
    [56]梁宇,荆玉祥,沈世华.植物蛋白组学研究进展[J].植物生态学报, 2004, 28(1): 114-125.
    [57]钱小红,贺福初主编.蛋白组学理论与方法[M].北京:科学出版社, 2003: 24-39.
    [58] Salekdeh G H, Siopongco J, Wade L J, et al. A proteomic approach to analyzing drought- and salt-responsiveness in rice [J]. Field Crops Research, 2002, 76: 199-219.
    [59] O’Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. The Journal of Biological Chemistry, 1975, 250(10): 4007-4021.
    [60] Gorg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics, 2004, 4(12): 3665-3685.
    [61] Wolters D A, Washburn M P, Yates J R. An automated multidimensional protein identification technology for shotgun proteomics [J]. Analytical Chemistry, 2001, 73: 5683-5690.
    [62]丁伟.水稻干旱胁迫蛋白质组相关数据和生物信息分析研究[D].武汉:华中农业大学, 2009.
    [63] Zhu H, Snyder M. Protein chip technology [J]. Current Opinion in Chemical Biology, 2003, 7: 55-63.
    [64] Gygi S P, Rist B, Gerber S A, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags [J]. Nature Biotechnology, 1999, 17(10): 994-999.
    [65] Alban A, David S O, Bjorkesten L, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard [J]. Proteomics, 2003, 3: 36-44.
    [66] Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis: a single gel method for detecting changes in cell extracts [J]. Electrophoresis, 1997, 18:2071-2077.
    [67] Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology [J]. Analytical and Bioanalytical Chemistry, 2005, 382: 669-678.
    [68]钟春英,彭蓉,彭建新,等.蛋白质芯片技术[J].生物技术通报, 2004, 2: 34-37.
    [69] Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846.
    [70]黄秀丽.玉米弯孢菌叶斑病抗性相关蛋白质鉴定及功能研究[D].上海:上海交通大学, 2009.
    [71]夏其昌,曾嵘.蛋白质化学与蛋白质组学[M].北京:科学出版社, 2004.
    [72] Xiao X, Yang F, Zhang S, et al. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress [J]. Physiologia Plantarum, 2009, 136: 150-168.
    [73] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2: 1131-1145.
    [74] Ahsan N, Lee D G, Lee S H, et al. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots [J]. Plant Soil, 2007, 295: 37-51.
    [75] Komatsu S, Sugimoto T, Hoshino T, et al. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis [J]. Amino Acids, 2010, 38: 729-738.
    [76] Xu C, Sibicky T, Huang B. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance [J]. Plant Cell Reports, 2010, 29(6): 595-615.
    [77] Lee D G, Ahsan N, Lee S H, et al. A proteomic approach in analyzing heat-responsive proteins in rice leaves [J]. Proteomics, 2007, 7: 3369-3383.
    [78] Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings [J]. Proteomics, 2005, 5: 3162-3172.
    [79] Bohler S, Bagard M, Oufir M, et al. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism [J]. Proteomics,2007, 7: 1584-1599.
    [80] Agrawal G K, Rakwal R, Yonekura M, et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings [J]. Proteomics, 2002, 2: 947-959.
    [81] Ahsan N, Lee D G, Lee S H, et al. Excess copper induced physiological and proteomic changes in germinating rice seeds [J]. Chemosphere, 2007, 67: 1182-1193.
    [82] Roth U, Roepenack-Lahaye E, Clemens S. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+ [J]. Journal of Experimental Botany, 2006, 57(15): 4003-4013.
    [83]淡墨,高先富,谢国祥,等.代谢组学在植物代谢研究中的应用[J].中国中药杂志, 2007, 32(22): 2337-2341.
    [84] Fiehn O, Kopka J, Dormann P, et al. Metabolite profiling for plant functional genomics [J]. Nature Biotechnology, 2000, 18: 1157-1161.
    [85] Tretheway R, Krotzky A J, Willmitzer L. Metabolic profiling: a rosetta stone for genomics? [J]. Current Opinion in Plant Biology, 1999, 2: 83-85.
    [86] Taylor J, King R D, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning [J]. Bioinformatics, 2002, 18: 241-248.
    [87] Adams M A, Chen Z L, Landman P, et al. Simultaneous determination by capillary gas chromatography of organic acids, sugars and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives [J]. Analytical Biochemistry, 1999, 266: 77-84.
    [88] Katona Z F, Sass P, Molnár-Perl I. Simultaneous determination of sugars, sugar alcohols, acids and amino acids in apricots by gas chromatography-mass spectrometry [J]. J Chromatography A, 1999, 847: 91-102.
    [89]许国旺,杨军.代谢组学及其研究进展[J].色谱, 2003, 21(4): 316-320.
    [90] Goodacre R, Vaidyanathan S, Dunn W B, et al. Metabolomics by numbers: acquiring and understanding global metabolite data [J]. TRENDS in Biotechnology, 2004, 22(5): 245-252.
    [91] Nicholson J K, Lindon J C. Systems biology: metabonomics [J]. Nature, 2008, 455: 1054-1056.
    [92] Dunn W B, Ellis D I. Metabolomics: current analytical platforms and methodologies [J]. Trends in Analytical Chemistry, 2005, 24(4): 285-294.
    [93] Weckwerth W, Fiehn O. Can we discover novel pathways using metabolomic analysis? [J]. Current Opinion in Biotechnology, 2002, 13: 156-160.
    [94] Tolstikov V V, Lommen A, Nakanishi K, et al. Monolithic silica-based capillary reversed-phase liquid chromatography/electrospray mass spectrometry for plant metabolomics [J]. Analytical Chemistry, 2003, 75: 6737-6740.
    [95] Laceya C, McMahonb G, Bonesb J, et al. An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples [J]. Talanta, 2008, 75(4):1089-1097.
    [96]孔亮,于志远,邹汉法,等.高效液相色谱与质谱联用分析测定川芎中有效成分阿魏酸与藁本内酯[J].分析化学研究报告, 2004, 32(11): 1421-1425.
    [97] Huhman D V, Sumner L W. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer [J]. Phytochemistry, 2002, 59(3): 347-360.
    [98] Nicholson L K, Lindon J C, Holmes E.‘Metabonomics’: understanding the metabolic responses of living systems to patho physiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica, 1999, 29: 1181-1189.
    [99] Daykin C A, Corcoran O, Hansen S H, et al. Application of directly coupled HPLC NMR to separation and characterization of lipoproteins from human serum [J]. Analytical Chemistry, 2001, 73(6): 1084-1090.
    [100] Griffin J L, Williams H J, Sang E, et al. Metabolic profiling of genetic disorders: a multitissue 1H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic [J]. Analytical Biochemistry, 2001, 293(1): 16-21.
    [101] Blingly R, Douce R. NMR and plant metabolism [J]. Current Opinion in Plant Biology, 2001, 4: 191-196.
    [102] Lindon J C, Nicholson J K, Holmes E, et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project [J]. Toxicology and Applied Pharmacology, 2003, 187(3): 137-146.
    [103] Waters N J, Holmes E, Waterfield C J, et al. NMR and pattern recognition studies on liver extracts and intact livers from rats treated withα-naphthylisothiocyanate [J]. Biochemical Pharmacology, 2002, 64(1): 67-77.
    [104]颜贤忠,赵剑宇,彭双清,等.代谢组学在后基因组时代的作用[J].波谱学杂志, 2004, 21: 263-271.
    [105]吴颖瑞,赵友兴,周俊.潞西山龙眼的化学成分研究[J].广西植物, 2010, 30(6): 884-886.
    [106] Choi H K, Choi Y H, Verberne M, et al. Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique [J]. Phytochemistry, 2004, 65(7): 857-864.
    [107] Fiehn O. Metabolomic– the link between genotypes and phenotypes [J]. Plant Molecular Biology, 2002, 48: 155-171.
    [108] Brindle J T, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics [J]. Nature Medicine, 2002, 8: 1439-1445.
    [109] Bollard M E, Holmes E, Lindon J C, et al. Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution 1H NMR spectroscopy of urine and pattern recognition [J]. Analytical Biochemistry, 2001, 295(2): 194-202.
    [110] Ossipov V, Ossipova S, Bykov V, et al. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment [J]. Metabolomics, 2008, 4: 39-51.
    [111] Sumnera L W, Mendesb P, Dixona A R. Plant metabolomics: large-scale phytochemistry in the functional genomics era [J]. Phytochemistry, 2003, 62: 817-836.
    [112]尹恒,李曙光,白雪芳,等.植物代谢组学的研究方法及其应用[J].植物学通报, 2005, 22(5): 532-540.
    [113] Guo Y. Regularized linear discriminant analysis and its application in microarrays [J]. Biostatistics, 2007, 8(1): 86-100.
    [114] Gavaghan C L, Wilson I D, Nicholson J K. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA [J]. FEBSLetters, 2002, 530: 191-196.
    [115] Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra [J]. Analyst, 2002, 127: 1549-1557.
    [116] Carmo-Silva A E, Keys A J, Beale M H, et al. Drought stress increases the production of 5-hydroxynorvaline in two C4 grasses [J]. Phytochemistry, 2009, 70: 664-671.
    [117] Fumagalli E, Baldoni E, Abbruscato P, et al. NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions [J]. Journal of Agronomy and Crop Science, 2009, 195: 77-88.
    [118]贾娜尔.阿汗,杨春武,石德成,等.盐生植物碱地肤对盐碱胁迫的生理响应特点[J].西北植物学报, 2007, 27(1): 79-84.
    [119] Straub P F, Gallagher J L. SDS soluble protein patterns in salt (NaCl) treated and control suspension cultures of three halophytes [J]. Journal of Cell Biochemistry, 1987, 11B: 45.
    [120] Ma H, Tian C, Gu F, et al. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively [J]. Science China Life Sciences, 2011, 54(3): 282-289.
    [121] Sobhanian H, Motamed N, Jazii F R, et al. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant [J]. Journal of Proteome Research, 2010, 9: 2882-2897.
    [122] Widodo, Patterson J H, Newbigin E, et al. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ insalinity tolerance [J]. Journal of Experimental Botany, 2009, 60(14): 4089-4103.
    [123] Du H, Yu W, Liu Y, et al. Differential metabolic responses of perennial grass Cynodon transvaalensis×Cynodon dactylon (C4) and Poa Pratensis (C3) to heat stress [J]. Physiologia Plantarum, 2011, 141(3): 251-264.
    [124] Kaplan F, Kopka J, Haskell D W, et al. Exploring the temperature-stress metabolome of Arabidopsis [J]. Plant Physiology, 2004, 136: 4159-4168.
    [125] Kaplan F, Kopka J, Sung D Y, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content [J]. Plant Journal, 2007, 50: 967-981.
    [126] Cho K, Shibato J, Agrawal G K, et al. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling [J]. Journal of Proteome Research, 2008, 7: 2980-2998.
    [127] Alvarez S, Marsh E L, Schroeder S G, et al. Metabolomic and proteomic changes in the xylem sap of maize under drought [J]. Plant, Cell & Environment, 2008, 31: 325-340.
    [128] Rellán-álvarez R, Andaluz S, Rodríguez-Celma J, et al. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply [J]. BMC Plant Biology, 2010, 10: 120.
    [129] Grimplet J, Wheatley M D, Jouira H B, et al. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions [J]. Proteomics, 2009, 9: 2503-2528.
    [130] Kieffer P, Planchon S, Oufir M, et al. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves [J]. Journal of Proteome Research, 2009, 8: 400-417.
    [131]李跃建,姬红丽,彭云良,等.应用双向电泳技术研究条锈菌侵染后小麦蛋白质的改变[J].四川大学学报(工程科学版), 2005, 37(2): 80-85.
    [132]邱德有,黄璐琦.代谢组学研究-功能基因组学研究的重要组成部分[J].分子植物育种, 2004, 2(2): 165-177.
    [1] Riccardi F, Gazeau P, De Vienne D, et al. Protein changes in response to progressive water deficit in maize [J]. Plant Physiology, 1998, 117: 1253-1263.
    [2] Caruso G, Cavaliere C, Foglia P, et al. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry [J]. Plant Science, 2009, 177: 570-576.
    [3] Hajheidari M, Eivazi A, Buchanan B B, et al. Proteomics uncovers a role for redox in drought tolerance in wheat [J]. Journal of Proteome Research, 2007, 6: 1451-1460.
    [4] Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress [J]. Journal of Proteome Research, 2006, 5: 396-403.
    [5] Salekdeh G H, Siopongco J, Wade L J, et al. A proteomic approach to analyzing drought- and salt-responsiveness in rice [J]. Field Crops Research, 2002, 76: 199-219.
    [6] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2: 1131-1145.
    [7] Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress [J]. Proteomics, 2005, 5: 950-960.
    [8] Kottapalli K R, Rakwal R, Shibato J, et al. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes [J]. Plant, Cell & Environment, 2009, 32: 380-407.
    [9] Dubey H, Grover A. Current initiatives in proteomics research: the plant perspective [J]. Current Science, 2001, 80: 262-269.
    [10] Oliver M J, Velten J, Mishler B D. Desiccation tolerance in bryophytes: a reflection of the primitive strategiy for plant survival in dehydrating habitats [J]. Integrative and Comparative Biology, 2005, 45: 788-799.
    [11] Bartels D, Salamini F. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level [J]. Plant Physiology, 2001, 127: 1346-1353.
    [12] Cushman J C, Bohnert H J. Genomic approaches to plant stress tolerance [J]. Current Opinion in Plant Biology, 2000, 3: 117-124.
    [13] Ingle R A, Schmidt U G, Farrant J M, et al. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscose [J]. Plant, Cell & Environment, 2007, 30: 435-446.
    [14] Oliver M J. Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Ramification for a repair-based mechanism of desiccation tolerance [J]. Plant Physiology, 1991, 97: 1501-1511.
    [15] Gazanchian A, Hajheidari M, Sima N K, et al. Proteome response of Elymus elongatum to severe water stress and recovery [J]. Journal of Experimental Botany, 2007, 58: 291-300.
    [16] Xu C, Huang B. Comparative analysis of drought responsive proteins in Kentucky bluegrass cultivars contrasting in drought tolerance [J]. Crop Science, 2010, 50: 2543-2552.
    [17] Fry J D, Huang B. Applied turfgrass science and physiology [M]. New Jersey: John Wiley & Sons, Hoboken, 2004.
    [18] Baldwin C M, Liu H, McCarty L B, et al. Response of six bermudagrass cultivars to different irrigation intervals [J]. HortTechnology, 2006, 16: 466-470.
    [19] Hanna W. The future of bermudagrass [M]. Golf Course Management, 1998: 49-52.
    [20] Taliaferro C M. Diversity and vulnerability of bermuda turfgrass species [J]. Crop Science, 1995, 35: 327-332.
    [21] Hu L, Wang Z, Huang B. Photosynthetic responses of bermudagrass to drought stress associated with stomatal and metabolic limitations [J]. Crop Science, 2009, 49: 1902-1909.
    [22] Hu L, Wang Z, Du H, et al. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance [J]. Journal of Plant Physiology, 2010, 167: 103-109.
    [23] Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating deficit in leaves [J]. Australian Journal of Biological Sciences, 1962, 15:413-28.
    [24] DaCosta M, Wang Z, Huang B. Physiological adaptation of Kentucky bluegrass to localized soil drying [J]. Crop Science, 2004, 44: 307-1314.
    [25] Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana [J]. Nature, 1998, 391: 485-488.
    [26] Wingler A, Lea P J, Quick W P, et al. Photorespiration: metabolic pathways and their role in stress protection [J]. Philos Trans R Soc, Lond, B Biol Sci, 2000, 355: 1517-1529.
    [27] Wingler A, Quick W P, Bungard R A, et al. The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes [J]. Plant, Cell & Environment, 1999, 22: 361-373.
    [28] Abebe T, Melmaiee K, Berg V, et al. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed [J]. Functional & Integrative Genomics, 2010, 10: 191-205.
    [29] Kallberg Y, Oppermann U, Jornvall H, et al. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes [J]. Protein Science, 2002, 11: 636-641.
    [30] Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmental challenges: recent development [J]. Plant Science, 1999, 140: 103-125.
    [31] Narita Y, Taguchi H, Nakamura T, et al. Characterization of the salt-inducible methionine synthase from barley leaves [J]. Plant Science, 2004, 167: 1009-1016.
    [32] Thorbj?rnsen T, Villand P, Kleczkowski L A, et al. A single gene encodes two different transcripts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare) [J]. Biochemical Journal, 1996, 313: 149-154.
    [33] Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signaling [J]. Journal of Experimental Botany, 2007, 58: 2339-2358.
    [34] Zhou Y, Cai H, Xiao J, et al. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds [J]. Tag Theoretical and Applied Genetics, 2009, 118: 1381-1390.
    [35] Zheng J, Zhao J, Tao Y, et al. Isolation and analysis of water stress induced genesin maize seedlings by subtractive PCR and cDNA macroarray [J]. Plant Molecular Biology, 2004, 55: 807-823.
    [36] Lee B R, Jung W J, Lee B H, et al. Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves [J]. Physiologia Plantarum, 2008, 132: 329-337.
    [37] Xiao X, Yang F, Zhang S, et al. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress [J]. Physiologia Plantarum, 2009, 136: 150-168.
    [38] Lebherz H G, Leadbetter M M, Bradshaw R A. Isolation and characterization of cytosolic and chloroplastic forms of spinach leaf fructose diphosphate aldolase [J]. The Journal of Biological Chemistry, 1984, 259: 1011-1017.
    [39] Wang X, Yang P, Liu Z, et al. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy [J]. Plant Physiology, 2009, 149: 1739-1750.
    [40] Hashimoto M, Komatsu S. Proteomic analysis of rice seedlings during cold stress [J]. Proteomics, 2007, 7: 1293-1302.
    [41] Abbasi F M, Komatsu S. A proteomic approach to analyze salt responsive proteins in rice leaf sheath [J]. Proteomics, 2004, 4: 2072-2081.
    [42] Laxalt A M, Cassia R O, Sanllorenti P M, et al. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato [J]. Plant Molecular Biology, 1996, 30: 961-972.
    [43] Yang Y, Kwon H B, Peng H P, et al. Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis [J]. Plant Physiology, 1993, 101: 209-216.
    [44] Popova T N, Pinheiro de Carvalho M ? A. Citrate and isocitrate in plant metabolism [J]. Biochimica et Biophysica Acta, 1998, 1364: 307-325.
    [45] Ndimba B K, Chivasa S, Simon W J, et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry [J]. Proteomics, 2005, 5: 4185-4196.
    [46] Leprince O, Atherton N M, Deltour R, et al. The involvement of respiration in freeradical processes during loss of dessication tolerance in germinating Zea mays L [J]. Plant Physiology, 1994, 104: 1333-1339.
    [47] Lutziger I, Oliver D J. Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis [J]. Plant Physiology, 2001, 127: 615-623.
    [48] Mano J, Belles-Boix E, Babiychuk E, et al. Protection against photooxidative injury of tobacco leaves by 2-alkenal reductase. Detoxication of lipid peroxide-derived reactive carbonyls [J]. Plant Physiology, 2005, 139: 1773-1783.
    [49] Oberschall A, Deák M, T?r?k K, et al. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses [J]. The Plant Journal, 2000, 24: 437-446.
    [50] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. Journal of Experimental Botany, 2002, 53: 1331-1341.
    [51] Miyake C, Asada K. Ferredoxin-dependent photoreduction of the monodehydroascrobate radical in spinach thylakoids [J]. Plant & Cell Physiology, 1994, 35: 539-549.
    [52] Kato Y, Urano J, Maki Y, et al. Purification and characterization of dehydroascorbate reductase from rice [J]. Plant & Cell Physiology, 1997, 38: 173-178.
    [53] Halliwell B. Toxic effect of oxygen on plant tissues. In Chloroplast Metabolism [M]. Edited by Halliwell B, Clarendon Press, Oxford, 1984, pp. 180-206.
    [54] Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiologia Plantarum, 1988, 72: 681-689.
    [55] Koussevitzky S, Suzuki N, Huntington S, et al. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination [J]. The Journal of Biological Chemistry, 2008, 283: 34197-34203.
    [56] Xu C, Huang B. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance [J]. Journal of Experimental Botany, 2008, 59: 4183-4194.
    [57] Marchand C, Le Maréchal P, Meyer Y, et al. New targets of Arabidopsis thioredoxins revealed by proteomic analysis [J]. Proteomics, 2004, 4: 2696-2706.
    [58] Yamazaki D, Motohashi K, Kasama T, et al. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana [J]. Plant & Cell Physiology, 2004, 45: 18-27.
    [59] Hurkman W J, Tanaka C K. Effect of salt stress on germin gene expression in barley roots [J]. Plant Physiology, 1996, 110: 971-977.
    [60] Dietz K J, Jacob S, Oelze M L, et al. The function of peroxiredoxins in plant organelle redox metabolism [J]. Journal of Experimental Botany, 2006, 57: 1697-1709.
    [61] Mowla S, Thomson J A, Farrant J M, et al. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscose Baker [J]. Planta, 2002, 215: 716-726.
    [62] Close T J. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins [J]. Plant Physiology, 1996, 97: 795-803.
    [63] Mohammadkhani N, Heidari R. Effects of drought stress on soluble proteins in two maize varieties [J]. Turk J Biol, 2008, 32: 23-30.
    [64] Godoy J, Lunar R, Torres-Schumann S, et al. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants [J]. Plant Molecular Biology, 1994, 18: 13-21.
    [65] Close T J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature [J]. Physiologia Plantarum, 1997, 100: 291-296.
    [66] Korol L, Klein J D. Profiles of trinexapac-ethyl and ABA-induced heat-stable proteins in embryonic axes of wheat seeds [J]. Euphytica, 2002, 126: 77-81.
    [67] Bugos R C, Hieber A D, Yamamoto H Y. Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants [J]. The Journal of Biological Chemistry, 1998, 273: 15321-15324.
    [68] Charron J B F, Ouellet F, Houde M, et al. The plant apolipoprotein D ortholog protects Arabidopsis against oxidative stress [J]. BMC Plant Biology, 2008, 8(1): 86.
    [69] Balmer Y, Koller A, Del Val G, et al. Proteomics gives insight into the regulatoryfunction of chloroplast thioredoxins [J]. Proceedings of the National Academy of Science of the United States of America, 2003, 100: 370-375.
    [70] Desalvo M K, Voolstra C R, Sunagawa S, et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata [J]. Molecular Ecology, 2008, 17: 3952-3971.
    [71] Ahsan N, Lee D G, Lee S H, et al. A comparative proteomic analysis of tomato leaves in response to waterlogging stress [J]. Physiologia Plantarum, 2007, 131: 555-570.
    [72] Bohler S, Bagard M, Oufir M, et al. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism [J]. Proteomics, 2007, 7: 1584-1599.
    [73] Gaff D F, Bartels D, Gaff J L. Changes in gene expression during drying in a desiccation tolerant grass Sporobolus stapfianus and a desiccation sensitive grass Sporobolus pyramidalis [J]. Functional Plant Biology, 1997, 24: 617-622.
    [74] Xiao Y, Chen Y, Huang R, et al. Depolymerization of actin cytoskeleton is involved in stomatal closure-induced by extracellular calmodulin in Arabidopsis [J]. Science in China Ser. C Life Sciences, 2004, 47: 454-460. .
    [1] Hsiao T C, Xu I K. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport [J]. Journal of Experimental Botany, 2000, 51 (350): 1595-1616.
    [2] Salaiz T A, Shearman R C, Kinbacher E J. Creeping bentgrass cultivar water use and rooting response [J]. Crop Science, 1991, 31: 1331-1334.
    [3] Wang Z, Huang B. Genotypic variation in abscisic acid accumulation, water relations, and gas exchange for Kentucky bluegrass exposed to drought stress [J]. Journal of the American Society for Horticultural Science, 2003, 128(3): 349-355.
    [4]李禄军,蒋志荣,李正平,等. 3树种抗旱性的综合评价及其抗旱指标的选取[J].水土保持研究, 2006, 13(6): 252-254.
    [5]葛晋纲,蔡庆生,周兴元,等.土壤干旱胁迫对2种不同光合类型草坪草的光合特性和水分利用率的影响[J].草业科学, 2005, 22: 103-107.
    [6] Qian Y, Fry J D, Upham W S. Rooting and drought avoidance of warm-season turfgrasses and Tall Fescue in Kansas [J]. Crop Science, 1997, 37: 905-910.
    [7] Carrow R N, Duncan R R. Improving drought resistance and persistence in turf-type tall fescue [J]. Crop Science, 2003, 43(3): 978-984.
    [8] Jiang Y, Carrow R N. Assessment of narrow-band canopy spectral reflectance and turfgrass performance under drought stress [J]. HortScience, 2005, 40(1): 242-245.
    [9] Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress [J]. Environmental and Experimental Botany, 2001, 45(2): 105-114.
    [10] Volaire F. Seedling survival under drought differs between an annual (Hordeum vulgare) and a perennial grass (Dactylis glomerata) [J]. New Phytologist, 2003, 160: 501-510.
    [11] Abrahama E M, Huang B, Bonos S A, et al. Evaluation of drought resistance for Texas bluegrass, Kentucky bluegrass, and their hybrids [J]. Crop Science, 2004, 44(5): 1746-1753.
    [12] Xu Z, Zhou G. Combined effects of water stress and high temperature onphotosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis [J]. Planta, 224(5): 1080-1090.
    [13] Chen X, Li Y, Ye Y, et al. Drought resistance assessment using chlorophyll fluorescence parameters and net photosynthesis in introduced gramineous forage [J]. Pratacultural Science, 2007, 24(5): 53-57.
    [14] Wehr J B, So H B, Menzies N W, et al. Hydraulic properties of layered soils influence survival of Rhodes grass (Chloris gayana Kunth.) during water stress [J]. Plant and Soil, 2005, 270(1): 287-297.
    [15] Chang H, Qin Y. Effects of NaCl and drought stress on quality and chlorophyll fluorescence parameters of Kentucky bluegrass [J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(9): 1850-1855.
    [16] Xu B, Li F, Shan L, et al. Gas exchange, biomass partition, and water relationships of three grass seedlings under water stress [J]. Weed Biology and Management, 2006, 6(2): 79-88.
    [17] Wang Z, Huang B. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress [J]. Crop Science, 2004, 44: 1729-1736.
    [18] Su K, Bremer D J, Keeley S J, et al. Effects of high temperature and drought on a hybrid bluegrass compared with Kentucky bluegrass and tall fescue [J]. Crop Science, 2007, 47: 2152-2161.
    [19]王赞,吴彦奇,毛凯.狗牙根研究进展[J].草业科学, 2001, 18(5): 37-41.
    [20] Hu L, Wang Z, Huang B. Photosynthetic Responses of bermudagrass to drought stress associated with stomatal and metabolic limitations [J]. Crop Science, 2009, 49: 1902-1909.
    [21] Hays K L, Barber J F, Kenna M P, et al. Drought avoidance mechanisms of selected bermudagrass genotypes [J]. HortScience, 1991, 26(2): 180-182.
    [22] Parry M A J, Andralojc P J, Khan S, et al. Rubisco activity: effects of drought stress [J]. Annals of Botany, 2002, 89(7): 833-839.
    [23] Ashida H, Danchin A, Yokota A. Was photosynthetic Rubisco recruited by acquisitive evolution from Rubisco like proteins involved in sulfur metabolism? [J]. Research in Microbiology, 2005, 156: 611-618.
    [24] Caruso G, Cavaliere C, Foglia P, et al. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry [J]. Plant Science, 2009, 177: 570-576.
    [25] Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress [J]. Journal of Proteome Research, 2006, 5: 396-403.
    [26] Kottapalli K R, Rakwal R, Shibato J, et al. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes [J]. Plant, Cell & Environment, 2009, 32: 380-407.
    [27] Aranjuelo I, Molero G, Erice G, et al. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.) [J]. Journal of Experimental Botany, 2011, 62(1): 111-123.
    [28] Castillejo Má, Maldonado A M, Ogueta S, et al. Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry [J]. The Open Proteomics Journal, 2008, 1: 59-71.
    [29] Xiao X, Yang F, Zhang S, et al. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress [J]. Physiologia Plantarum, 2009, 136: 150-168.
    [30] Xu C, Huang B. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance [J]. Journal of Plant Physiology, 2010, 167: 1477-1485.
    [31] Moran J F, Becana M, Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plants [J]. Planta, 194(3): 346-352.
    [32]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报, 2007, 23(1): 105-110.
    [33] Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. Journal of Experimental Botany, 2002, 53: 1331-1341.
    [34]刘占才,牛俊英.超氧阴离子自由基对生物体的作用机理研究[J].焦作教育学院学报(综合版), 2002, 18(4): 48-51.
    [35] Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiologia Plantarum, 1988, 72: 681-689.
    [36] Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating deficit in leaves [J]. Australian Journal of Biological Sciences, 1962, 15: 413-428.
    [37]陈谷,马其东. NTEP评价体系在草坪草评价中的应用[J].草业科学, 2000, 17(1): 62-69.
    [38] DaCosta M, Wang Z, Huang B. Physiological adaptation of Kentucky bluegrass to localized soil drying [J]. Crop Science, 2004, 44: 1307-1314.
    [39] He Y, Liu X, Huang B. Protein changes in response to heat stress in acclimated and nonacclimated creeping bentgrass [J]. Journal of the American Society for Horticultural Science, 2005, 130: 521-526.
    [40] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72: 248-254.
    [41] Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications [J]. Proceedings of the National Academy of Science of the United States of America, 1979, 76: 4350-4354.
    [42] Lennon A M, Neueschwander U H, Ribas-Carbo M, et al. The effects of salicylic acid and TMV infection upon the alternative oxidase of tobacco [J]. Plant Physiology, 1997, 115: 783-791.
    [43]周久亚,刘建秀,陈树元.草坪草抗旱性研究概述[J].草业科学, 2002, 19(5): 61-66.
    [44]张劲东,路远,周学辉,等.美国杂交早熟禾抗旱性指标测定分析[J].草业科学, 2010, 27(2): 45-47.
    [45]孙启忠.四种冰草幼苗抗旱性的研究[J].中国草地学报, 1991, 3: 29-32.
    [46] Colom M R, Vazzana C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants [J]. Environmental andExperimental Botany, 2003, 49(2): 135-144.
    [47]赵艳,孙吉雄,王兆龙.狗牙根和结缕草部分品种的抗旱性能评价[J].上海交通大学学报(农业科学版), 2008, 26(3): 183-187.
    [48] Pieters A J, Souki S E. Effects of drought during grain filling on PSII activity in rice [J]. Journal of Plant Physiology, 2005, 162: 903-911.
    [49] Lu C M, Zhang J H. Effects of water stress on photosynthesis II photochemistry and its thermostability in wheat plants [J]. Journal of Experimental Botany, 1999, 50: 1199-1206.
    [50] Flexas J, Ribas-Carbo M, Bota J, et al. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to condition of low stomatal conductance and chloroplast CO2 concentration [J]. New Phytologist, 2006, 172: 73-82.
    [51] Chaves M M. Effects of water deficits on carbon assimilation [J]. Journal of Experimental Botany, 1991, 42: 1-16.
    [52] Hu L, Wang Z, Huang B. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species [J]. Physiologia Plantarum, 2010, 139: 93-106.
    [53]王志勇.冷季型草坪草耐热性的研究进展[J].草业科学, 2006, 23(10): 84-91.
    [54] Bajji M, Kinet J M, Lutts S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat [J]. Plant Growth Regulation, 2002, 36(1): 61-70.
    [55] Campos P S, Quartin V, Ramalho J, et al. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants [J]. Journal of Plant Physiology, 2003, 160(3): 283-292.
    [56] Duan B, Lu Y, Yin C, et al. Physiological responses to drought and shade in two contrasting Picea asperata populations [J]. Physiologia Plantarum, 124(4): 476-484.
    [57] Jiang Y, Huang B. Protein alterations in tall fescue in response to drought stress and abscisic acid [J]. Crop Science, 2002, 42(1): 202-207.
    [58] Fran?a M G C, Thi A T P, Pimentel C, et al. Differences in growth and waterrelations among Phaseolus vulgaris cultivars in response to induced drought stress [J]. Environmental and Experimental Botany, 2000, 43(3): 227-237.
    [59] Ellis R J. The most abundant protein in the world [J]. Trends in Biochemical Sciences, 1979, 4: 241-244.
    [60] Spreitzer R J. Genetic dissection of Rubisco structure and function [J]. Annual Review of Plant Biology, 1993, 44: 411-434.
    [61] Dean C, Pichersky E, Dunsmuir P. Structure, evolution, and regulation of RbcS genes in higher plants [J]. Annual Review of Plant Biology, 1989, 40: 415-439.
    [62] Spreitzer R J, Salvucci M E. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme [J]. Annual Review of Plant Biology, 2002, 53: 449-475.
    [63] Lara M V, Drincovich M F, Andreo C S. Induction of a crassulacean acid-like metabolism in the C4 succulent plant, Portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism [J]. Plant & Cell Physiology, 2004, 45(5): 618-626.
    [64] Elstner E F. Oxygen activation and oxygen toxicity [J]. Annual Review of Plant Physiology, 1982, 33: 73-96.
    [65] Zhang J, Kirkham M B. Water relations of water-stressed, split-root C4 (Sorghum bicolor; Poaceae) and C3 (Helianthus annuus; Asteraceae) plants [J]. American Journal of Botany, 1995, 82: 1220-1229.
    [66] Smirnoff N. Role of active oxygen in the response of plants to water deficit and desiccation [J]. New Phytologist, 1993, 125: 27-58.
    [67] Perdomo P, Murphy J A, Berkowitz G A. Physiological changes associated with performance of Kentucky bluegrass cultivars during summer stress [J]. HortScience, 1996, 31: 1182-1186.
    [68] Alscher R G. Biosynthesis and antioxidant function of glutathione in plants [J]. Physiologia Plantarum, 1989, 77: 457-464.
    [69] Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism [J]. Planta, 1976, 133: 21-25.
    [70] Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2: 1131-1145.
    [71] Hajheidari M, Abdollahian-Noghabi M, Askari H, et al. Proteome analysis of sugar beet leaves under drought stress [J]. Proteomics, 2005, 5: 950-960.
    [72] Gazanchian A, Hajheidari M, Sima N K, et al. Proteome response of Elymus elongatum to severe water stress and recovery [J]. Journal of Experimental Botany, 2007, 58: 291-300.
    [73] Hajheidari M, Eivazi A, Buchanan B B, et al. Proteomics uncovers a role for redox in drought tolerance in wheat [J]. Journal of Proteome Research, 2007, 6: 1451-1460.
    [74] Morán J F, Becana M, Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plants [J]. Planta, 1994, 194: 346-352.
    [75] Bian S, Jiang Y. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery [J]. Scientia Horticulturae, 2009, 120(2): 264-270.
    [1] Caruso G, Cavaliere C, Foglia P, et al. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry [J]. Plant Science, 2009, 177: 570-576.
    [2] Abebe T, Melmaiee K, Berg V, et al. Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed [J]. Functional & Integrative Genomics, 2010, 10: 191-205.
    [3] Jain D, Chattopadhyay D. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance [J]. BMC Plant Biology, 2010, 10: 24.
    [4] Lorenz W W, Alba R, Yu Y S, et al. Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.) [J]. BMC Genomics, 2011, 12: 264.
    [5] Oliver M J, Jain R, Balbuena T S, et al. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration [J]. Phytochemistry, 2011, 72: 1273-1284.
    [6] Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon [J]. Physiologia Plantarum, 2011, 141: 40-55.
    [7] Zheng J, Zhao J, Tao Y, et al. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray [J]. Plant Molecular Biology, 2004, 55: 807-823.
    [8] Hajheidari M, Eivazi A, Buchanan B B, et al. Proteomics uncovers a role for redox in drought tolerance in wheat [J]. Journal of Proteome Research, 2007, 6: 1451-1460.
    [9] Xiao X, Yang F, Zhang S, et al. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress [J]. Physiologia Plantarum, 2009, 136: 150-168.
    [10] Harb A, Krishnan A, Ambavaram M M R, et al. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth [J]. Plant Physiology, 2010, 154: 1254-1271.
    [11] Yan S P, Zhang Q Y, Tang Z C, et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice [J]. Molecular & Cellular Proteomics, 2006, 5: 484-496.
    [12] Sumner L W, Mendes P, Dixon R A. Plant metabolomics: large-scale phytochemistry in the functional genomics era [J]. Phytochemistry, 2003, 62: 817-836.
    [13] Shulaev V, Cortes D, Miller G, et al. Metabolomics for plant stress response [J]. Physiologia Plantarum, 2008, 132: 199-208.
    [14] Bowne J, Bacic A, Tester M, et al. Abiotic stress and metabolomics. Annual Plant Reviews [M]. Edited by Hall, R.D. Wiley-Blackwell, Oxford, 2011, 43: 61-85.
    [15] Huang C Y, Roessner U, Eickmeier I, et al. A Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.) [J]. Plant Cell Physiology, 2008, 49(5): 691-703.
    [16] Rizhsky L, Liang H J, Shuman J, et al. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress [J]. Plant Physiology, 2004, 134: 1683-1696.
    [17] Kim J K, Bamba T, Harada K, et al. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment [J]. Journal of Experimental Botany, 2007, 58(3): 415-424.
    [18] Charlton A J, Donarski J A, Harrison M, et al. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy [J]. Metabolomics, 2008, 4: 312-327.
    [19] Alvarez S, Marsh E L, Schroeder S G, et al. Metabolomic and proteomic changes in the xylem sap of maize under drought [J]. Plant, Cell and Environment, 2008, 31: 325-340.
    [20] Fry J D, Huang B. Applied turfgrass science and physiology [M]. John Wiley & Sons, Hoboken, NJ, 2004.
    [21] Barrs H D, Weatherley P E. A re-examination of the relative turgidity technique for estimating deficit in leaves [J]. Australian Journal of Biological Sciences, 1962, 15: 413-428.
    [22] Arnon D I. Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris [J]. Plant Physiology, 1949, 24: 1-15.
    [23] Roessner U, Wagner C, Kopka J, et al. Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry [J]. The Plant Journal, 2000, 23: 131-142.
    [24] Qiu Y, Su M, Liu Y, et al. Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling [J]. Anal Chim Acta, 2007, 583: 277-283.
    [25] Hu L, Wang Z, Huang B. Photosynthetic responses of bermudagrass to drought stress associated with stomatal and metabolic limitations [J]. Crop Science, 2009, 49: 1902-1909.
    [26] Willke T, Vorlop K D. Biotechnological production of itaconic acid [J]. Applied Microbiology and Biotechnology, 2001, 56: 289-295.
    [27] Rivero R M, Shulaev V, Blumwald E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit [J]. Plant Physiology, 2009, 150: 1530-1540
    [28] Levi A, Paterson A H, Cakmak I, et al. Metabolite and mineral analyses of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits [J]. Physiologia Plantarum, 2011, 141: 265-275.
    [29] Hura T, Grzesiak T, Hura K, et al. Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter Triticale: accumulation of ferulic acid correlates with drought tolerance [J]. Annals of Botany, 2007, 100: 767-775.
    [30] Alvarez S, Marsh E L, Schroeder S G, et al. Metabolomic and proteomic changes in the xylem sap of maize under drought [J]. Plant, Cell and Environment, 2008, 31: 325-340.
    [31] Less H, Galili G. Principal transcriptional programs regulating plant amino acidmetabolism in response to abiotic stresses [J]. Plant Physiology, 2008, 147: 316-330.
    [32] Oliver M J, Guo L, Alexander D C, et al. A sister group contrast using untargeted global metabolomic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus [J]. Plant Cell, 2011, 23: 1231-1248.
    [33] Widodo, Patterson J H, Newbigin E, et al. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance [J]. Journal of Experimental Botany, 2009, 60(14): 4089-4103.
    [34] Kaplan F, Kopka J, Haskell D W, et al. Exploring the temperature-stress metabolome of Arabidopsis [J]. Plant Physiology, 2004, 136: 4159-4168.
    [35] Gilbert G A, Gadush M V, Wilson C, et al. Amino acid accumulation in sink and source tissues of Coleus blumei Benth. during salinity stress [J]. Journal of Experimental Botany, 1998, 49: 107-114.
    [36] M?ller M G, Taylor C, Rasmussen S K, et al. Molecular cloning and characterisation of two genes encoding asparagine synthetase in barley (Hordeum vulgare L.) [J]. Biochimica et Biophysica Acta, 2003, 1628: 123-132.
    [37] Hanson A D, Rathinasabapathi B, Rivoal J, et al. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance [J]. Proceedings of the National Academy of Science of the United States of America, 1994, 91: 306-310.
    [38] Raman S B, Rathinasabapathi B.β-alanine N-methyltransferase of Limonium latifolium cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectantβ-alanine betaine [J]. Plant Physiology, 2003, 132: 1642-1651.
    [39] Semel Y, Schauer N, Roessner U, et al. Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype [J]. Metabolomics, 2007, 3(3): 289-295.
    [40] Urano K, Maruyama K, Ogata Y, et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics [J]. The PlantJournal, 2009, 57: 1065-1078.
    [41] Nanjo T, Kobayashi M, Yoshiba Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana [J]. The Plant Journal, 1999, 18: 185-193.
    [42] Bartels D, Sunkar R. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.
    [43] Martinelli T, Whittaker A, Bochicchio A, et al. Amino acid pattern and glutamate metabolism during dehydration stress in the‘resurrection’plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves [J]. Journal of Experimental Botany, 2007, 58: 3037-3046.
    [44] Whittaker A, Martinelli T, Farrant J M, et al. Sucrose phosphate synthase activity and the co-ordination of carbon partitioning during sucrose and amino acid accumulation in desiccation-tolerant leaf material of the C4 resurrection plant Sporobolus stapfianus during dehydration [J]. Journal of Experimental Botany, 2007, 58: 3775-3787.
    [45] Vasquez-Robinet C, Mane S P, Ulanov A V, et al. Physiological and molecular adaptations to drought in Andean potato genotypes [J]. Journal of Experimental Botany, 2008, 59(8): 2109-2123.
    [46] Smirnoff N, Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes [J]. Phytochemistry, 1989, 28: 1057-1060.
    [47] Morelli R, Russo-Volpe S, Bruno N, et al. Fenton dependent damage to carbohydrates: free radical scavenging activity of some simple sugars [J]. Journal of Agriculture and Food Chemistry, 2003, 51: 7418-7425.
    [48] Nishizawa A, Yukinori Y, Shigeoka S. Galactinol and raffinose as a novel function to protect plants from oxidative damage [J]. Plant Physiology, 2008, 147: 1251-1263.
    [49] Salin M L. Toxic oxygen species and protective systems of the chloroplast [J]. Physiologia Plantarum, 1988, 72: 681-689.
    [50] Hancock R D, Walker P G, Pont S D A, et al. L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway [J].Functional Plant Biology, 2007, 34: 1080-1091.
    [51] Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses [J]. Current Opinion in Plant Biology, 2007, 10: 296-302.
    [52] Schobert B. Is there an osmotic regulatory mechanism in algae and higher plants? [J]. Journal of Ttheoretical Biology, 1977, 68: 17-26.
    [53] Brown P H, Hu H. Phloem mobility of boron is species dependent: evidence for phloem mobility in sorbitol-rich species [J]. Annals of Botany, 1996, 77: 497-505.
    [54] Escobar-Gutiérrèz A J, Gaudillère J P. Distribution, métabolisme et r?le du sorbitol chez les plantes supérieures [J]. Agronomie, 1996, 16: 281-298.
    [55] Smirnoff N. Role of active oxygen in the response of plants to water deficit and desiccation [J]. New Phytologist, 1993, 125: 27-58.
    [56] Evers D, Lefèvre I, Legay S, et al. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach [J]. Journal of Experimental Botany, 2010, 61(9): 2327-2343.
    [57] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nature Biotechnology, 1999, 17: 287-291.
    [58] Martinez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycolinduced water stress in the halophyte species Atriplex halimus L [J]. Journal of Experimental Botany, 2005, 56: 2421-2431.
    [59] Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana [J]. The Plant Journal, 2002, 29: 417-426.
    [60] Ranney T G, Bassuk N L, Whitlow T H. Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry (Prunus) trees [J]. Journal of the American Society for Horticultural Science, 1991, 116(4): 684-688.
    [61] Wang Z, Stutte G W. The role of carbohydrates in active osmotic adjustment in apple under water stress [J]. Journal of the American Society for Horticultural Science, 1992, 117: 816-823.
    [62] Navari-Izzo F, Quartacci M F, Melfi D, et al. Lipid composition of plasmamembranes isolated from sunflower seedlings grown under water-stress [J]. Physiologia Plantarum, 1993, 87: 508-514.
    [63] Navari-Izzo F, Ricci F, Vazzana C, et al. Unusual composition of thylakoid membranes of the resurrection plant Boea hygroscopica: changes in lipids upon dehydration and rehydration [J]. Physiologia Plantarum, 2006, 94(1): 135-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700