地震勘探噪声压制方法研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字信号处理的产生和快速发展,数字信号处理在生物医学、图像视频、雷达、通信、航空航天以及地球物理探测等领域都有广泛应用。地球物理探测中的地震勘探是资源勘探的主要手段。地震勘探采集的数据往往会受到各种干扰,因此并不能直接用来反演和解释,需要首先进行数字信号处理以提高信噪比,获得精确、可靠的反演和解释结果。
     从数字信号处理角度讲,地震勘探降噪方法技术的研究始于上世纪六十年代。从数字维纳滤波方法引入地震勘探开始,地震勘探的降噪技术飞速发展,逐渐形成了适用于地震勘探数字信号处理的基本理论与方法系统。地震勘探中的噪声可分为两大类:随机噪声和规则噪声。由于二者性质不同,它们有各自不同的压制方法。所谓的随机噪声就是没有固定频率,在地震整张记录上随机出现,频带很宽,视速度不确定,无一定传播方向的噪声。因而很难利用随机噪声同有效波之间在频率上的差异或传播方向上的差异对其进行压制。
     维纳滤波是地震勘探随机噪声压制最早也是最经典的方法,但是它要求已知信号或噪声的相关函数或功率谱。实际上,这是很难满足的,因此维纳滤波的实际效果不理想。同时,维纳——霍夫方程是一种不适定问题求解。为了解决维纳——霍夫方程的不适定性,经典的求解方法有频谱因式分解法和伯德——香农法(预白化法)。文中为了改善维纳滤波的上述不足,引入正则化的思想。因为正则化不但是不适定问题求解的普遍方法,而且通过正则项可约束或修正由于相关函数或功率谱估计不准时的滤波响应,使其尽可能的接近维纳滤波的最优解。在一维情况下,文中引入估计信号一阶导数的正则化约束项,推导了在该约束下维纳滤波的冲激响应和频域响应。在正则化参数选取理想情况下,正则化约束下的维纳滤波能完全恢复期望信号,而维纳滤波并不能实现这一点,它会不同程度的影响期望信号的完全恢复。文中根据实际情况讨论了正则化参数的取值,并给出了正则化参数的解析表达,使得正则约束下的维纳滤波能更方便的应用、实现。在二维情况下,引入估计信号梯度的约束项,推导了二维情况下正则化约束维纳滤波的频域响应。文中对二维正则化约束下的维纳滤波只给出了理论上的推导并未进行详细讨论,在后续的研究中将进行进一步的完善。通过理论模型及实际资料处理分析,表明一维正则约束下的维纳滤波去噪能力较维纳滤波强,且对有效信号的损失更小,特别是对于一些频率较高的信号。因此正则约束下的维纳滤波优于维纳滤波,它拓展了维纳滤波理论,提高了其实用性。
     规则噪声在时间上的出现具有规律性,有明显的运动学特征,具有一定的视频率和视速度,如面波、多次波、声波、工业电等。在陆地地震勘探中,面波是一种主要的规则噪声,它的存在严重的干扰着地震记录的信噪比。因此,面波的压制是地震勘探中重要一环。
     面波是一种特殊类型的瑞雷波,它产生于近地表的低速带,具有低频、低速、强振幅和频散特性。由于面波的频散特性,在地震记录上它常以近直线形式呈“扫帚状”分布。目前,面波的压制技术很多,包括频域滤波、FK滤波以及Radon变换等。由于面波和有效波(反射波)具有相关性,而且面波的频带和有效波的低频部分频带总有重叠部分,因此在频域或FK域滤波会不同程度的损失低频的有效信号。Radon变换是根据面波在地震记录中具有的线性,把面波变换为Radon域的一个“能量点”,从而使其与有效信号分开。然而由于端点效应的存在,Radon变换并不能完全压制面波。同时,由于Radon域的切除影响会造成有效信号的畸变。
     迹变换是近年发展起来的一种模式识别方法,在图像的识别上已取得很成功的应用。它是Radon变换的一般形式,其特点是可沿直线取不同的泛函,而Radon变换只是直线上的一种积分运算,即线积分。因此说迹变换是Radon变换的一般形式。
     文中基于迹变换方法提出一种新的面波压制方法。该方法是函数的方向导数沿直线积分,称其为方向导数迹变换。应用傅里叶变换和希尔伯特变换的特性,文中推导了方向导数迹变换的反变换公式,目的是实现方向导数迹变换域滤波后的有效信号的重建。在计算方向导数迹变换时,在方向导数迹变换域会得到两部分,一部分主要是面波信息,另一部分则主要体现有效信号(相对于前一部分而言)。由于面波和有效信号的Radon变换在Radon域是一个整体,在这一个域中由于端点效应的存在以及面波和少部分有效信号交织在一起,很难精确的确定面波的范围,因此压制面波后会保留面波的端点信息同时会损失一部分有效信号。方向导数迹变换则把面波和有效信号变换为方向导数迹变换域中的两部分,根据这两部能更精确的确定面波的范围,使面波压制更彻底。文中给出了由这两部分确定面波域的公式,并通过大量不同模型的实验给出了公式中参数的选择规律。
     为了详细的了解面波,文中对面波的产生、传播以及特性进行了详细的讨论。含有面波的理论地震记录的模拟由简单到复杂,应用方向导数迹变换对不同模型进行面波压制处理,通过面波压制前后的波形对比及频谱分析,表明文中提出的方向导数迹变换能对面波进行有效的压制,同时其效果较Radon变换好,因为它对端点效应的处理效果很好。实际资料的处理也验证了方向导数迹变换的有效性,表明方向导数迹变换具有一定的理论研究价值和应用前景。
With the generation and rapid development of digital signal processing, it is widelyused in the biomedicine, image video, radar, communication, aerospace and geophysicalexploration and so on. Seismic exploration is the primary exploration method in geophysics.Seismic data which are contaminated by noise can’t be directly used for inversion andinterpretation. In order to obtain results of the inversion and interpretations more accurateand reliable, the signal to noise ratio of seismic data need to be improved by digital signalprocessing.
     From the perspective of digital signal processing, seismic noise reduction methods andtechniques of research began in the 1960s. From the beginning of digital Wiener filteringmethod introduced to seismic exploration, denoise technology rapidly developed andgradually formed the basic theory of digital signal processing in seismic. Seismic noiseincludes random noise and coherent noise. The random noise has not fixed frequency,certain apparent velocity and direction of propagation and it appears random in the entireseismic record. Its frequency band is very wide. So it is difficult to attenuate by thedifference of frequency and direction of propagationbetween the random noise andreflected signal.
     Wiener filter is the earliest and most classic method to suppress random noise inseismic. It require to known the correlation or spectrum characteristics of signal and noise.In fact, it is difficult to obtain the correlation or spectral, so the result of Wiener filter is notsatisfactory. At the same time, Wiener-Hoff equation is an ill-posed problem. In order toovercome the ill-posed, the classic method for solving Wiener-Hoff equation includes thespectral factorization and Bode-Shannon method (pre-whitening method). The thinking ofregularization is introduced to improve these shortcomings of Wiener filter in this thesis.The regularization is the general method for solving the ill-posed problem. At the sametime, the Wiener filter response can be constrained by regularization term when thecorrelation or spectrum is estimated inaccurately. The goal is to let the filter response asclose as possible to the optimal Wiener filter response. In the one-dimensional case, weproposed the regularization constraint term about the first derivative of estimated signal. We derived the impulse response and frequency response of Wiener filter under theconstraint. The regularization parameter is discussed and given the analysis formula withthe actual. The analysis formula makes the regularization constraint Wiener filter moreeasily achieved. In the two-dimensional case, we proposed the regularization constraintterm about the gradient of estimated signal. We derived the constraint Wiener filterfrequency response in the thesis. We test the 1D constraint Wiener filter with synthetic andactual data, the results show that 1D constraint Wiener filter has more force capacity indenoising than Wiener filter. The reflection signal loss less after 1D constraint Wienerfiltering than after Wiener filtering, especially for high frequency signal.
     The coherent noise has significant kinematic characteristics, certain frequency andapparent velocity. Such as ground-roll, multiple, sound, and industrial electricity, etc.Ground-roll is main coherent noise in land seismic exploration. It’s serious interferencewith the signal to noise ratio. Therefore, the suppression of ground-roll is an important partin seismic exploration.
     Ground roll is a particular type of Rayleigh wave that occurs in the zone of lowvelocity near the surface and has high amplitude, low frequency and low velocity. Groundroll is also dispersive and its distribution likes a broom in the form of near a straight line.Current processing methods of eliminating ground roll include frequency filtering, FKfiltering and Radon transform and so on. The correlation between ground roll and reflectedsignal and the frequency band which is always overlaped, lead to the reflection signallossing with different degrees in frequency filtering or FK filtering. Radon transform isbased on the linear of Ground roll in seismic records. In Radon domain, ground roll is“energy point”, it can be clearly separated form reflection signal. However, due to theendpoint effect and cut-off, the ground-roll can not completely suppressed and thereflection signal is distorted.
     Trace transform is a developing pattern recognition method in recent years. It has beensuccessfully used for object recognition. The Radon transform is a special case of the Tracetransform, that is to say trace transform is the generalization of Radon transform. Its featureis that the different functional defined on the line set can be choose. But the Radontransform is an integral operation on the line set.
     In the thesis a new method based on trace transform is proposed for suppressingground roll. This method is integral operation of directional derivative of function along the line set, called directional derivative trace transform. The inverse directional derivativetrace transform is derived by using the properties of Fourier transform and Hilberttransform. Its purpose is to reconstruct the original function. The directional derivativetrace transform of seismic records is composed of two parts, one part mainly is representground roll; the other part mainly is represent reflection signal (relative to the first part). Inthe Radon domain the ground roll and reflection signal is a whole. Because of the endpointeffect and the overlaps of ground roll and a few reflection signals, it is difficult toaccurately determine the scope of the ground roll. So the ground roll can’t be completelysuppressed. The endpoint of ground roll will remaining and few reflection signals will alsobe suppressed. However, in the trace domain the seismic record consists of two parts.According to the two parts ground roll can be more accurately determined, which makes theground roll suppressed more thoroughly. In the thesis presents the formula of determiningthe scope of ground roll is presented and the law of choice parameter is illustrated byexperiments of different models.
     In order to understand the ground roll in detail, the ground roll generation, propagationand characteristics are discussed in detail in the thesis. The seismic record that containsground roll is simulated from simply to complexly. Using the directional derivative tracetransform to suppress the ground roll in difference models. The analysis of waveform andspectrum before and after ground roll attenuation shows that the proposed method caneffectively suppress the ground roll and the effect is better than Radon transform. Theeffectiveness of the proposed method is also proved by law data processing.
引文
[1]陆基孟。地震勘探原理[M]。北京:石油工业出版社, 1993。
    [2]李庆忠。走向精确勘探的道路—高分率地震勘探系统工程剖析[M]。北京:石油工业出版社,1994。
    [3]俞寿朋,蔡希玲,苏永昌。用地震信号多项式拟合提高叠加剖面信噪比[J]。石油地球物理勘探,1988,23(2):131-139。
    [4]刘贵忠,宗涛,章珂等。利用纵向小波包变换和横向多项式拟合提高地震信号的信噪比和分辨率。石油地球物理勘探[J], 1995, 30(5):584-592。
    [5] Liu G C, Chen X H, Li J Y, et al. Seismic noise attenuation using nonstationary polynomial fitting[J].Applied Geophysics, 2011, 8(1): 18-26.
    [6]陆文凯。基于L_1范数多项式拟合的多次波消除方法[J]。石油地球物理勘探,2011,46(3):386-389。
    [7]田小平,丁玉美。利用多项式拟合模板法消除地震数据中的低频随机干扰[J]。地球物理学报,1996,39(sup):1245-1251。
    [8] Lu W K. Adaptive noise attenuation of seismic images based on singular value decomposition andtexture direction detection[J]. Journal of Geophysics and Engineering, 2006, 3(1): pp. 28-34.
    [9] Li Y J, Yang B J, Li Y, et al. Combining SVD with wavelet transform in synthetic seismic signaldenoising[C]. International Conference on Wavelet Analysis and Pattern Recognition, 2007, pp.1831-1836.
    [10] Bekara M and Baan M. Local singular value decomposition for signal enhancement of seismicdata[J]. Geophysics, 2007, 72(6): V59-V65.
    [11] Franco R D and Musacchio G. Polarization filter with singular value decomposition[J]. Geophysics,2001, 66(3): 932-938.
    [12] Porsani M J, Silva M G, Melo P E M,et al. SVD filtering applied to ground-roll attenuation[J].Journal of Geophysics and Engineering, 2010, 7(3): 284-289.
    [13]李月,杨宝俊,赵雪平,等。检测地震勘探微弱同相轴的混沌振子算法[J]。地球物理学报,2005,38(4):658-664.
    [14]石玉梅,刘天放,谢桂生。基于小波分析及CB形态滤波的地震同相轴检测[J]。石油地球物理勘探, 2000,35(5): 565-570。
    [15]许海涛,毕建军,唐红光,等。数学形态学在地震相干属性提取中的应用[J]。石油地球物理勘探,2010,45(4): 482-484。
    [16] Wang R Q, Li Q, Zhang M. Application of multi-scaled morphology in denoising seismic data[J].Applied Geophysics, 2008, 5(3): 197-203.
    [17] Chen F, Hu S X, and Yu M H. A daptive morphological filter used to process chromatographicsignal[J]. Chinese Journal of Analytical Chemistry, 1999, 27(7): 773-777.
    [18] Runqiu W, Qing L, and Ming Z. Application of multi-scaled morphology in denoising seismicdata[J]. Applied Geophysics, 2008, 5(3): 197-203.
    [19] Tang B and Yin C. Non-minimum phase seismic wavelet reconstruction based on higher orderstatistics[J]. Chinese Journal of Geophysics-Chinese Edition, 2001, 44(3): 404-410.
    [20] Lu W K, Li Y D, Zhang S W, et al. Higher order statistics and supertrace based coherenceestimation algorithm[J]. Geophysics, 2005, 70(3): P13-P18.
    [21] Lu W K. Non-minimum-phase wavelet estimation using second- and third-order moments[J].Geophysical Prospecting, 2005, 53(1): 149-158.
    [22] Lu W, Zhang Y, Zhang S, and Xiao H. Blind wavelet estimation using a zero-lag slice of thefourth-order statistics[J]. Journal of Geophysics and Engineering, 2007, 4(1): pp. 24-30.
    [23] Li Y and Yang Y. Wavelet thresholding method using higher-order statistics for seismic signalde-noising[C]. In Proceedings of the 2009 2nd International Congress on Image and SignalProcessing, Vols 1-9, 2009, pp. 4866-4870.
    [24] Liu Y, Fomel S, Liu C, et al. High-order seislet transform and its application of random noiseattenuation[J]. Chinese Journal of Geophysics-Chinese Edition, 2009, 52(8): 2142-2151.
    [25] Liu Y and Fomel S. OC-Seislet: Seislet transform construction with differential offsetcontinuation[J]. Geophysics, 2010, 75(6): Wb235-Wb245.
    [26] Fomel S and Liu Y. Seislet transform and seislet frame[J]. Geophysics, 2010, 75(3): V25-V38.
    [27]岳承祺,唐权钧。用K-L变换提高多道地震记录的信噪比[J]。石油地球物理勘探, 1988,23(5):560-568。
    [28]彭才,朱仕军,孙建库,等。小波变换域K-L变换及其去噪效果分析[J]。石油物探, 2007,46(2):112-114。
    [29]杨文采。非线性K-L滤波及其在反射地震资料处理中的应用[J]。石油物探, 1996,35(2): 17-26.
    [30] Yahya K M A,庄东海。部分卡南-洛伊夫变换应用于压制地震剖面的随机噪声[J]。石油物探译丛, 1992, 28-41。
    [31]张山。f-x域内提高地震资料的信噪比[J]。石油地球物理勘探,1992,27(5): 648-654。
    [32]康冶,于承业,贾卧,等。f-x域去噪方法研究[J]。石油地球物理勘探,2003,38(2): 136-138。
    [33]国九英,周兴元,杨慧珠。三维f-x,y域随机噪音衰减[J]。石油地球物理勘探, 1995,30(2):207-215。
    [34]国九英,周兴元。用f-x域预测技术消除随机噪音[J]。石油地球物理勘探,1992,27(5): 655-661。
    [35]蔡加铭,周兴元,吴律。f-x域算子外推去噪技术研究[J]。石油地球物理勘探,1999,34(3): 325-331。
    [36]赵德斌,黄真萍,王春梅。F-X域奇异值分解预测滤波法随机噪声衰减[J]。石油物探,1998,37(3):29-33。
    [37]苏贵士,周兴元,李承楚。频率空间三维F-xyz域预测去噪技术[J]。石油地球物理勘探,1998,33(1):95-103
    [38] Yu Z, McMechan G A, Ferguson J F, et al. Adaptive wavelet filtering of seismic data in the wavelettransform domain[J]. Journal of Seismic Exploration, 2002 11(3): 223-246.
    [39] Yu Z, Ferguson J, Mcmechan G, and Anno P. Wavelet-Radon domain dealiasing and interpolation ofseismic data[J]. Geophysics, 2007, 72(2): V41-V49.
    [40] Pazos A, Gonzalez M J, and Alguacil G. Non-linear filter, using the wavelet transform, applied toseismological records[J]. Journal of Seismology, 2003, 7(4): 413-429.
    [41] Pan T C and Lee C L. Application of wavelet theory to identify yielding in seismic response ofbi-linear structures[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(2): 379-398.
    [42] Kulesh M, Holschneider M, and Diallo M S. Geophysical wavelet library: Applications of thecontinuous wavelet transform to the polarization and dispersion analysis of signals[J].Computers & Geosciences, 2008, 34(12): 1732-1752.
    [43] Huang C S and Su W C. Identification of modal parameters of a time invariant linear system bycontinuous wavelet transformation[J]. Mechanical Systems and Signal Processing, 2007, 21(4):1642-1664.
    [44] Fedi M, Primiceri R, Quarta T, et al. Joint application of continuous and discrete wavelet transformon gravity data to identify shallow and deep sources[J]. Geophysical Journal International, 2004,156(1): 7-21.
    [45] Diallo M S, Kulesh M, Holschneider M, et al. Characterization of polarization attributes of seismicwaves using continuous wavelet transforms[J]. Geophysics, 2006, 71(3): V67-V77.
    [46] Capilla C. Application of the Haar wavelet transform to detect microseismic signal arrivals[J].Journal of Applied Geophysics, 2006, 59(1): 36-46.
    [47] Zhang H L, Song S, Liu T Y. The ridgelet transform with non-linear threshold for seismic noiseattenuation in marine carbonates[J]. Applied Geophysics, 2007,4(4): 271-275。
    [48]彭才,常智,朱仕军。基于曲波变换的地震数据去噪方法[J]。石油物探, 2008,47(5): 461-464。
    [49] Wang D L, Tong Z F, Tang C, et al. An iterative curvelet thresholding algorithm for seismic randomnoise attenuation[J]. Applied Geophysics,2010,7(4): 315-324。
    [50]张素芳,徐义贤,雷栋,等。基于Curvelet变换的多次波去除技术[J]。石油地球物理勘探, 2006,41(3): 262-265。
    [51] Wang D L, Tong Z F, Chen T, et al. An iterative curvelet thresholding algorithm for seismic randomnoise attenuation[J]. Applied Geophysics, 2010, 7(4): 315-324.
    [52]包乾宗,高静怀,陈文超。Curvelet域垂直地震剖面波场分离[J]。西安交通大学学报,2007,41(6): 650-654。
    [53] Zheng J J, Yin X Y, Zhang G Z, et al. The surface wave suppression using the second generationcurvelet transform[J]. Applied Geophysics, 2010, 7(4): 325-335.
    [54] Zhang Z Y, Zhang X D, Yu H Y, et al. Noise suppression based on a fast discrete curvelettransform[J]. Journal of Geophysics and Engineering, 2010, 7(1): 105-112.
    [55] Tang G and Ma J W. Application of Total variation based curvelet shrinkage for three dimensionalseismic data denoising[J]. Ieee Geoscience and Remote Sensing Letters, 2011, 8(1): 103-107.
    [56] Herrmann F J, Wang D L, Hennenfent G, et al. Curvelet-based seismic data processing: A multiscaleand nonlinear approach[J]. Geophysics, 2008, 73(1): A1-A5.
    [57] Hennenfent G, Fenelon L, and Herrmann F J. Nonequispaced curvelet transform for seismic datareconstruction: A sparsity-promoting approach[J]. Geophysics, 2010, 75(6): Wb203-Wb210.
    [58] Donno D, Chauris H, and Noble M. Curvelet-based multiple prediction[J]. Geophysics, 2010, 75(6):Wb255-Wb263.
    [59] Hoop M V, Smith H, Uhlmann G, et al. Seismic imaging with the generalized Radon transform: acurvelet transform perspective[J]. Inverse Problems, 2009, 25(2): .
    [60]赵建勋。反Q滤波的应用[J]。石油地球物理勘探,1986,21(4): 410-421。
    [61] Yan H Y, Yang Y. Estimation of Q and inverse Q filtering for prestack reflected PP-and convertedPS-waves[J]. Applied Geophysics, 2009,6(1): 59-69.
    [62]姚振兴,高星,李维新。用于深度域地震剖面衰减与频散补偿的反Q滤波方法[J]。地球物理学报,2003,46(2): 229-233。
    [63] Li Y, Yang B J, Badal J, et al. Chaotic system detection of weak seismic signals[J]. GeophysicalJournal International, 2009, 178(3): 1493-1522.
    [64] Wang Y. Inverse-Q filtered migration[J]. Geophysics, 2008, 73(1): S1-S6.
    [65] Zhang X W, Han L, Zhang F J, et al. An inverse Q-filter algorithm based on stable wavefieldcontinuation[J]. Applied Geophysics, 2007, 4(4): 263-270.
    [66] Wang Y H. Inverse Q-filter for seismic resolution enhancement[J]. Geophysics, 2006, 71(3):V51-V60.
    [67] Elboth T, Presterud I V, and Hermansen D. Time-frequency seismic data de-noising[J]. GeophysicalProspecting, 2010, 58(3): 441-453.
    [68] Parolai S. Denoising of Seismograms Using the S Transform[J]. Bulletin of the SeismologicalSociety of America, 2009, 99(1): 226-234.
    [69] Wang Y H. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics,2007, 72(1): V13-V20.
    [70] Kulesh M, Diallo M S, Holschneider M, et al. Polarization analysis in the wavelet domain based onthe adaptive covariance method[J]. Geophysical Journal International, 2007, 170(2): 667-678.
    [71] Yu Z and Garossino P G A. High-energy noise attenuation of seismic data in the wavelet-transformdomain[J]. Integrated Computer-Aided Engineering, 2005, 12(1): 57-67.
    [72] Pinnegar C R and Eaton D W. Application of the S transform to prestack noise attenuationfiltering[J]. Journal of Geophysical Research-Solid Earth, 2003, 108(B9): 562-569.
    [73] Galiana M, Herranz J R, Giner J, et al. De-noising of short-period seismograms by wavelet packettransform[J]. Bulletin of the Seismological Society of America, 2003, 93(6): 2554-2562.
    [74] Corso G, Kuhn P S, Lucena L S, et al. Seismic ground roll time-frequency filtering using thegaussian wavelet transform[J]. Physica a-Statistical Mechanics and Its Applications, 2003,318(3-4): 551-561.
    [75] Liu Y, Wang D, Liu C, et al. Weighted median filter based on local correlation and its application topoststack random noise attenuation[J]. Chinese Journal of Geophysics-Chinese Edition, 2011,54(2): 358-367.
    [76] Liu Y, Liu C, and Wang D. A 1D time-varying median filter for seismic random spike-like noiseelimination[J]. Geophysics, 2009, 74(1): V17-V24.
    [77] Liu Y, Wang D, Su W, et al. A new fuzzy nesting multilevel median filter and its application toseismic data processing[J]. Chinese Journal of Geophysics-Chinese Edition, 2007, 50(5):1534-1542.
    [78] Liu C, Liu Y, Yang B J, et al. A 2D multistage median filter to reduce random seismic noise[J].Geophysics, 2006, 71(5): V105-V110.
    [79] Znak V I. Co-phased median filters, some peculiarities of sweep signal processing[J]. MathematicalGeology, 2005, 37(2): 207-221.
    [80] Li Y, Ma H T, Lin H B, et al. The research of principal-component Wiener filtering method based onkernel function[J]. Chinese Journal of Geophysics-Chinese Edition, 2010, 53(4): 1226-1233.
    [81] Wang J, Tilmann F, White R S, et al. Application of frequency-dependent multichannel Wienerfilters to detect events in 2D three-component seismometer arrays[J]. Geophysics, 2009, 74(6):V133-V141.
    [82] Jeng Y, Li Y W, Chen C S, et al. Adaptive filtering of random noise in near-surface seismic andground-penetrating radar data[J]. Journal of Applied Geophysics, 2009, 68(1): 36-46.
    [83] Enescu D. A New Application of Benioff Graphs and Wiener Predictive Filter to Forecast Vrancea(Romania) Earthquakes[J]. Romanian Journal of Physics, 2009, 54(1-2): 231-238.
    [84] Mari J L and Porel G. 3D seismic Imaging of a near-surface heterogeneous aquifer: A case study[J].Oil & Gas Science and Technology Institut Francais Petrole, 2008, 63(2): 179-201.
    [85] Muti D and Bourennane S. Multidimensional filtering based on a tensor approach[J]. SignalProcessing, 2005, 85(12): 2338-2353.
    [86] Porsani M J, Melo P E M, and Ulrych T J. Highly resolved deconvolution via a sparsity norm[J].Journal of Seismic Exploration, 2003, 12(2): 127-140.
    [87] Buttkus B and Bonnemann C. Enhancement of deep seismic reflections in pre-stack data byadaptive filtering[J]. Pure and Applied Geophysics, 1999, 156(1-2): 253-278.
    [88] Treitel S. The complex wiener filter[J]. Geophysics, 1974, 39(2):169-173
    [89] Egbai J C. Digital wiener’s filtering in seismic data processing in Trans-Ramos prospet of Riversstate [J]. JETEAS, 2011, 2(1):43-49
    [90] MaqraveG F, Geiger H D, Alsaleh S M, et al. Improving explicit seismic depth migration with astabilizing wiener filter and spatial resampling [J]. Geophysics, 2006, 71(3):S111-S120
    [91] Walden A T. Robust deconvolution by modified Wiener filtering[J]. Geophysics, 1988,53(2):186-191
    [92] Wang J, Tilmann F, White R. S, et al. Application of multichannel wiener filters to the suppressionof ambient scismic noise in passive seismic arrays [J]. The Leading Edge, 2008, 27(2):232-239
    [93] Arslan L M. Modified Wiener filtering[J]. Signal Processing, 2006, 86(2): 267-272.
    [94] Hopgood J R and Rayner P J W. Single channel nonstationary stochastic signal separation usinglinear time-varying filters[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1739-1752.
    [95] Sternad M, Lindborn L, and Ahlen A. Wiener design of adaptation algorithms with time-invariantgains[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1895-1907.
    [96] Nordsjo A E and Zetterberg L H. Identification of certain time-varying nonlinear wiener andHammerstein systems[J]. IEEE Transactions on Signal Processing, 2001, 49(3): 577-592.
    [97] Bershad N J, Celka P, and Vesin J M. Analysis of stochastic gradient tracking of time-varyingpolynomial Wiener systems[J]. IEEE Transactions on Signal Processing, 2000, 48(6):1676-1686.
    [98] Hlawatsch F, Matz G, Kirchauer H, et al. Time-frequency formulation, design, and implementationof time-varying optimal filters for signal estimation[J]. IEEE Transactions on Signal Processing,2000, 48(5): 1417-1432.
    [99] Khan H A and Chaparro L F. Formulation and implementation of the non-stationary evolutionaryWiener filtering[J]. Signal Processing, 1999, 76(3): 253-267.
    [100] Kim S M and Wang S Y. A Wiener filter approach to the binaural reproduction of stereo sound[J].Journal of the Acoustical Society of America, 2003, 114(6): 3179-3188.
    [101] Izquierdo M A G, Hernandez M G, Graullera O, et al. Time-frequency Wiener filtering forstructural noise reduction[J]. Ultrasonics, 2002, 40(1): 259-261.
    [102] Song Y C and Choi D H. Kernel adjusted Wiener filter for image enhancement[J]. JapaneseJournal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers,2005, 44(6a): 3996-3999.
    [103]聂鹏飞,曾谦,马海涛,等。消减地震勘探随机噪声:导数算子约束下的维纳滤波[J]。吉林大学学报(地球科学版), 2010,40(7): 1471-1478.
    [104] Karsli H and Bayrak Y. Using the Wiener-Levinson algorithm to suppress ground-roll[J]. Journalof Applied Geophysics, 2004, 55(3-4): 187-197.
    [105]林红波。时频峰值滤波随机噪声消减技术及其在地震勘探中的应用[D]。长春:吉林大学,2007.
    [106]李鸣祉。地震勘探资料数字处理[M]。徐州:中国矿业大学出版社, 1989。
    [107] Yilmaz O Z. Seismic data analysis processing, inversion, and interpretation of seismic data[M].Society of Exploration Geophysicists, 2001.
    [108] Phinney R A, Chowdhury K R, and Frazer L N. Transformation and analysis of record sections[J].Journal of Geophysical Research, 1981, 86(B1):359-377
    [109] Tatham R H, Keeney J W and Noponen I. Multidimensional Filtering of seismic data[J].Processing of the IEEE, 1984, 72(10):1357-1375
    [110] Chapman C H. Generalized Radon transforms and slant stacks[J]. Geophys. J. Roy. Astr. Soc.,1981, 54(2):481-518
    [111] Stoffa P L, Bubl P, diebold J B and Wenzel F. Diret mapping of seismic data to the domain ofintercept time and ray parameter plane-wave decomposition[J]. Geophysics, 1981,46(2):255-267
    [112] Freitel S, Gutowski P K and Wagner D E. Phane-wave decomposition of seismograms[J].Geophysics, 1982, 47(10):1375-1401
    [113] Thorson J R and Clwerbout J F. Velocity-stack and slant stack stochastic inversion [J]. Geophysics,1985, 50(12):2727-2741
    [114] Sacchi .M .D and Wlrgch .T .J. High-resolution velocity gathors and offset space reconstruction[J].Geophysics, 1995, 64(4):1169-1177
    [115] Trad D, Sacchi M D, and Ulrych T J. A hybrid linear-hyperbolic radon transform[J]. Journal ofSeismic Exploration, 2001, 9(4): 303-318.
    [116] Wang J F, Ng M, and Perz M. Seismic data interpolation by greedy local Radon transform[J].Geophysics, 2010, 75(6): Wb225-Wb234.
    [117] Shankar U, Singh S S, and Sain K. Signal enhancement and multiple suppression using Radontransform: an application to marine multichannel seismic data[J]. Marine GeophysicalResearches, 2009, 30(2): 85-93.
    [118] Xiong D, Zhao W, and Zhang J F. Hybrid-domain high-resolution parabolic Radon transform andits application to demultiple[J]. Chinese Journal of Geophysics-Chinese Edition, 2009,52(4):1068-1077.
    [119] Droujinine A. The attribute-based Generalized Discrete Radon Transform[J]. Journal of SeismicExploration, 2005, 14(2-3): 155-196.
    [120] Nuzzo L. Coherent noise attenuation in GPR data by linear and parabolic Radon Transformtechniques[J]. Annals of Geophysics, 2003, 46(3): 533-547.
    [121] Maeland E. Disruption of seismic images by the parabolic Radon transform[J]. Geophysics, 2003,68(3): 1060-1064.
    [122] Trad D, Ulrych T, and Sacchi M. Latest views of the sparse Radon transform[J]. Geophysics, 2003,68(1): 386-399.
    [123] Wang Y H. Multiple attenuation: coping with the spatial truncation effect in the Radon transformdomain[J]. Geophysical Prospecting, 2003, 51(1): 75-87.
    [124] Wang Y H. Antialiasing conditions in the delay-time Radon transform[J]. Geophysical Prospecting,2002, 50(6): 665-672.
    [125] Lu W K. Localized 2-D filter-based linear coherent noise attenuation[J]. IEEE Transactions onImage Processing, 2001, 10(9): 1379-1383.
    [126] Niu B H, Sun C Y, Zhang Z J, et al. Polynomial radon transform[J]. Chinese Journal of GeophysicsChinese Edition, 2001, 44(2): 263-271.
    [127] Ulrych J, Sacchi M D, and Graul J M. Signal and noise separation: Art and science[J]. Geophysics,1999, 64(5): 1648-1656.
    [128] Askari R and Siahkoohi H R. Ground roll attenuation using the S and x-f-k transforms[J].Geophysical Prospecting, 2008, 56(1): 105-114.
    [129] Chen W C, Gao J H, and Bao Q Z. Adaptive attenuation of ground roll via continuous wavelettransform[J]. Chinese Journal of Geophysics-Chinese Edition, 2009, 52(11): 2854-2861.
    [130] Leite F E A, Montagne R, Corso G, et al. Optimal wavelet filter for suppression of coherent noisewith an application to seismic data[J]. Physica A: Statistical Mechanics and Its Applications,2008, 387(7): 1439-1445.
    [131] Montagne R and Vasconcelos G L. Optimized suppression of coherent noise from seismic datausing the Karhunen-Loeve transform[J]. Physical Review E, 2006, 74(1): 205-213
    [132] Porsani M J and Silva M G. Reply to comment on 'Ground-roll attenuation using a 2Dtime-derivative filter' by Paulo EM Melo, Milton J. Porsani and Michelangelo G. Silva,Geophysical Prospecting 57, 343-353[J]. Geophysical Prospecting, 2010, 58(3) 537-537.
    [133] Melo P E M, Porsani M J, and Silva M G. Ground-roll attenuation using a 2D time-derivativefilter[J]. Geophysical Prospecting, 2009, 57(3): 343-353.
    [134] Ozdemir H. Comments on 'Ground-roll attenuation using a 2D time-derivative filter' by Paulo EMMelo, Milton J. Porsani and Michelangelo G. Silva, Geophysical Prospecting 57, 2009,343-353[J]. Geophysical Prospecting, 2010, 58(3): 535-535.
    [135]马见青,李庆春.面波压制的TT变换方法[J].吉林大学学报(地球科学版),2011,41(2):555-571
    [136]. Henley D C. Coherent noise attenuation in the radial trace domain[J]. Geophysics, 2003,68(4):1408-1416
    [137]刘志鹏,陈子宏,李景叶.径向道变换压制想干噪声方法研究[J].地球物理学进展,2008,23(4):1199-1204
    [138]刘喜武,刘洪,李幼铭.高分辨率Radon变换方法及其在地震信号处理中的应用[J].地球物理学进展,2004,19(1):8-15
    [139]刘保童,朱光明。一种频率域提高Radon变换分辨率的方法[J].西安科技大学学报,2006,26(1):112-116
    [140]杨宝俊。勘探地震学导论[M]。长春:吉林科学技术出版社, 1990。
    [141]俞寿朋。宽带Ricker子波[J]。石油地球物理勘探,1996,31(5): 605-615。
    [142]高静怀,汪文秉,朱光明,等。地震资料处理中小波函数的选取研究[J]。地球物理学报,1996,39(3): 392-399。
    [143]张海燕,李庆忠。几种常用解析子波的特性分析[J]。石油地球物理勘探,2007,42(6):651-657。
    [144]吉洪诺夫A H,阿尔先宁B R(著),王秉忱译。不适定问题的解[M]。北京:地质出版社, 1979。
    [145]张有为。维纳与卡尔曼滤波理论导论[M]。北京:人民教育出版社, 1980。
    [146]老大中。变分法基础(第二版)[M]。北京:国防工业出版社, 2007。
    [147] Vaseghi S V. Advanced Digital Signal Processing and Noise Reduction(4rd)[M]. Wiley, 2008.
    [148]张贤达。矩阵分析与应用[M]。北京:清华大学出版社, 2004。
    [149]杨文采。地球物理反演和地震层析成像[M]。北京:地质出版社, 1989。
    [150] Bouhamidi A, Jbilou K, Reichel L, et al. An extrapolated TSVD method for linear discreteill-posed problems with Kronecker structure[J]. Linear Algebra and Its Applications, 2011,434(7): 1677-1688.
    [151] Eshagh M. Variance component estimation in linear ill-posed problems: Tsvd issue[J]. ActaGeodaetica et Geophysica Hungarica, 2010, 45(1): 184-194.
    [152] Barriere P A, Idier J, Goussard Y, et al. Fast solutions of the 2D inverse scattering problem basedon a TSVD approximation of the internal field for the forward[J]. IEEE Transactions onAntennas and Propagation, 2010, 58(12): 4015-4024.
    [153] Jbilou K, Reichel L, and Sadok H. Vector extrapolation enhanced TSVD for linear discreteill-posed problems[J]. Numerical Algorithms, 2009,51(1): 195-208.
    [154] Kalscheuer T and Pedersen L B. A non-linear truncated SVD variance and resolution analysis oftwo-dimensional magnetotelluric models[J]. Geophysical Journal International, 2007, 169(2):435-447.
    [155] Shou G F, Xia L, Jiang M F, et al. Truncated total least squares: A new regularization method forthe solution of ECG inverse problems[J]. IEEE Transactions on Biomedical Engineering, 2008,55(4): 1327-1335.
    [156] Sima D M and Huffel S V. Level choice in truncated total least squares[J]. Computational Statistics& Data Analysis, 2007,52(4): 1103-1118.
    [157] Ciuciu P, Idier J, and Giovannelli J F. Regularized estimation of mixed spectra using a circularGibbs-Markov model[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2202-2213.
    [158] Burger M, Scherzer O. Regularization methods for blind deconvolution and blind sourceseparation problems[J]. Mathematics of Control Signals and Systems, 2001, 14(2): 358-383.
    [159] Cormack A M. Representation of a function by its line integrals, with some radiologicalapplications II[J]. Journal of Applied Physics, 1964, 35: 2908-2913.
    [160] Deans S R. The Radon transform and some of its applications[M]. Wiley, 1983.
    [161] Durrani T S and Bisset D. The Radon transform and its properties[M]. Geophysics, 1984, 49(5):1180-1187.
    [162] Zarpalas D, Daras P, Axenopoulos A, et al. 3D model search and retrieval using the spherical tracetransform[J]. Eurasip Journal on Advances in Signal Processing, 2007, pp.1271-1276
    [163] Petrou M and Kadyrov A. Affine invariant features from the trace transform[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2004, 26(1): 30-44.
    [164] Kadyrov A and Petrou M. Affine parameter estimation from the trace transform[J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 2006, 28(10) 1631-1645.
    [165] Shin B S, Cha E Y, Kim K B, et al. Effective Feature Extraction by Trace Transform for InsectFootprint Recognition[J]. Journal of Computational and Theoretical Nanoscience, 2010, 7(5):868-875.
    [166] Srisuk S, Petrou M, Kurutach W, et al. A face authentication system using the trace transform[J].Pattern Analysis and Applications, 2005, 8(1): 50-61.
    [167] Fooprateepsiri R and Kurutach W. A fast and accurate face authentication method using hammingtrace transform combination. IETE Technical Review, 2010, 27(2) 365-370.
    [168] Nasrudin M F, Omar K, Liong C Y, et al. Jawi character recognition using the trace transform[J].Sains Malaysiana, 2010, 39(2): 291-297.
    [169] Kadyrov A and Petrou M. Object signatures invariant to affine distortions derived from the Tracetransform[J]. Image and Vision Computing, 2003, 21(13): 1135-1143.
    [170] Kadyrov A and Petrou M. The trace transform and its applications. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2001, 23(5): 811-828.
    [171]聂鹏飞,李月,姚军。Trace变换的基本理论及其在地震勘探中的应用[J]。吉林大学学报(地球科学版), 2007,37(sup): 53-56.
    [172] Bracewell R N. The Fourier transform and its applications[M]. McGraw Hill, 2000.
    [173] King F W. Hilbert transforms[M]. Cambridge University Press, 2009.
    [174] Xia J H, Miller R D, and Park C B. Estimation of near-surface shear-wave velocity by inversion ofRayleigh waves[J]. Geophysics, 1999, 64(4): 691-700.
    [175] Kim D S and Park H C. Determination of dispersive phase velocities for SASW method usingharmonic wavelet transform[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(5):675-684.
    [176] Zomorodian S M A and Hunaid O. Inversion of SASW dispersion curves based on maximumflexibility coefficients in the wave number domain[J]. Soil Dynamics and EarthquakeEngineering, 2006, 26(4): 735-752.
    [177] Foti S, Lancellotta R, Sambuelli L, et al. Notes on fk analysis of surface waves[J]. Annali DiGeofisica, 2000, 43(6): 1199-1209.
    [178] Luo Y H, Xia J H, Miller R D, et al. Rayleigh-wave mode separation by high-resolution linearRadon transform[J]. Geophysical Journal International, 2009, 179(2): 254-264.
    [179] Petrou M and Kadyrov A. The Trace transform in a Nutshell.http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/PETROU2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700