山茶花MADS-box家族A类和C类基因克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山茶花(Camellia japonica)是山茶属(Camellia)的模式植物,该物种的许多品种花器官变异极其丰富,是我国传统的十大名花之一。同时该物种还存在非常普遍的萼片瓣化和雄蕊瓣化的表型变异,这对于研究山茶花重瓣花形成的分子机理和起源方式均具有重要意义。分子植物育种可以缩短观赏植物育种的周期,人为定向进行新品种培育。根据花器官发育的“ABC”模型,A类和C类功能基因可在植物山茶重瓣花形成中起到关键调控作用。研究A类和C类基因在山茶重瓣花形成中的分子调控机理,将为山茶和其他观赏植物的花型育种提供依据。
     采用同源克隆方法和RACE(Rapid Amplification of cDNA Ends)技术,从山茶托桂型重瓣类栽培品种‘金盘荔枝’的发育早期花芽中分离到了山茶花花器官发育同源基因cDNA全长,序列分析表明分别为A类的AP1同源基因CjAPL1(GenBank登录号JX657332)和CjAPL2(GenBank登录号JX843815)、 AGL6同源基因CjAGL6(GenBank登录号JX657333),C类的AG类同源基因CjAG1(GenBank登录号JX843816)。生物信息学和保守域分析表明,克隆的4个基因皆为典型的Type II类型的MADS-box家族花器官发育调控基因。
     以六种典型花型的山茶原种和品种为材料,利用实时荧光定量方法对山茶中获得的4个基因的时空表达模式进行了研究。在时间表达模式中,随着花芽发育成熟度的增加和花瓣数量的增多,CjAPL1和CjAPL2基因的高表达趋势表现为由花芽发育早期转至中期,但在半重瓣品种的花芽发育中后期也进行了高表达。CjAGL6基因在单瓣花型中的最高表达量是在花芽发育早期,随花瓣数量增多高表达转至发育中后期,但半重瓣品种的后期表达量最高。CjAG1基因除在半重瓣品种的花芽发育中期进行了高表达外,在其他5种花型中普遍为花芽发育的后期表达量最高。
     在不同品种的山茶花器官中,CjAPL1基因在萼片或瓣化萼片、外轮花瓣中的表达量高于雄蕊和内轮花瓣,同时也在花柱、子房和瓣化雄蕊中存在高表达,表明CjAPL1基因不仅对萼片和外轮花瓣花器官调控功能比较明显,而且对于花柱和子房也具有明显的调控功能。CjAPL2基因与CjAPL1基因的表达模式相似,在山茶萼片、瓣化萼片、外轮花瓣和心皮中的表达量普遍高于内轮花瓣和雄蕊,且在玫瑰重瓣型和完全重瓣型中该基因调控效果更加显著。
     CjAGL6基因在单瓣型、半重瓣型和托桂型中的高表达集中于心皮、萼片或瓣化萼片部位,其次为内轮的花瓣、瓣化雄蕊和雄蕊;在其他3个品种中的高表达量部位为雄蕊和内轮花瓣。
     CjAG1基因的表达量较一致,主要集中于心皮、雄蕊、瓣化雄蕊,且在内轮花瓣和瓣化萼片中的总体表达量高于外轮花瓣;这说明CjAG1主要对内轮花器官起调控作用。但在‘红十八学士’中该基因对于对于外轮花瓣和瓣化萼片的调控作用却较内轮花瓣明显,显示出山茶完全重瓣品种基因表达的特异性。
     利用酶切方法,分别构建了4个正义植物表达载体和4个干扰植物表达载体,利用农杆菌介导的花序浸染法分别转化拟南芥野生型、ap1-3和ag-1突变体植株。经表型观察统计,获得了含CjAPL1、CjAPL2、CjAGL6和CjAG1正义基因的拟南芥野生型阳性植株分别为65株、42株、73株和102株;含CjAPL1、CjAGL6和CjAG1干扰基因的拟南芥阳性植株数量各45株、21株和25株;含CjAPL1正义基因的拟南芥ap1-3突变体和含CjAG1正义基因的拟南芥ag-1突变体阳性植株分别为36株和28株。从每个转基因表型为阳性类型的植株中随机挑选3株,经基因组PCR扩增和Southern杂交鉴定确认为阳性转基因植株,荧光定量结果表明,与对照相比较,所有目的基因在转正义和干扰基因的阳性植株中分别出现相应表达量显著升高和下降的结果。
     经表型观察统计,转CjAPL1和CjAPL2基因拟南芥野生型植株典型的表型变异为:萼片边缘演变为花瓣质地的白色,花内都出现花柱增加1枚,但雄蕊数量前者增加4枚,后者2-3枚;此外,转CjAPL2的植株单朵花花径变大,花瓣增加1-3枚,萼片数量不变或减少1枚。CjAPL2还能够促进花瓣形成,且这两个基因还可以调控内轮雌、雄蕊的器官数量增加。转CjAGL6正义基因的植株雄蕊和雌蕊数量保持不变,但萼片增加1枚,花瓣数量和形态没有发生变化。转CjAG1正义基因的植株单朵花花径缩小明显,雄蕊增多2-4枚,萼片先端出现柱头状乳突,花瓣数量减少甚至无花瓣发育,雌蕊数量没有变化。
     观察到转CjAPL1和CjAG1干扰基因的阳性植株都出现雄蕊减少1-2枚的表型;转CjAGL6干扰基因的花径变大,雄蕊退化,花柱为1枚且上部分弯曲,萼片和花瓣各发育为3枚、内弯,花瓣外表面的上半部分颜色变红,表明所干扰的基因有调控萼片、花瓣和花柱生长及伸长的功能;雄蕊退化也表明CjAGL6对于花器官的形态和数量发育起到重要的调控作用。
     在正义表达载体转拟南芥突变体实验中,转山茶CjAPL1正义基因的拟南芥ap1-3突变体,花序恢复为总状花序,单花花径变大,花瓣数量也恢复为4枚;同时,株型也得到恢复。通过转拟南芥ap1-3突变体的花瓣数量增加,再次表明CjAPL1基因有增加花瓣数量的调控功能。转山茶CjAG1正义基因的拟南芥ag-1突变体,雄蕊数量也恢复为6枚,这也证实了CjAG1基因具有调控雄蕊数量增加的功能。
     综合荧光定量、模式植物功能验证和表型观察统计分析结果,认为山茶重瓣花的起源方式可能包括萼片起源、雄蕊起源和重复起源等多种,且这些起源方式对于不同花型重瓣花形成的作用是不同的。半重瓣型品种的重瓣性为单一的萼片起源;牡丹重瓣型品种重瓣性为雄蕊起源为主,雄蕊起源和萼片起源并存;托桂型品种中重复起源与雄蕊起源并存,辅以萼片起源。玫瑰重瓣型和完全重瓣型山茶品种重瓣性以重复起源作为主要的重瓣花起源方式,辅以雄蕊起源和萼片起源。
     本研究表明,山茶CjAPL1、CjAPL2基因不仅能促进萼片向花瓣属性的转化,而且可以调控花瓣和雄蕊、雌蕊的数量增加;CjAGL6基因能够调控雄蕊数量,同时促进增萼片和花瓣数量增多;CjAG1基因对于雄蕊数量增多调控效果显著,并能引起花瓣突变为雄蕊、萼片向心皮演变。对所克隆的山茶AP1、AGL6和AG同源基因的时空表达模式和模式植物功能基因验证结果表明这4个基因在山茶重瓣花形成过程中具有花器官属性决定及花器官数量增加的调控功能。
Camellia japonica, with plentiful floral organ varitions, is the modle plant of Camelliaand one of the ten famous flowers in China. Meanwhile as there are very common phenotypicvariation of sepals and stamens petalody, it is significant to studies on the double flowerformation. Molecular breeding could shorten breeding cycle and orientedly cultivate newspecies. Based on the "ABC" model of floral organs development, class A and C genes couldhave the key function during the double flower formation of C. japonica. The molecularregulation mechanisim discussion of A and C genes for doule flower formation, could providea basis for the flower type breeding of Camellia and other ornamental plant in the future.
     Firstly, four homologous gene were isolated from early flower bud of C. japonica ‘JinpanLizhi’, a amenone form double flower cultivar by homologous sequence cloning and RACE.The result of sequences analysis showed that they are CjAPL1(GenBank accession#JX657332)and CjAPL2(GenBank accession#JX843815) belonging to AP1homologous genes, CjAGL6(GenBank accession#JX657333) belonging to AGl6homologous gene and CjAG1(GenBankaccession#JX843816) belonging to AG homologous gene. They were floral organsdevelopment genes of typical Type II kind in MADS-box family by bioinformatics andconservative domain analysis.
     Then in six typical flower types of protospecies and cultivars of C.japonica, spatial andtemporal expression patterns of CjAPL1、CjAPL2、CjAGL6和CjAG1genes were studied byReal-time quantitative PCR. Along with the flower bud maturity and petal quantity increase,the high expression trend of CjAPL1and CjAPL2genes changed from early flower bud tomidlle one, but at midlle and later flower bud in semidouble flower. In single flower thehighest expression level of CjAGL6gene presented at early flower bud, and changed to midlleand later flower bud along with the quantity increase, but at later flower bud in semidouble flower. The high expression level of CjAG1gene were most at later flower bud in C. japonicaexcept of at midlle flower bud in semidouble flower.
     In floral organs spatial expression pattern of thses six samples, the expression level ofCjAPL1gene were higher at sepal, petalody sepal and outer petal than at stamen and innerpetal. Meanwhile it were also higher at style and ovary. This indicated that CjAPL1gene hadrelative obvious regulatory function at sepal and overy and style. CjAPL2gene had the sameexpression pattern as CjAPL1, the higher expression level at sepal, petalody sepal, outer petaland carpel than at inner petal and stamen, and obvious regulatory effect presented in rosedouble form and fully double form.
     The highest expression level of CjAGL6gene were at carpel, sepal and petalody sepal,next at inner petal and stamen in protospecies, semidouble double flower and amenone form.While it were at stamen and inner petal in other cultivars.
     The expression level of CjAG1gene were mainly at outer petal. This indicated thatCjAG1had a main regulatory function to inner floral organs. But in fully double form thisgene had stronger regulatory function to outer petal and petalody sepal than inner petal,verifying the expression specificity in fully double flower cultivar of C. japonica.
     Four sense plant expression vectors and four RNAi plant expression vectors wereconstructed by restriction enzyme digestion, then respectively transformed into Arabidopsisthaliana of wild type (WT), ap1-3and ag-1mutant plants by inflorescence soak mediatedwith Agrobacterium tumefaciens. The positive plants quantity of transgenic WT Arabidopsisthaliana were65of transgenic sense CjAPL1gene,42of transgenic sense CjAPL2,73oftransgenic sense CjAGL6and102of transgenic sense CjAG1,45of transgenic RNAi CjAPL1gene,21of transgenic RNAi CjAGL6and25of transgenic RNAi CjAG1,36of transgenicap1-3with sense CjAPL1gene and28of transgenic ag-1with sense CjAG1gene. The positiveplants with hygromycin resistance were identified by PCR amplication and Southern blotting.The result of Real time-PCR detection showed that all aim genes expression level increased intransgenic sense gene plants and reduced in in transgenic RNAi gene plants.
     The results of phenotypic observation and statistics showed that in transgenic senseCjAPL1and CjAPL2plants there were same type varitions of edge developed petaloidmorphology,1increased styles and1-4or2-3increased stamens each. Moreover, there werelarger flower diameter,1-3increased petals and1reduced sepal in transgenic CjAPL2plants.These indicated that both genes could indirectly regulate stamen and pistil development, inaddition and CjAPL2gene could promote petal formation.
     In transgenic sense CjAGL6plants though the quantity stamen and pistil did not changed,sepals increated1. Meanwhile the quantity and shape of petals did not changed. In transgenicsense CjAG1plants the diametre of one flower shrinked distinctly, stamens increased2-4,carpelloid-sepal beared stigmatic papillae, but petals reduced or disappear.
     There was Phenotype change of1-2stamens reduced in plants of RNAi genes. In positiveplants of RNAi CjAGL6gene the single flower diametre increased, no stamen presented,1style with inflexed upper part, and the rest floral organs included3inflexed sepals and3inflexed petals with red color in upper part of surface. These showed this RNAi genes couldregulate growth and stretch of sepal, petal and style. The vestigial stamen also indicated thedisturb effect was obvious.
     The inflorescence of ap1-3Arabidopsis thaliana with transgenic CjAPL1gene reverted toraceme from dense corymb, the diametre of one flower increased, the petals quantity revertedto4. Meanwhile the plant type reverted to WT. The result of petals quantity increase showedthat CjAPL1gene could regulate the petal formation. The stamen of ag-1Arabidopsis thalianawith transgenic CjAG1gene reverted to6. This indicated CjAG1gene could regulate stamenformation and laid a solid foundation for stamens petalody.
     The results of Real-time quantitative PCR, function verification in modle plant,phenotypic observation and statistics showed that the origin way of double flower in Camelliamay include some ways incluing sepals origin, stamens origin and repeat origin, and so on.These ways were different in various flower types. Semidouble type flower was the singlesepals origin. Peony double form flower were sepals origin and stamens origin, and stamens origin as main origin way. Repeat origin and stamen origin were both important in amenoneform flower, and assisted with sepals origin. Rose double form and double form flowers maderepeat origin as main origin way, assisted with stamens origin and sepals origin.
     All study showed that CjAPL1and CjAPL2genes in C. japonica could not only promotethe character conversion from sepal to petal, but also regulate the quantity increase of the petal,stamen and pistil. CjAGL6gene could regulate stamen quantity increase, also promote thequantity increase of sepal and petal. CjAG1had obvious regulative effect to stamen quantityand caused the petal reverted to stamen, sepal to carpel. The result of spatial and temporalexpression patterns and transgenic studies showed that AP1, AGL6and AG homologous genesisolated from C. japonica could regulate the floral organs character and increase floral organsquantity during doule flower formation of C. japonica.
引文
Abe M,Kobayashi Y,Yamamoto S,et al.FD,a bZIP Protein Mediating Signals from the FloralPathway Integrator FT at the Shoot Apex[J].Science,2005,309(5737):1052~1056
    Alvarez J,Smyth D R.CRABS CLAW and SPATULA,two Arabidopsis genes that control carpeldevelopment in parallel with AGAMOUS[J].Development,1999,126(11):2377~2386
    An K,An G.Overriding photoperiod sensitivity of flowering time by constitutive expression of a MADSbox gene[J].Journal of Plant Biology,2000,43(1):28~32
    Angenent G C,Franken J,Busscher M,et al.Petal and stamen formation in petunia is regulated by thehomeotic gene fbp1[J].The Plant Journal,1993,4:101~112
    Becker A,Theissen G.The major clades of MADS-box genes and their role in the development andevolution of flowering plants [J].Molecular Phylogenetics and Evolution,2003,29:464~489
    Becker A,Kaufmann K,Freialdenhoven A,et al.A novel MADS-box gene subfamily with a sistergroup relationship to class B floral homeotic genes[J].Molecular Genetics and Genomics,2002,266(6):942~950
    Bowman J L,Drews G N,Meyerowitz E M.Expression of the Arabidopsis floral homeotic geneAGAMOUS is restricted to specific cell types late in flower development[J].The Plant Cell,1991,3(8):749-758
    Bowman J L,Alvarez J,Weigel D,et al.Control of flower development in Arabidopsis thaliana byAPETALA1and interacting gene[J].Development,1993,119:721~743
    Bowman J L, Smyth D R, Meyerowitz E M. Genes directing flower development inArabidopsis[J].The Plant Cell,1989,1(1):37~52
    Bowman J L,Smyth D R,Meyerowitz E M.Genetic interactions among floral homeotic genes ofArabidopsis[J].Development,1991,112:1~20
    Cardon G H,H hmann S,Nettesheim K,et al.Functional analysis of the Arabidopsis thaliana SBP-boxgene,SPL3:a novel gene involved in the floral transition[J].The Plant Journal,1997,12:367~377
    Chanderbali A,Kim S,Buzgo M,et al.Genetic footprints of stamen ancestors guide perianth evolutionin Persea(Lauraceae)[J].International Journal of Plant Sciences,2006,167(6):1075~1089
    Cheng H,Song S,Xiao L,et al.Gibberellin acts through jasmonate to control the expression ofMYB21,MYB24, and MYB57to promote stamen filament growth in Arabidopsis[J].PloS genetics,2009,5(3):e1000440
    Chung Y,Kim S,Finkel D,et al.Early flowering and reduced apical dominance result from ectopicexpression of a rice MADS box gene[J]. Plant Molecular Biology,1994,26(2):657~665
    Coen E S, Meyerowitz E M. The war of the whorls: Genetic interactions controlling flowerdevelopment[J].Nature,1991,353:31~37
    Colombo L,Franken J,Koetje E,et al.The petunia MADS box gene FBP11determines ovuleidentity[J].The Plant Cell,1995,7:1859~1868
    Conner J,Liu Z.LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expressionduring flower development[J].Proceedings of the National Academy of Sciences(PNAS),2000,97(7):12902~12907
    Davies B,Motte P,Keck E,et al.PLENA and FARINELLI: Redundancy and regulatory interactionsbetween two Antirrhinum MADS-box factors controlling flower development[J].EMBO Journal,1999,18:4023~4034
    De Bodt S,Raes J,Van de Peer Y,et al.And then there were many: MADS goes genomic[J].Trendsin Plant Science,2003,8(10):475~483
    Díaz-Riquelme J,Lijavetzky D,Martínez-Zapater J M,et al.Genome-wide analysis of MIKCC-TypeMADS box genes in Grapevine [J].Plant Physiol,2009,149:354~369
    Ditta G,Pinyopich A,Robles P,et al.The SEP4gene of Arabidopsis thaliana functions in floral organand meristem identity[J].Current Biology,2004,14(21),1935~1940
    Erdmann R,Gramzow L,Melzer R,et al.GORDITA(AGL63)is a young paralog of the Arabidopsisthaliana Bsister MADS box gene ABS(TT16)that has undergone neofunctionalization[J].PlantJournal,2010,63(6):914~924
    Ferrandiz C,Gu Q,Martienssen R,et al.Redundant regulation of meristem identity and plantarchitecture by FRUITFULL,APETALA1and CAULIFLOWER[J].Development,2000,127:725~734
    Ferrario S,Immink R G,Angenent G C.Conservation and diversity in flower land [J].Current OpinionPlant Biology,2004,7:84~91
    Ferrario S,Immink R G,Shchennikova A,et al.The MADS box gene FBP2is required for SEPALLATAfunction in Petunia[J].The Plant Cell,2003,15:914~925
    George S E,Huggins-Clark G,Brooks L R.Use of a Salmonella microsuspension bioassay to detect themutagenicity of munitions compounds at low ncentrations[J].Mutation Research,2001,490(1):45~56
    Goto K, Meyerowitz E M. Function and regulation of the Arabidopsis floral homeotic genePISTILLATA[J].Genes&Development,1994,8:1548~1560
    Goto T. Molecular and genetic analyses of flower homeotic genes of Arabidopsis[J]. Journal ofBiosciences,1996,21(3):369~378
    Grigorova B, Mara C, Hollender C, et al. LEUNIG and SEUSS co-repressors regulate miR172expression in Arabidopsis flowers[J].Development,2011,138(12):2451~2456
    Gustafson-Brown C,Savidge B,Yanofsky M.Regulation of the Arabidopsis floral homeotic geneAPETALA1[J].Cell,1994,76(1):131~143
    Hou J,Gao Z,Zhang Z,et al.Isolation and characterization of an AGAMOUS Homologue PmAG fromthe Japanese apricot (Prunus mume Sieb. et Zucc.)[J].Plant Molecular Biology Reporter,2011,29(2):473~480
    Hu M,Labbé H,Martin T,et al.PpAG1,a homolog of AGAMOUS,expressed in developing peachflowers and fruit[J].Canadian Journal of Botany,2006,84(5):767~776
    Huijser P,Klein J,L nnig W E,et al.Bracteomania, an inflorescence anomaly, is caused by the loss offunction of the MADS-box gene squamosa in Antirrhinum majus[J].The EMBO Journal,1992,11(4),1239~1249
    Irish V F, Litt A. Flower development and evolution:gene duplication, diversification andredeployment[J].Current Opinion in Genetics&Development,2005,15:454~460
    Jack T,Bockman L L,Meyerowitz E M.The homeotic gene APETALA3of Arabidopsis thaliana encodesan MADS-box and is expressed in petals and stamens[J].Cell,1992,68:683~697
    Kang H,Noh Y,Chung Y,et al.Phenotypic alterations of petal and sepal by ectopic expression of a riceMADS box gene in tobacco[J].Plant Molecular Biology,1995,29(1):1~10
    Kapoor M,Tsuda S,Tanaka Y,et al.Role of petunia pMADS3in determination of floral organ andmeristem identity,as revealed by its loss of function[J].The Plant Journal,2002,32:115~127
    Kotilainen M,Elomaa P,Uimari A,et al.GRCD1,an AGL2-like MADS-box gene, participates in theC function during stamen development in Gerbera hybrida[J]. The Plant Cell,2000,12:1893~1902
    Kramer E M,Hall J C.Evolutionary dynamics of genes controlling floral development[J].CurrentOpinion in Plant Biology,2005,8(1):13~18
    Kim S,Koh J,Yoo M J,et al.Expression of floral MADS-box genes in basal angiosperms: implicationson evolution of floral regulators and the perianth[J].The Plant Journal,2005,43(5):724~744
    Kinjo H,Shitsukawa N,Takumi S,et al.Diversification of three APETALA1/FRUITFULL-like genes inwheat[J]. Molecular Genetics and Genomics,2012,287(4):283~294
    Landis J B,Barnett L L,Hileman L C.Evolution of petaloid sepals independent of shifts in B-classMADS box gene expression[J].Development Genes and Evolution,2012,222(1):19~28
    Lee H, Irish V F. Gene duplication and loss in a MADS box gene transcription factorcircuit[J].Molecular Biology and Evolution,2011,28(12):3367~3380
    Li Z,Zhang J,Liu G,et al.Phylogenetic and evolutionary analysis of A-,B-,C-and E-class MADS-box genes in the basal eudicot Platanus acerifolia[J].Journal of Plant Research,2012,125(3):381~393
    Liljegren S J,Gustafson-Brown C,Pinyopich A,et al.Interactions among APETALA1,LEAFY andTERMINAL FLOWE-R1specify meristem fate[J].The Plant Cell,1999,11:1007~1018
    Litt A. An evaluation of A-function: evidence from the APETALA1and APETALA2genelineages[J].International Journal of Plant Sciences,2007,168(1):73~91
    Litt A,Kramer E M.The ABC model and the diversification of floral organ identity[J].Seminars in Cell&Developmental Biology,2010,21(1):129~137
    Lowman A C,Purugganan M D.Duplication of the Brassica oleracea APETALA1floral homeotic geneand the evolution of domesticated cauliflower[J].Hered,1999,90:514~520
    Mandel M A,Yanofsky M F.The Arabidopsis AGL8MADS box gene is expressed in inflorescencemeristems and is negatively regulated by APETALA1[J].The Plant Cell,1995,7(11):1763~1771
    Mandel M A,Gustafson-Brown C,Savidge B,et al.Molecular characterization of the Arabidopsisfloral homeotic gene APETELA1[J].Nature,1992,360(6401):273~277
    Mandel M A,Yanofsky M F.The Arabidopsis AGL9MADS box gene is expressed in young flowerprimordia[J].Sexual Plant Reproduction,1998,11(1):22~28
    Matsubara K,Shimamura K,Kodama H,et al.Green corolla segments in a wild Petunia species causedby a mutation in FBP2,a SEPALLATA-like MADS box gene[J].Planta;An International Journal ofPlant Biology,2008,228(3):401~409
    Melzer R,Wang Y Q,Theissen G.The naked and the dead:the ABCs of gymnosperm reproduction andthe origin of th eangiosperm flower[J].Seminars in Cell&Developmental Biology,2010,21(1):118~28
    Nam J,dePamphilis C W,Ma H,et al.Antiquity and evolution of the MADS-box gene familycontrolling flower development in plants[J]. Molecular Biology and Evolution,2003,20:1435~1447
    Ng M,Yanofsky M F.Function and evolution of the plant MADS-box gene family[J].Nature ReviewsGenetics,2001,2:186~195
    Noh S,Yoon S H.Stereospecific positional distribution of fatty acids of Camellia (Camellia japonica L.)seed oil[J].Journal of Food Science,2012,77(10):C1055~C1057
    Orel G.A New Species of Camellia Section Piquetia(Theaceae)from Vietnam[J].Novon;A Journalfor Botanical Nomenclature,2006,12(6):244~247
    Parenicova L,de Folter S,Kieffer M,et al.Molecular and phylogenetic analyses of the completeMADS-box transcription factor family in Arabidopsis:new openings to the MADS world[J].The PlantCell,2003,15:1538~1551
    Parey F,Nilsson O,Busch MA,et al.Agenetic framework for floral patterning[J].Nature,1998,395:561~566
    Parfitt D,Herbert R J,Rogers H J,et al.Differential expression of putative floral genes in Pharbitisnilshoot apices cultured on glucose compared with sucrose[J].Journal of Experimental Botany,2004,55(406):2169~2177
    Piao M,Yoo E S,Koh Y S,et al.Antioxidant effects of the ethanol extract from flower of Camelliajaponica via scavenging of reactive oxygen species and induction of antioxidantenzymes[J].International Journal of Molecular Sciences,2011,12(4):2618~2630
    Savidge B,Rounsley S D,Yanofsky M F.Temporal relationship between the transcription of twoArabidopsis MADS box genes and the floral organ identity genes[J].The Plant Cell,1995,7(6):721~733
    Sealy J R.A revision of the genus Camellia[M].Lundon:Royal Horticultural Society,1958:2~13
    Shan H,Zahn L,Guindon S,et al.Evolution of plant MADS Box transcription factors: Evidence forshifts in selection associated with early angiosperm diversification and concerted geneduplications[J].Molecular Biology and Evolution,2009,26(10):2229~2244
    Shore P,Sharrocks A D.The MADS-box family of transcription factors[J].European Journal ofBiochemistry,1995,229(1):1~13
    Simon R, Ige o M I, Coupland G. Activation of floral meristem identity genes inArabidopsis[J].Nature,1996,384:59~62
    Soltis D E, Chanderbali A, Kim S, et al. The ABC Model and its applicability to basalangiosperms[J].Annals of Botany,2007,100(2):155~163
    Soltis P S, Brockington S F, Yoo M, et al. Floral variation and floral genetics in basalangiosperms[J].American Journal Botany,2009,96:110~128
    Sridhar V V,Surendrarao A,Gonzalez D,et al.Transcriptional repression of target genes by LEUNIGand SEUSS,two interacting regulatory proteins for Arabidopsis flower development[J].Proceedingsof the National Academy of Sciences(PNAS),2004,101(31):11494~11499
    Sridhar V V,Surendrarao A,Liu Z.APETALA1and SEPALLATA3interact with SEUSS to mediatetranscription repression during flower development[J].Development,2006,133:3159~3166
    Theissen G,Saedler H.Floral quartets[J].Nature,2001,409:469~471
    Thiruvengadam M,Chung I,Yang C.Overexpression of Oncidium MADS box(OMADS1)genepromotes early flowering in transgenic orchid(Oncidium Gower Ramsey)[J].Acta PhysiologiaePlantarum,2012,34(4):1295~1302
    Thomas J.Relearning our ABCs: new twists on an old model[J].Trends in Plant Science,2001,6:370~376
    Tsuchimoto S,Vander Krol A R.Chua N H.Ectopic expression of pMADS3in transgenic petuniaphenocopies the petunia blind mutant[J].The Plant Cell,1993,5:843~853
    Uimari A,Kotilainen M,Elomaa P,et al.Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene[J].Proceedings of the National Academy of Sciences(PNAS),2004,101:15817~15822
    Viaene T,Vekemans D,Irish V F,et al.Pistillata-duplications as a mode for floral diversification in(Basal)asterids [J].Molecular Biology and Evolution,2009,26(11):2627~2645
    Vrebalov J,Ruezinsky D,Padmanabhan V,et al.A MADS-box gene necessary for fruit ripening at thetomato Ripining-Inhibitor(Rin)locus[J].Science,2002,296(5566):343~346
    Wagner D,Sablowski R W M,Meyerowitz E M,et al.Transcriptional activation of APETALA1byLEAFY[J].Science,1999,285:582~584
    Wang Y,Zhang X,Liu Z,et al.Isolation and characterization of an AGAMOUS-like gene from Hostaplantaginea[J].Molecular Biology Reports,2012,39(3):2875~2881
    Yang Y,Fanning L,Jack T.The K domain mediates hetero dimerization of the Arabidopsis floral organidentity proteins,APETALA3and PISTILLATA[J].The Plant Journal,2003,33(1):47~59
    Yanofsky M F,Ma H,Bowman J L,et al.The protein encoded by the Arabidopsis homeotic geneagamous resembles transcription factors[J].Nature,1990,46:35~39
    Yant L,Mathieu J,Dinh T T,et al.Orchestration of the floral transition and floral development inArabidopsis by the bifunctional transcription factor APETALA2[J].The Plant Cell,2010,22:2156~2170
    Yuan Y X,Wu J,Sun R F,et al.A naturally occurring splicing site mutation in the Brassica rapa FLC1gene is associated with variation in flowering time[J].Journal of Experimental Botany,2009,60(4):1299~1308
    Zachgo S,Saedler H,Schwarz-Sommer Z.Pollen-specific expression of DEFH125,a MADS-boxtranscription factor in Antirrhinum with unusual features[J].The Plant Journal,1997,11(5):1043~1050
    卜有泉,杨正梅,宋方洲.新基因功能研究的策略和方法[J].生命科学研究,2006,10(2):95~98,107
    丁峰,彭宏祥,李鸿莉,等.植物AP1基因研究进展(综述)[J].亚热带植物科学,2011,40(1):85~89
    范正琪,李纪元,田敏.三个山茶花种(品种)香气成分初探[J].园艺学报,2006,33(3):592~596
    范正琪.麻疯树pepc1基因的克隆及气体调控烟草蛋白质和油脂合成的作用分析[D].北京:中国林业科学研究院博士学位论文,2010,49~72
    侯冰,钱元恕,彭青.应用基因芯片技术研究茶多酚对金葡菌基因表达的影响[J].中国抗生素杂志,2011,34(02):120~125.
    李贵生.金粟兰花器官特征基因CsAP1、CsAP3和CsSEP3的结构、表达和进化研究[J].北京:中国科学院研究生院博士学位论文,2005:47~48
    李纪元,李辛雷,范妙华,等.高温胁迫下15个茶花品种的耐热性[J].浙江林学院学报,2006,23(6):636~640
    李娟.安吉白茶高氨基酸性状相关基因的全长cDNA克隆及功能的初步研究[D].湖南:湖南农业大学博士论文,2011,28~40
    李辛雷,李纪元,范正琪.杜鹃红山茶花色色素提取及其性质[J].林业科学,2011,47(1):79~84
    刘娟娟.农杆菌介导的RNAi抑制百合AG基因表达的研究[D].南京:南京林业大学硕士论文,2008,37~48
    吕山花.太行花MADS-box基因克隆、表达模式及功能分析[D].中国科学院研究生院博士学位论文,2006,62~82
    吕山花,孟征.MADS-box基因家族基因重复及其功能的多样性[J].植物学通报,2007,24(1):60~70
    闽天禄.世界山茶属的研究[M].昆明:云南科技出版社,2000,3~15
    倪穗,李纪元,王强.20个茶花品种遗传关系的ISSR分析[J].林业科学研究,2009,22(5):623~629
    戚晓利,卢孟柱.拟南芥APETALA1基因在花器官发育中的网络调控及其生物学功能[J].中国农学通报,2011,27(8):103~107
    史兴征,彭福田,王新亮,等.平邑甜茶非共生血红蛋白基因GLB1的克隆、表达及转化研究[J].山东农业科学,2010,06:5~9
    孙海峰,孟玉平,曹秋芬,等.枣中APETALA1(AP1)同源基因的克隆及其表达特征分析[J].山西大学学报(自然科学版),2009,32(2):266~272
    田敏,李纪元,倪穗,等.基于ITS序列的红山茶组植物系统发育关系的研究[J].园艺学报,2008,35(11):1685~1688
    王新超,赵丽萍,姚明哲,等.安吉白茶正常与白化叶片基因表达差异的初步研究[J].茶叶科学,2008,28(1):50~55
    王朝霞,江昌俊,蔡海云.茶树β-1,3-葡聚糖酶基因cDNA片段的克隆与序列分析[J].安徽教育学院学报,2006,24(3):67~69,77
    夏丽芳,王仲朗,冯宝钧.浅谈茶花的育种[C].2007中国首届茶花育种学术研讨会论文集.2007:69~73
    邢勇.猕猴桃科的系统发育[J].教学与管理,1987,4:102~104
    向林,秦德辉,李伯钧,等.蕙兰AG基因的克隆和表达分析[C].中国观赏园艺研究进展,2011:134~138
    徐玲玲,张美云,李同建,等.大叶龙茶解剖学、肌动蛋白基因及分子标记的研究[J].茶叶科学,2009,29(4):263~270
    叶创兴,张宏达.山茶科系统发育诠释Ⅸ.山茶属的原始特征及其演化趋向[J].中山大学学报(自然科学版),1997,36(3):76~81
    张宏达.山茶属植物的系统研究[J].中山大学学报论丛,1981,(1):1~180
    张宏达,陈钦铭.湖南红山茶一新种[J].中山大学学报(自然科学版),1987,(3):84~85
    张宏达,任善湘.中国植物志,第四十九卷,第三分册[M].北京:科学出版社,1998,4,87~133
    张宏达,张润梅,叶创兴.山茶科系统发育诠析──Ⅳ关于山茶属茶组的订正[J].中山大学学报(自然科学版),1996,35(3):11~18
    张乐初,游慕贤,陈德松,等.中国茶花文化[M].上海:上海文化出版社,2002,85~122
    赵东,刘祖生,奚彪.茶树多酚氧化酶基因的克隆及其序列比较[J].茶叶科学,2001,21(2):94~98
    赵印泉,刘青林.重瓣花的形成机理及遗传特性研究进展[J].西北植物学报,2009,29(4):832~841
    周兴文.金花茶花色相关基因的克隆及其功能研究[D].北京:中国林业科学研究院博士学位论文,2012,25,61~73
    朱高浦.山茶花MADS-box家族B类基因克隆及其在重瓣花形成中的作用[D].北京:中国林业科学研究院博士学位论文,2011,25,49-55,60-73
    朱丽琼,刘杰,麻成金.茶黄素双没食子酸酯对肺癌A549细胞生长及VEGF基因表达的影响[J].中南药学,2011,40(1):657~660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700