紫斑牡丹及延安牡丹起源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牡丹(tree peonies)是原产中国的世界著名花卉之一,因其悠久的栽培历史以及特殊的历史文化价值,成为研究栽培植物(花卉)起源与演化的良好素材,具有重要学术研究与应用价值。牡丹野生种全部为中国特有,对其与栽培牡丹之间遗传关系的深入研究,是揭示栽培牡丹起源,科学保护与利用野生种质的有效途径。野生紫斑牡丹(Paeonia rockii)是栽培牡丹品种起源、形成的重要原种(野生祖先)之一,栽培紫斑牡丹是栽培牡丹品种中最重要的组成部分之一,延安牡丹(P.×yananensis)是与栽培牡丹品种形成具有重要关系的杂交种。
     本研究所用的600多份实验材料,涵盖了野生紫斑牡丹的整个分布区,栽培紫斑牡丹的主要栽培品种与所有栽培牡丹的近缘(祖先)种,以及延安牡丹及其16个变异类型。采用经典的形态学资源调查和数量分类学方法,结合现代分子生物学技术和手段,应用3个叶绿体基因片段(cpDNA)(petB-petD, rps16-trnQ和psbA-trnH)和共显性的14个微卫星(SSR)(核基因)分子标记,对野生紫斑牡丹遗传结构及生态成因、紫斑牡丹栽培品种和延安牡丹杂交起源等科学问题进行了研究,主要研究结果如下:
     1野生紫斑牡丹遗传结构及其成因
     紫斑牡丹遗传结构据cpDNA可以区分为两支,即东部分支(陕甘子午岭、河南伏牛山及湖北神农架林区)和西部分支(秦岭中部太白山及甘肃南部山区)而核基因(SSR)则可区分为与地理分布区相一致的3组,即北部组(秦岭中部太白山及陕甘子午岭)、西部组(甘肃南部山区)和东部组(河南伏牛山及湖北神农架林区)。物种进化历史研究表明北部组中,位于陕甘黄土高原南端的子午岭林区的现存野生群体可能是该种内最古老祖先类群的孑遗,其祖先类群可能在1.44(±0.54)百万年前,因受气候波动的影响,开始了向南迁移,继而沿着秦岭山脉向东部和西部迁移。空间遗传格局是长期的生境片段化、气候波动、物种低的自然结实率、差的种子发芽率与弱的居群间基因流及适应性进化等因素共同作用的结果。在物种水平上cpDNA (Hd=0.8875)和SSR (PIC=0.71)核基因均有较高的遗传多样性,在居群水平上cpDNA表明居群间显著的遗传分化(FST=0.971),居群内的遗传多样性极低(20个居群有16种单倍型),而SSR表明居群水平的遗传分化主要表现在居群内(Variation,67.45%),居群间(21.22%)及地区间(11.32%)的遗传分化较小,但差异仍然显著。
     2紫斑牡丹栽培品种起源
     基于3个cpDNA单倍型和14个SSR等位基因频率数据的多种系统发育和遗传结构分析表明,105个紫斑牡丹栽培品种的近缘(祖先)种主要是中原牡丹(P.cathayana)、杨山牡丹(P.ostii)和裂叶紫斑牡丹(P.rockii subsp. atava),前二者是主要的母系来源(占栽培品种约87.96%),后者是其核基因(父系)的主要来源(100%)和少量母系来源(7.4%)。全缘叶紫斑牡丹(P.rockii ssp.rockii)几乎没有参与现有紫斑牡丹栽培品种的形成,仅1个新品种和4个传统品种的母系亲本有可能与该亚种甘肃南部的居群有关;稷山牡丹(矮牡丹)(P.jishanensis)、卵叶牡丹(P.qiui)和四川牡丹(P.decomposita)可能没有直接参与品种形成。紫斑牡丹栽培品种为多系杂交起源,可能是在直接引种某些栽培品种的基础上,通过反复杂交和选择发展而来。
     3延安牡丹杂交起源
     通过22个形态性状、3个cpDNA和14个SSR分子标记的综合分析,表明延安牡丹是以延安万花山当地的稷山牡丹为母系亲本,以其临近区域分布的紫斑牡丹为父系亲本经杂交起源的,是一个分类学上的杂交好种。本研究也证明利用母系遗传的cpDNA结合SSR标记,辅以表型分析,是一种有效研究植物杂交机制的新方法。
     本研究还表明:紫斑牡丹是一个并系类群;四川牡丹的cpDNA表现出与稷山牡丹和卵叶牡丹关系更近,而SSR则表现出与紫斑牡丹的西部居群(甘肃南部)有更近的亲缘关系;中原牡丹和杨山牡丹亲缘关系更近,二者核基因具有复杂的杂交遗传背景,与其长期栽培的身份相吻合。此外,本研究还开发了一个叶绿体基因片段(petB-petD),并筛选、再克隆验证了14个SSR引物可以在芍药属内通用,可以用于遗传资源的种质分析和品种鉴定。
Tree peonies are one of the most famous flowers in the world but little is known about the origin of cultivated tree peonies (CTP). With the historic, cultural and ornamental values, tree peonies are typical materials fto investigate the origin and evolution of cultivated plants (especially in floricultural crops) and, therefore, become of importantance in academic researches and ornamental application. The study on the relationship between species, all of them endemic to China, and cultivars is an effective way to probe into the origin of CTP and to conserve and utilize the wild germplasm. Paeonia rockii was one of important wild ancestral species involved in the origin of CTP, cultivated flare tree peonies (CFTP) are important composition of CTP and P.×yananensis is a plausible hybrid closely related to CTP, all of which constructured the main contents of this study. Finally, a total of more than six hundred samples, including collections from wild P. rockii throughout the distribution area, CBTP, varieties of P. yananensis and all possible ancestral species, such as P. cathayana, P. ostii, P. jishanensis, P. qiui and P. decomposita were involved in this study using integrated methods such as morphological investigation, chloroplast (cp) DNA gene fragments (petB-petD, rps16-trnQ and psbA-trnH) and fourteen microsatellites to assert the genetic structure of wild P. rockii, the origin of CFTP and hybrid origin of P.yananensis. The results are as follow:
     1.The genetic structure and diversity of wild P. rockii
     The population genetic structure of P. rockii were distinctly divided into two clades (eastern clade and western clade) as revealed by 3 cpDNA. But based on the microsatellite loci, the population genetic structure were mainly divided into three groups, northern group (NG), eastern group (EG) and western group (WG) in accord with the geographic distribution. The relict populations distributed Ziwuling forestry area in the south to Shan-Gan loess plateau indicated the oldest populations, which moved to south direction driven by cold climatic fluctuations in 1.44(+0.54) milion year ago, and continually moved to eastern and western directions along Qinling Moutation. This could be attributed to integrated factors, such as allopatric fragmentation, climatic fluctuations, lower germinating capacity and ripen rate of seeds, and lack of gene flow among populations, as well as the result of adapted evolution of P. rockii.
     The haplotypes diversity (Hd,0.8875) based on 3 cpDNA and polymorphism informative content (PIC=0.71) based on 14 microsatellites loci were higher at species level of P. rockii, while Hd based on 3 cpDNA were lower at population level. The genetic differentiation(FST=0.971) between pairwise populations were clearly shown higher as revealed by 3cpDNA. Sixteen haplotypes were found in 20 populations, of which the majority were single, suggesting that the germplasm almost in every population is an exclusive resource that should be more protected from disappearing by strict conservation policies. The analysis of the genetic differentiation based on microsatellites markers were significant, revealing that 67.45% of the total variance was partitioned within populations, whereas 11.32% and 21.22% of the total variance was explained by differences among groups and among populations within groups, respectively.
     2.The origin of cultivated flare tree peonies
     It were indicated that P. cathayana, P. ostii and P. rockii ssp. atava were three of the most important ancestral species for cultivated blotched tree peonies based on three cpDNA and fourteen SSR data. The former two species served mainly as maternal donation for almost 87.96% of 105 cultivars while the latter was mainly nuclear genome resource as paternal donation for all of CFTP and also as biparently donation for 7.4% of 105 cultivars. P. rockii ssp. rokii nearly was not involved into CFTP, except little relationship with one new cultivar and four tradiational cultivars. Moreover, P. jishanensis, P. qiui and P. decomposita were not directly involved into CFTP. Therefore, it was suggested that CFTP were originated from repeated hybridization and selection at the base of some introduced cultivars of CTP.
     3.Hybrid origin of P. yananensis
     Our results showed that P. yananensis as a good morphological species was a hybrid between P. jishanensis as maternal donation grown aroud Wuanhua Mountain in Yan'an City and P. rockii as paternal donation. The case also demonstrated that combined morphological data, cpDNA and SSR were powerful methods for studies on hybrid issues.
     The study also showed that P. rockii was a paraphyletic species, P. decomposita show close relationship with P. jisahanensis and P. qiui based cpDNA, and also close relationship with western population group of P. rockii ssp. rockii based on SSR. P. cathayana and P. ostii with more close relationship with each other show complicated hybrid background of nuclear genome which was consistent with their status being long cultivated. Moreover, a new chloroplast fragment, petB-petD, and 14 microsatellites were developed for genetic germplasm analysis and identification of cultivated tree peonies.
引文
1. 陈道明,丁一巨,蒋勤,张俊伟.牡丹品种主要性状的综合评价[J].河南农业大学学报,1992,26(2):187-193.
    2. 陈道明,蒋勤.牡丹品种酯酶同工酶分析[J].南京林业大学学报.1989,13(3):36-42.
    3. 陈向明,郑国生,孟丽.不同花色牡丹品种亲缘关系的RAPD-PCR分析[J].中国农业科学,2002,35(5):546-551.
    4.‘陈向明,郑国生,张圣旺.牡丹栽培品种的RAPD分析[J].园艺学报,2001,28(4):370-372.
    5. 成仿云,李嘉珏.中国牡丹的输出及其在国外的发展Ⅰ:栽培牡丹[J].西北师范大学学报(自然科学版).1998,34(1):109-116.
    6. 成仿云、李嘉珏、陈德忠,中国野生牡丹自然繁殖特性的研究[J]。园艺学报,1997,24(2):180-184.
    7. 成仿云.李嘉珏,陈德忠,张佐双.中国紫斑牡丹[M].北京:中国林业出版社,2005.
    8. 成仿云.名花产业化,牡丹当先行[J].中国花卉园艺,2002,1:14-15.
    9. 成仿云.神秘而美丽的紫斑牡丹[J].园林.2003,(4):36-39,(6):30-32.
    10.定光凯,杨军,明谦,刘立品.甘肃子午岭紫斑牡丹调查报告[J].甘肃林业科技,2002,27(1):1-5.
    11.龚洵,潘跃芝,杨志云.滇牡丹的多样性和现状评估[J].西北植物学报,2003,23(2):218-213.
    12.何丽霞,李睿,李嘉珏.中国野生牡丹花粉形态的研究[J].兰州大学学报(自然科学版)[J],2005,41(4):44-49.
    13.侯小改,尹伟伦,李嘉珏,等.部分牡丹品种遗传多样性的AFLP分析[J].中国农业科学,2006-39(8):1709-1715.
    14.侯小改,尹伟伦,李嘉珏,王华芳.牡丹矮化品种亲缘关系的AFLP分析[J].北京林业大学学报,2006b,28(5):73-77.
    15.蓝保卿,李嘉珏,段全绪.中国牡丹全书[M].北京:中国科学技术出版社,2002.
    16.李保印.中原牡丹品种遗传多样性与核心种构建研究[D].北京:北京林业大学,2007.
    17.李嘉珏.临夏牡丹[J].北京:北京科学技术出版社,1989.
    18.李嘉珏.中国牡丹与芍药[J].北京:中国林业出版社,1999.
    19.刘萍,王子成,尚富德.河南部分牡丹品种遗传多样性的AFLP分析[J].园艺学报,2006,33(6):1369-1372.
    20.孟丽,郑国生.部分野生与栽培牡丹种质资源亲缘关系的RAPD研究[J].林业科学,2004,40(5):110-115.
    21.母锡金,王伏雄.芍药胚和胚乳早期发育的研究[J].植物学报,1985,27(1):7-12.
    22.苏雪,张辉,董莉娜,张建清,朱学泰,孙坤.应用RAPD技术对甘肃栽培牡丹品种的分类鉴定研究[J].西北植物学报,2006,6(4):696-701.
    23.索志立,张会金,张治明,陈富飞,陈富慧.紫斑牡丹与牡丹种间杂交后代的DNA分子证据[J].云南植物研究,2005,27(1):42-48.
    24.索志立,周世良,张会金,张治明.杨山牡丹和牡丹种间杂交后代的DNA分子证据[J].林业科学研究,2004,17(6):700-705.
    25.王莲英,刘淑敏,秦魁杰,吴涤新.牡丹及其栽培品系种的染色体组型[J].北京林学院学 报,1983,5(1):450-457.
    26.王莲英.中国牡丹品种图志[M].中国林业出版社,1997.
    27.王子平.牡丹复合体的分子进化和系统学研究——细胞核核糖体基因变异的分析[D].北京:中国科学院植物研究所,1996.
    28.席以珍.中国芍药芍药属花粉形态及其外壁超微结构的观察[J].植物学报,1984,26(3):241-246.
    29.杨淑达,施苏华,龚洵,周仁超.滇牡丹遗传多样性的ISSR分析[J].生物多样性,2005,13(2):105-111.
    30.于玲,何丽霞,李嘉珏,成仿云.牡丹野生种间蛋白质谱带的比较研究[J].园艺学报[J],1998,25(1): 99-101.
    31.喻衡,杨念慈.中国牡丹品种的演化和形成[J].园艺学报,1962,1(2):175-186.
    32.喻衡.荷泽牡丹[M].济南:山东科学技术出版社,1980.16-36.
    33.袁涛,王莲英.几个牡丹野生种的花粉形态及其演化、分类的探讨[J].北京林业大学学报,1999,21(1):17-21.
    34.袁涛.中国牡丹部分种与品种(群)亲缘关系的研究[D].北京:北京林业大学,1998:1-88.
    35.张赞平.栽培牡丹的核型研究[J].豫西农专学报,1988,(2):5-12.
    36.周兴文,杨秋生,李永华.牡丹基因组AFLP银染反应体系的建立和优化[J].河南农业大学学报,2006,40(6):602-606.
    37.邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记[M].北京:科学出版社,2001.
    38. Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F. Sabirov R, Kaji M, Range-wide genetic structure in a north-east Asian spruce(Picea jezoensis) determined using nuclear microsatellite markers [J].2009, Journal of Biogeography,36:996-1007.
    39. Amos W, Balmford A. When does conservation genetics matter? [J]. Heredity,2001,87:257-265.
    40. Anderson GA. A Monograph of the Genus Paeonia [J]. Transaction Linnaean Society London, 1818.12:248-290.
    41. Andrews HC. Paeonia papaveracea [J]. Botantical Repositry,1807,7:448.
    42. Andrews HC. Paeonia suffruticosa [J]. Botantical Repositry,1804,6:373.
    43. APG, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants:APG Ⅱ[J]. Botanical Journal of the Linnean Society,2003,141:399-36.
    44. Arroyo-Garcia R, Lefort F, de Andres MT, Ibanez J, Borrego J, Jouve N, Cabello F, Martinez-Zapater JM. Chloroplast microsatellite polymorphism in Vitis species [J]. Genome,2002, 45:1142-1149.
    45. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies [J]. Molecular Biology and Evolution,1999,16:37-48.
    46. Beck N, Peakall R, Heinsohn R. Social constraint and an absence of sexbiased dispersal drive fine-scale genetic structure in white-winged choughs [J]. Molecular Ecology,2008,17: 4346-4358.
    47. Bijlsma R, Bundgaard J, Boerema AC. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila [J]. Journal of Evolutionary Biology,2000,13(3): 502-514.
    48. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal Human Genetics,1980,32:
    314-331.
    49. Bruhl P. Descriptions of new and rare Indian plants [J]. Annals of the Royal Botanic Garden, Calcutta,1896,5:113-115.
    50. Cheng FY. Advances in the breeding of tree peonies and a cultivar system for the cultivar group [J]. International journal of breeding,2007,1(2):89-104.
    51. Chiang YC, Hung KH, Schaal BA, Ge XJ, Hsu TW, Chiang TY. Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex [J]. Molecular Ecology, 2006,15:765-779.
    52. Clement M, Posada D, Crandall KA. TCS:a computer program to estimate gene genealogies [J]. Molecular Ecology,2000,9:1657-1659.
    53. Comes HP, Kadereit JW. The effect of Quaternary climatic changes on plant distribution and evolution [J]. Trends in Plant Science,1998,3:432-438.
    54. Corner J H. Centrifugal stamens [J]. Journal of the Arnold Arboretum,1946,27:423-438
    55. Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data [J]. Genetics,1996,144:2001-2014.
    56. Crandall KA, Templeton AR. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction [J]. Genetics,1993,134:959-969.
    57. Cronquist A. An integrated System of Classification of flowering plants. New York:Columbia University Press.1981.
    58. Dahlgren G. Dahlgrenogram. In:Tan K (ed.), System of Classification of the Dicotyledons. Edinburgh:Edinburgh University Press.1989.
    59. De Candolle AP. Produrumus. Systematis naturalis Regni vegetabilis,1824,1:65-66.
    60. Doi K, Yasui H, Yoshimura A. Genetic variation in rice [J]. Current Oponions in Plant Biology, 2008,11:144-148.
    61. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf material [J]. Phytochemistry Bulletin,1987,19:11-15.
    62. Dumolin-Lape'gue S, Demesure B, Petit RJ. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR-based method [J]. Theoretical and Applied. Genetics,1995,91:1253-1256.
    63. Ellegren H, Sheldon BC. Genetic basis of fitness differences in natural populations [J]. Nature, 2008,452:169-175.
    64.Eriksson O, Ehrlen J. Landscape fragmentation and the viability of plant populations. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford,pp 157-175.2001.
    65. Evanno, G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study [J]. Molecular Ecology,2005,14:2611-2620.
    66. Excoffier L, Laval G, Schneider S. Arlequin ver.3.0:An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,2005,1:47-50.
    67. Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distance among DNA haplotypes:application to human mitochondrial DNA restriction data [J]. Genetics, 1992,131:479-491.
    68. Farrer RJ. Exploration in China,2. In:Kansu. Gard Chron.1994,3:56:213.
    69. Fishbein M, Hibsch-Jetter CE, Soltis DE, Hufford L. Phylogeny of Saxifragales (angiosperms, eudicots):analysis of a rapid, ancient radiation [J]. Systematic Biology,2001,50(6):817-847.
    70. Fishbein M, Soltis DE. Further resolution of the radiation of Saxifragles (Angiosperms, Eudicots)
    supported by Mixed-model Bayesian analysis [J]. Systematic Botany,2004,29(4):883-891.
    71. Foster S, Yue CX. Herbal emissaries:Bringing Chinese herbs to the west. Rochester, VT:Healing Arts Press,1992,200-207.
    72. Frankham R, Ballou JD, Briscoe DA. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK.2002.
    73. Frankham R. Genetics and extinction [J]. Biological Conservation,2005.126(2):131-140.
    74. Fu YX, Li WH. Statistical tests of neutrality of mutations [J]. Genetics,1993,133:693-709.
    75. Fu, L.G. Zhong Guo Zhen Xi Bin Wei Zhi Wu (The Red Book of Chinese Plants-Rare and Endangered Plant Species, in Chinese). Science Press, Beijing.1992.
    76. Fujii N, Tomaru N, Okuyama K, Koike T, Mikami T, Ueda T. Chloroplast DNA phylogeography of Fagus crenata (Fagaceae) in Japan [J]. Plant Systematics and Evolution,2002,232:21-33.
    77. GemMill CEC, Ranker TA, Ragone D, Perlman SP, Wood KR. Conservation genetics of the endangered endemic Hawaiian genus (Brighamia Campanulaceae) [J]. American Journal of Botany,1998,85(4):528-539.
    78. Graur D, Li WH. Fundamentals of Molecular Evolution. Sinauer and Associates, Sunderland, Massachusetts.1999.
    79. Grivet D, Heinze B, Vendramin GG, Petit RJ. Genome walking with consensus primers:application to the large single copy region of chloroplast DNA [J]. Molecular Ecology Notes,2001,1:345-348.
    80. Hamrick JL., Godt MLW. Conservation genetics of endemic plant species. Conservation genetics (ed. By Avise JC and Hamrick JL), pp.218-304. Chapman & Hall, New York.1996.
    81. Hanski I, Simberloff D. The Metapopulation approach, itshistory, conceptual domain and application to conservation. In:Hanski I, Gilpin ME (eds) Metapopulation biology. Academic Press, Inc, New York, pp 5-26.1997.
    82. Harpending HC. Signature of ancient population-growth in a low-resolution mitochondrial DNA mismatch distribution [J]. Human Biology,1994,66:591-600.
    83. Hard D, Clark A. Principles of population genetics,2nd edn.Sinauer Associates, Inc. Publishers, USA.1988.
    84. Haw SG, Lauener LA. A review of the infraspecific taxa of Paeonia suffruticosa Andrews [J]. Edinburgh Journal of Botany,1990,43:273-281.
    85. Haw SG. Tree peonies-A review of recent literature [J]. NewPlantman,2006,5:88-90,260-261.
    86. Haw SG. Tree peonies-A review of their history and taxonomy [J]. NewPlantman,2001,8: 156-171.
    87. Hedrick P, Miller P. Conservation genetics:techniques and fundamentals. Ecological Applications, 1992,2:30-46.
    88. Heuertz M, Hausman JF, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, Vekemans X. Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southern European populations of the common ash (Fraxinus excelsior L.) [J]. Evolution,2004, 58:976-988.
    89. Hewitt G The genetic legacy of the quaternary ice ages [J]. Nature,2000,405:907-913.
    90. Hilu KW, Borsch T, Muller K, et al. Angiosperm phylogeny based on matK sequence information [J]. American Journal of Botany,2003,90(12):1758-1776.
    91. Hong DY, Pan KY, Yu H. Taxonomy of the Paeonia delavayi complex (Paeoniaceae) [J]. Annals of the Missouri Botanical Garden,1998,85:554-564.
    92. Hong DY, Pan KY. A revision of the Paeonia suffruticosa complex{Paeoniaceae) [J], Nordic Journal of Botany,1999b,19:289-299.
    93. Hong DY, Pan KY. Additional taxonomic notes on Paeonia sect. Moutan(Paeoniaceae) [J]. Acta Phytotaxonomica Sinica,2005b,43(3):284-287.
    94. Hong DY, Pan KY. Notes on taxonomy of Paeonia sect. Moutan DC. (Paeoniaceae) [J]. Acta Phytotaxonomica Sinica,2005a,43 (2):169-177.
    95. Hong DY, Pan KY. Paeonia cathayana D.Y. Hong & K.Y. Pan, a new tree peony, with revision of P. suffruticosa ssp. yinpingmudan [J]. Acta Phytotaxonomica Sinica,2007,45 (3):285-288.
    96. Hong DY, Pan KY. Taxonomical history and revision of Paeonia sect. Moutan (Paeoniaceae) [J]. Acta Phytotaxonomica Sinica,1999a,37:351-368.
    97. Hong DY, Pan, KY, Zhou ZQ. Circumscription of Paeonia suffruticosa Andrews and identification of cultivated tree peonies [J]. Acta Phytotaxonomica Sinica,2004,42(3):275-283.
    98. Hong DY. Paeonia rockii and its one new subspecies from Mt. Taibai, Shaanxi of China [J]. Acta Phytotaxonomica Sinica,1998,36(6):538-543.
    99. Hong T, Ostii GL. Study on the Chinene wild woody peonies (Ⅱ) new taxa of Paeonia L. sect. Moutan DC [J]. Bulletin of botanical research,1994,14(3):237-240.
    100. Hong T, Zhang JX, Li JJ, Zhao WZ and Li MR. Study on the Chinese wild woody peonies (Ⅰ): new taxa of Paeonia L. sect. Moutan DC [J]. Bulletin of Botanical Research,1992,12:223-234.
    101. Hosoki T, Hamada N, Kando T, et al. Comparative study of anthocyanins in tree peony flowers [J]. Journal of the Japanese Society for Horticultural Science,1991,60:395-403.
    102. Hosoki T, Kimura D, Hasegawa R, Nagasako. Comparative study of Chinese tree peony cultivars by random amplified polymorphic DNA (RAPD) analysis [J]. Scientia Horticulturae,1997,70: 67-72.
    103. Hubner S, Hoffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E. Strong correlation of wild barley(Hordeum spontaneum) population structure with temperature and precipitation [J]. Molecular Ecology,2009,18:1523-1536.
    104. Hutchinson J. Contributions towards a phylogenetic classification of flowering plants. Kew Bull, 1923, (2):100-107.
    105. Hwang SY, Lin TP, Ma CS, Lin CL, Jeng-Der C, Yang JC. Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation [J]. Molecular Ecology,2003,12:2689-2695.
    106. Ivey CT, Richards JH. Genetic diversity of everglades sawgrass, Cladium Jamaicense (Cyperaceae) [J]. International Journal of Plant Science,2001,162:817-825.
    107. Jensen JL, Bohonak AJ, Kelley ST. Isolation by distance, web service. BMC Genetics,2005,6:13. v.3.16 http://ibdws.sdsu.edu/.
    108. Jian SG, Soltis PS et al. Resolving an ancient, rapid radiation in Saxifragles [J]. Systematic Biology, 2008,57:38-57.
    109. Jimenez JA, Hughes KA, Alaks G et al. An experimental study of inbreeding depression in a natural habitat [J]. Science,1994,266(5183):271-273.
    110. Jing XM, Zheng GH. The characteristics in seed germination and dormancy of four wild species of tree peonies and their bearing on endangerment [J]. Acta Phytophysiologica Sinica,1999,25: 214-221.
    111.King.RA, Ferris C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn [J]. Molecular Ecology,1998,7:1151-1161.
    112. Kumar S, Tamura K, Nei M. MEGA3:Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment [J]. Briefings in Bioinformatics,2004,5:150-163.
    113. Lande R. Risk of population extinction from fixation of new deleterious mutations [J]. Evolution
    International Journal organic Evolution,1994,48:1460-1469.
    114. Li JJ, Zhang QL, Chen DZ, Cheng FY. Chinese Peonies. Chinese Forestry Publishing House, Beijing.1998.
    115. Li JJ. Chinese tree peony (Xibei, Xinan, Jiangnan Volume). China Forestry Publishing House. 2005.
    116. Li XY, Pen JY, Bai RX. Use of ITS sequences based on nuclear rDNA for phylogenetic research of seed plants [J]. Acta Botanica Boreali-Occidentalia Sinica,2005,4:829-834.
    117. Liu K, Muse SV. PowerMarker:Integrated analysis environment for genetic marker data [J]. Bioinformatics,2005,21:2128-2129.
    118. Lynch M, Conery J, Burger R. Mutation accumulation and the extinction of small populations [J]. The American Naturalist,1995,146(4):489-518.
    119. Madsen T, Stille B, Shine R. Inbreeding depression in an isolated population of adders Vipera berus [J]. Biological Conservation,1996,75(2):113-118.
    120. Maguire TL, Peakall R. Saenger P. Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs [J]. Theoretical and. Applied Genetics,2002,104:388-398.
    121. Mantel N. Detection of diease clustering and generalized regression approach [J]. Cancer Research, 1967,27:209-220.
    122. McCauley D. Contrasting the distribution of chloroplast DNA and Allozyme polymorphism among, local populations of silene alba:implications for studies of gene flow in plants [J]. Proceedings of the National Academy of Sciences, USA,1994,91:8127-8131.
    123. Mills LS, Smouse PE. Demographic consequences of inbreeding in remnant populations [J]. American Naturalist,1994,144(3):412-431.
    124. Mitchell-Olds T, Willis JH, Goldstein DB. Which evolutionary processes influence natural genetic variation for phenotypic traits [J]? Nature Reviews Genetics,2007,8:845-856.
    125. Nei M, Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York. 2000.
    126. Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA,1979,76:5269-5273.
    127. Nei M, Li WH. The transient distribution of allele frequencies under mutation pressure [J]. Genetics Research,1976,28(3):205-214.
    128. Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations [J]. Evolution International Journal organic Evolution,1975,29(1):1-10.
    129. Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data [J]. Journal of Molecular Evolution,1983,19:153-170.
    130. Nei M. Genetic distance between populations [J]. The American Naturalist,1972,106:283-292.
    131. Nei M. Molecular evolutionary genetics. Columbia University Press, New York.1987.
    132. Newman D, Pilson D. Increased probability of extinction due to decreased genetic effective population size:experimental populations of Clarkia pulchella [J]. Evolution International Journal organic Evolution,1997,51(2):54-362.
    133. Nielsen R. Molecular signatures of natural selection [J]. Annual Review of Genetics,2005,39: 197-218.
    134. Nielsen R. Statistical tests of selective neutrality in the age of genomics [J]. Heredity,2001,86: 641-647.
    135. Pei YL, Zou Y, Yin Z, Wang XQ, Zhang ZX, Hong DY. Preliminary report of RAPD analysis in
    Paeonia suffruticosa subsp. spontanea and Paeonia rockii [J]. Acta Phototaxonomica Sinica,1995, 33:350-356.
    136. Petit R, Vendramin G. Phylogeography of organelle DNA in plants:an introduction. In:Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia, evolutionary perspectives on the origins and conservation of European biodiversity. Springer Press, Amsterdam, pp 23-97.2006.
    137. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations [J]. Molecular Ecology,2005, 14:689-701.
    138. Petit RJ. Chloroplast DNA footprints of postglacial recolonization by oaks [J]. Proceedings of the National Academy of Sciences, USA,1997,94:9996-10001.
    139. Pons O, Petit RJ. Measuring and testing genetic differentiation with ordered versus unordered alleles [J]. Genetics,1996,144:1237-1245.
    140. Posada D, Crandall KA, Templeton AR. GeoDis:a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes [J]. Molecular Ecology,2000,9:487-488.
    141. Printzen C, Ekman S, Tonsberg T. Phylogeography of Cavernularia hultenii:evidence of slow genetic drift in widely disjunct lichen [J]. Molecular Ecology,2003,12:1473-1486.
    142. Pritchard JK, Stephens M, Donnelly P. Inferernce of population structure using multilocus genotype data [J]. Genetics,2000,155:945-959.
    143. Przeworski M. The signature of positive selection at randomly chosen loci [J]. Genetics,2002,160: 1179-1189.
    144. Robledo-Arnuncio JJ, Alia R, Gil L. Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris [J]. Molecular Ecology,2004, 13:2567-2577.
    145. Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance [J]. Genetics,1997,145:1219-1228.
    146. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics,2003,19:2496-2497.
    147. Sang T, Crawford DJ, Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) [J]. American. Journal of Botany,1997a,84(8): 1120-1136.
    148. Sang T, Crawford DJ, Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) [J]. American Journal of botany,1997a,84:1120-1136.
    149. Sang T, Crawford DJ, Stuessy TF. Documentation of reticulate evolution in peonies(Paeonia) using ITS sequences of nuclear ribosomal DNA:Implications for biogeography and concerted evolution [J]. Proceedings of the National Academy of Sciences,1995,92:6813-6817.
    150. Sang T, Donoghue MJ, Zhang D. Evolution of alcohol dehydrogenase genes in peonies(Paeonia): phylogenetic relationships of putative nonhybrids species [J]. Molecular Biology and Evolution, 1997b,14(10):994-1007.
    151. Sang T, Zhang D. Reconstructing hybrid speciation using sequence of low copy nuclear genes: hybrid origins of five Paeonia species based on Adh gene phylogenies [J]. Systematic Botany,1999, 24:148-163.
    152. Sang T. Utility of low copy nuclear gene sequences in plant phylogentics [J]. Critical Reviews in Biochemistry and Molecular Biology,2002,37(3):121-147.
    153. Schaal BA, Hayworth DA, Oseni KM, Rauscher JT, Smith WA. Phylogeographic studies in plants: problems and prospects [J]. Molecular Ecology,1998,7:465-474.
    154. Shen L, Chen XY, Zhang X, Li YY, Fu CX, Qiu YX. Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs:inference of glacial refugia [J]. Heredity,2005,94: 396-401.
    155. Sherwin WB, Murray ND. Population and conservation genetics of marsupials [J]. Australian Journal of Zoology,1990,37(2-4):161-180
    156. Simonsen K.L, Churchill GA, Aquadro CF. Properties of statistical tests of neu-trality for DNA polymorphism data [J]. Genetics,1995,141:413-429.
    157. Smouse PE, Peakall R, Gonzales E. A heterogeneity test for fine-scalegenetic structure [J]. Molecular Ecology,2008,17:3389-3400.
    158. Stern F C. A Study of the genus Paeonia. London:The Royal Horticulture Society, Vincent Square, S. W.I.1946,46-47.
    159. Swofford DL. PA UP:phylogenetic analysis using parsimony (and other methods), version 4.0b 10. Sinauer Associates, Sunderland, Massachusetts, USA.2001.
    160. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism [J]. Genetics,1989,123:585-595.
    161. Takhtajan A. Systema Magnoliophytorum. Leninopli:Officina editorial 《Nauka》 54-55.
    162. Tanksley SD, McCouch SR. Seed banks and molecular maps:unlocking genetic potential from the wild [J]. Science,1987,1997,277:1063-1066.
    163. Tarayre M, Thompson JD. Population genetic structure of the gynodioecious Thymus vulgaris L, (Laboratoryiatae) in southern France [J]. Journal of Evolutionary Biology,1997,10:157-174.
    164. Templeton AR, Robertson RJ, Brisson J, Strasburg J. Disrupting evolutionary processes:the effect of the habitat fragmentation on collared lizards in the Missouri Ozarks [J]. Proceedings of the National Academy of Sciences,2001,98:5426-5432.
    165. Templeton AR, Sing CF. A cladistic analysis of phenotypic associations with haplotypeisn ferred from restriction endonuclease mapping. Ⅳ. Nested analyses with cladogram uncertainty and recombination [J]. Genetics,1993,134:659-669.
    166. Templeton AR. Nested clade analyses of phylogeographic data:testing hypotheses about gene flow and population history [J]. Molecular Ecology,1998,7:381-397.
    167. Thorne RF. An updated phylogenetic classification of the flowering plants [J]. Aliso,1992,13(2): 376-389.
    168. Tsuda Y, Ide Y. Wide-range analysis of genetic structure of Betula maximowicziana, a long-lived pioneer tree species and noble hardwood on the cool temperature zone in Japan [J]. Molecular Ecology,2005,14:3929-3941.
    169. Wang HW, Ge S. Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA [J]. Molecular Ecology,2006,15: 4109-4122.
    170. Wang JX, Xia T, Zhang JM, Zhou SL. Isolation and characterization of fourteen microsatellites from a tree peony(Paeonia suffruticosa) [J]. Conservation Genetics,2009,10:1029-1031.
    171. Weir BS. Genetic data analysis:methods for discrete population analysis. Sinauer Associates, Sunderland, MA.1990.
    172. Wordell WC. A study of the vascular system in certain orders of the Aanales [J]. Annals of botany, 1908,22:663-670.
    173. Wright S. Evolution and the genetics of populations. University of Chicago Press, Chicago, IL. 1978.
    174. Wu SH, Hwang CY, Lin TP, Chung JD, Cheng YP, Hwang SY. Contrasting phylogeographical patterns of two closely related species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan [J]. Journal of Biogeography,2006,33(5):936-947.
    175. Yamasaki M, Tenaillon MI, Bi IV et al. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement [J]. Plant Cell,2005, 17:2859-2872.
    176. Young A, Boyle T. Forest fragmentation. In:Young A, Boshier D, Boyle T (eds). Forest conservation genetics. Principles and practice. CSIRO Publishing-CABI Publishing, United Kingdom, pp 123-134.2000.
    177. Yuan QJ, Zhang ZY, Peng H, Ge S. Chloroplast phylogeography of Dipentodon (Dipentodontaceae) in southwest China and northern Vietnam [J]. Molecular Ecology,2008,17:1054-1065.
    178. Zhang D, Sang T. Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization:implications for phylogeny and concerted evolution [J]. American Journal of Botany,1999,86(5):735-740.
    179. Zhang Q, Chiang TY, George M, Chung JD, Cheng YP, Hwang SY. Phylogeography of the Qinghai-Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation [J]. Molecular Ecology,2005,14:3513-3524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700