钛合金基类金刚石梯度薄膜材料制备及其生物摩擦学性能和血液相容性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用等离子源离子注入—离子束增强沉积技术(PSII-IBED)制备了钛合金基类金刚石梯度薄膜材料,对类金刚石梯度薄膜这一新型人工关节材料和人工心脏瓣膜材料的生物摩擦学性能和血液相容性进行了研究和评价,研究了摩擦磨损对材料血液相容性的影响。
     1.对制备的DLC梯度薄膜材料的有关物理性能、表面形貌、热应力等进行了测定或计算。类金刚石薄膜梯度材料由大小分布均匀,表面光滑的非晶态微小颗粒组成。表面显微硬度约为Ti6A14V合金基体的3倍。薄膜与基体之间的结合强度不低于0.8GPa。
     2.研究了DLC梯度薄膜材料与UHMWPE组成的摩擦副的生物摩擦学性能,探讨了摩擦磨损机理。Ti6A14V基DLC梯度薄膜材料具有较好的减摩特性和耐磨损特性。与Ti6A14V合金相比,能够有效地降低摩擦系数,降低磨损。在干摩擦、Hank's溶液和生理盐水润滑条件下,摩擦系数分别降低24%、5.0%和10%,体积磨损率约为相同条件下Ti6A14V合金磨损率的50%。DLC膜的减摩机理与其表面高硬度含氢非晶态碳膜结构和成分有关,磨损形式主要是轻微的磨粒磨损。与此同时DLC膜也降低了UHMWPE的磨损。
     3.采用血小板消耗率测定、血浆蛋白吸附、血小板粘附变形实验方法研究了材料的血液相容性。DLC梯度薄膜材料与Ti6A14V合金材料的血小板消耗率相差不大,但是DLC梯度薄膜材料对血浆蛋白的吸附明显低于Ti6A14V合金材料,可以预料血小板在DLC梯度薄膜材料表面粘附也会较少。血小板粘附变形实验表明,血小板在DLC梯度薄膜材料表面的粘附率略低于Ti6A14V材料表面的粘附率。对粘附在材料表面的血小板的形态参数的统计分析结果也表明,DLC梯度薄膜材料表面有更少数量的血小板处于激活状态,对血小板的形态影响较小。综合以上结果,可以认为DLC梯度薄膜材料具有比Ti6A14V合金材料更为优越的血液相容性。
     4.研究了摩擦磨损对材料血液相容性的影响。材料血液相容性与材料表面性能结构密切相关。DLC梯度薄膜材料在摩擦磨损实验前后薄膜结构成分和表面形貌变化较小,仍能保持较好的血液相容性。实验结果表明,摩擦磨损导致Ti6A14V合金表面TiO_2膜的破坏,表面粗糙程度大幅增加,血液相容性受摩擦
    
    磨损影响较大。
     5.摩擦表面具有多尺度相似性和随机性的特点,采用分形几何理论描述表
    面的粗糙程度及形貌特征,三维表面的分形维数可以作为一种尺度无关的粗糙
    度评定参数,利用图象处理方法,通过材料表面的扫描电镜SEM图象灰度数据
    来计算三维表面的分形维数。
     J
     6.利用计算机图象处理和图象分析方法,对血液相容性评价方法进行了改 A
     \
    进。应用计算机图象处理和图象分析的方法对血小板进行自动计数,开发了自
     厂
    动i!数计算机程序,提高了血小扳消耗率测定实验结果的客观性和准确性。引
    入形态学参数和分形维数定量描述血小扳变形程度,建立了血小板形态参数分
    布与生物材料血液相容性之间的关系。
Diamond-like carbon gradient film on Ti6A14V alloy substrate have been prepared by means of plasma source ion implanted-ion beam enhanced deposition(PSII-IBED). For potential applications as artificial joint materials and artificial cardiac valve materials,its trobological performance and hemocompatibility has also been evaluated in the present Ph.D. thesis.
    The surface structure,morphology and internal thermal stress of DLC gradient film materials had been characterized or calculated. It was showed that the DLC gradient film has a smooth surface with noncrystal amorphous structure,its surface vicker's hardness was as about three times as that of Ti6A14V alloy substrate,and high adhension strength of no less than O.SGPa between DLC film and substrate was estimated by liquid quench method.
    The friction and wear behavior of DLC gradient film on TJ6A14V alloy substrate sliding against ultra-high molecular weight polyethylene was investigated by comparing with that of Ti6A14V alloy against the same counterpart under the same testing conditions. It has been found that the diamond-carbon-like gradient film has good friction-reduction and wear-resistant behavior in sliding against the polymer counterpart. The coefficients of friction reduced 24%,5.0%,10% than these of Ti6A14V under dry sliding and lubrication of Hank's solution and 0.9% NaCl solution respectively,and its wear rate were about half of that of T16A14V under the same condition. Especially,it also registered a lower wear rate of the polymer counterpart compared with Ti6A14V alloy. The worn surfaces of the tested samples were observed with a scanning electron microscope,as an effort to analyze the wear mechanisms. The wear of the diamond-carbon-like gradient film is characterized by slight abrasive wear which is able to be refrained by th
    e polymer counterpart. Friction-reduction mechanism of DLC gradient film could be attributed to its smooth and hard amorphous structure.
    The hemocompatibility of DLC gradient film had been evaluated by investigating platelet consumption ratio,blood protein adsorption and platelet
    
    
    adhension and morphology on surface of materials. It showed that DLC gradient film had a better hemocompatibllity than T16A14V alloy since that DLC gradient film had lower adsorption ratio to blood protein and less effect on platelet adhension and morphology,though its platelet consumption ratio was almost as same as that of T16A14V alloy.
    The effect of friction and wear on hemocompatibility of materials was also investigated,since the hemocompatibility of bio-medical material is closely related to its surface structure and roughness. For comparison,that of the Ti6Al4V alloy sliding against UHMWPE was also evaluated. It was showed that DLC gradient film material had a good stability of hemocompatibility,for its surface almost had no changes. In comparison,the hemocompatibility of T16A14V became worse since its surface had been heavily scratched and dense oxide films on its surface had been destroyed.
    Fratal theory and image processing method had been applied to calculate the fratal dimension of tribological surfaces furthermore to elavuate the surface morphology and roughness. Evaluation on hemocompatibility of bio-materials had also been improved by image processing and analysis method,the relationship between mathematical morphological parameters of platelets adhered to bio-material surface and hemocompatibility of bio-materials had been established.
引文
1崔福斋,冯庆玲主编.生物材料学.北京:科学出版社.1996,1
    2 Lombardi A V, Malloy T H, Vaughan B K, et al. Aspetic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium alloy modular femoral heads, J. Bone Joint Surg., 1989; 71A:1337-1342
    3 Jasty M J, Floyd W E, Schiller A L, et al. Localized osteolysis in stable non-septic total hip replacement, J. Bone Joint Surg., 1986; 68A:912-919
    4 Agins H J, Alcock N W, Bansal M. Metallic wear in failed alloy total hip replacement: A histological and quantitative analysis, J. Bone Joint Surg., 1988;70A:347-356
    5 Willert H G, Bertram H and Buchhorn G H. Osteolysis in alloarchroplasty of the hip: The role of ultra-high molecular weight polyethylene wear particles. Clin. Orthop., 1990;258:95-107
    6 Willert H G, Bertram H and Buchhorn G H. Osteolysis in alloarchroplasty of the hip: The role of bone cement fragmentation, Clin. Orthop., 1990;258:108-121
    7 Kelly S S, Johnson R C. Debris from cobalt-chome cable may cause acetabular loosening, Clin. Orthop., 1992;285:140-146
    8 Brown G C, Lockshiu, Salvati E A, et al. Sensitivity to metal as a possible cause of sterile loosening after cobalt-chrome total hip replacement arthroplasty, J. Bone Joint Surg., I977;59A: 164-168
    9 Salviti E A, Philip J R, Wilson D, et al. A ten-year fellow-up study of our first one hundred consecutive Charley total hip replacements, J. Bone Joint Surg., 1981;63A:753-767
    10 Izquierdo R J, Ball N. Long-term results of revision hip arthroplasty: Survival analysis with special reference to the femoral component, J. Bone Joint Surg.,1994;76B:34-39
    11 Zheng C Q, Ran J G, Lei W H, Yin G F. Blood compatibility of amorphours carbon film by plasma chemical vapor deposition, Polymer and Biomaterials, Elsevier Science B.V., Amsterdam, 1991;471-474
    12 Zheng C Q, Ran J G, Yin G F, Lei W H. Application of glow-discharge plasma deposited diamond films and related materials, Elservier Science B.V., Amsterdam, 1991;711-716
    
    
    13郑昌琼,冉均国主编.新型无机材料,北京:科学出版社,2002
    14 Van noort R. Review titanium: the imaplant materials of today. J. Mater. Sci., 1987;22:3801-3811
    15 Kozabun H. Biodegradation of imaplant materials. JSME Int. J., 1987;1517-1525
    16 Chiba A, Sakaknra S, Kobayshi K, et al. Dissolution amounts of nickel, chromium and iron from SUS304, 316 and 444 stainless steels in sodium chloride solutions. J. Mater. Sci., 1997;32:1995-2000
    17 Ungersbock A M, Perren S, Pohler O. Comparison of the tissue reaction to implants made of a beta titanium alloy and pure titanium. Experimental study on rabbits. J. Mater. Sci.: Mater. Med., 1994;5:788-792
    18 Ungersbock A, Geret V,Pohler O, et al. Tissue reaction to bone plates made of pure titanium: a prospective, quantitative clinical study. J. Mater. Sci.: Mater Med., 1995; 6:223-229
    19 Mohammadi S, Wictorin L, Ericsonetal L E. Cast titanium as implant material. J Mater. Sci.:Mater Med.,1995;6:435-444
    20Kathy Wang. The use of titanium for medical applications in the USA. Mater. Sci. and Eng., 1996;A213:134-137
    21 Molinari A, Straffelini G, Tesi B, et al. Dry sliding wear mechanism of the Ti6A14V alloy. Wear, 1997;208:105-112
    22 Rieu J, Pichat A, Rabbe L M, et al. Structural modification induced by ion implantation in metals and polymers used for orthopaedic prostheses. Mater. Sci. and technol., 1992;8:589-593
    23王昌祥,郑昌琼,冉均国.关节置换材料与摩擦磨损.生物医学工程学杂志,1997; 14(1) :64-67
    24佐佐木,佳男,松下富春.人工骨关节用 合金金属.1996;66(16) :64-69
    25 Zuochen Li, Qingzhi Wu, Changliang Li, Yongqing Zhao. A new medical titanium alloy. Transactions of 5th world biomaterials congress. May 29-June 2, 1996; Torondo, Canada
    26 Coll Bernard F, Jaciquot Patrick. Surface modification of medical implants and surgical devices using TiN layers. Surface Coat. Technol., 1988; 36(3-4) :861-871
    27 Mckellop H A, Rostlund T V. Wear behaviour of ion-implanted Ti6A14V against UHMWPE polyethylene. Biomed. Mater. J. Res., 1990; 24(11) :1413-1425
    
    
    28 Johansson C B, Lausmaa J, Rostlund T, et al. Commercially pure titanium and Ti6A14V implants with and without nitrogen-ion implantation: surface characterization and quantitative studies in rabbit cortial bone. Mater. J. Sci.Mater Med., 1993; 4:132-141
    29 Rostlund Tord, Thomsen Derer, Biursten lars Magnus. Et al. Difference in tissue response to nitrogen-ion implantated titanium and C.P. titanium in the abdominal wall of the rat. J. Biomed. Mater. Res., 1990; 24(7) :747-860
    30 Czarnowska E, Wierzchon, Maranda Niedbala A, Karczmarewicz E. Improvement of titanium alloy for biomedical application by nitriding and carbonitriding processes under glow discharge conditions. J. Mater. Sci.: Mater. Med., 2000; 11:73-81
    31 Grant D M, Lo W J, Parker K G, Parker T L. Biocompatible and mechanical properties of low temperature deposited quaternary (Ti, Al, V) N coatings on Ti6A14V titanium alloy substrates. J. Mater. Sci.: Mater. Med., 1996;7:579-584
    32 Vanraay J J, Rozing P M, Van C A, Blitterswijk, et al. Biocompatibility of wear resistant coatings in orthopaedic surgery in vitro testing with human fibroblast cell cultures. J. Mater. Sci.:Mater. Med., 1995;6: 80-84
    33张通和吴瑜光著.离子束材料改性科学和应用.北京:科学出版社。1999:357-362
    34 Narayan J, Fan W D, Narayan R J, et al. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts. Mater. Sci. and Eng., 1994; B25:5-10
    35 Gerstner E G, Mckenzie D R, Puchert M K, et al. Adherent carbon film deposition by cathodic arc with implantation. J.Vac. Sci. Technol.: Vacuum, Surfaces, and Films. 1995; A13(2) :406-411
    36 Anders, Simone; Anders, Andre; Brown, Ian. Macroparticle-free thin films produced by an efficient vacuum arc deposition technique. J. Appl. Phy. 1993; 74(6) :4239
    37 Pharr G M, Callahan D L, Mcadams S D, Tsui T Y, et al. Hardness, elastic modulus, and structure of very hard carbon films produced by cathodic-arc deposition with substrate pulse biasing. Appl. Phys. Lett. 1996; 68:779
    38 Yin G.F, Luo JM, Zheng CQ, et al. Preparation of DLC Gradient Biomaterials by Means of Plasma Source Ion Implantation-Ion Beam Enhanced Deposition. Thin Solid Film, 1999; 345:67
    39 Hench L L. Bioceramics from concept to clinic. Am. Ceram. Soc., 1991;74(7) :1487-1510
    
    
    40 Radin S R, Ducheyne P. Plasma spraying incuded changes of calcium phosphate ceramic characteristics and the effect on in vitro stability. J. Mater. Sci.: Mater. Med., 1992; 3:33-42
    41李世普著.生物陶瓷.武汉:武汉工业大学出版社.1989
    42 De Groot K, Yamamura T, Hench L L, et al. Chemistry of calcium phosphate bioceramics. In Handbook of bioactive ceramics, vol Ⅱ. Ed. CRS Presses: Boca Raton. FL. 1990
    43 Yang C Y, Wang B C, Wu J D, et al. The influences of plasma spraying parameters on the characteristics of hydroxyapatite coatings: a quantitative study. J. Mater. Sci.: Mater. Med., 1995;6:249-257
    44 McPherson R, Gane N, Bastow T J. Structural characterization of plasma sprayed hydroxyapatite coatings. J. Mater. Sci.: Mater. Med., 1995; 6:327-334
    45 Gross K A, Berndt C C. In vitro testing of plasma sprayed hydroxyapatite coatings. J. Mater. Sci.: Mater. Med., 1995; 6:219-224
    46 Reis R L, Monteiro F J, Hastings G W. Stability of hydroxyapatite plasma sprayed coated Ti6A14V under cylic bending in simulated physiological solutions. J. Mater. Sci.: Mater. Med., 1994; 5:457-462
    47 Yang C Y, Wang B C, Chang E, et al. Bond degradation at the plasma sprayed HA coating/Ti6A14V alloy interface: an in vitro study. J. Mater. Sci.: Mater. Med., 1995; 6:258-265
    48 Brown S R, Turner I G, Reiter H. Residual stress measurement in thermal sprayed hydroxyapatite coatings. J. Mater. Sci.: Mater. Med., 1994; 5:756-759
    49 Leali P, Tranquili A, Merolli, et al. Evalution of different preparation of plasma-spray hydroxyapatite coating on titanium alloy and duplex stainless steel in the rabbit. J. Mater. Sci.: Mater. Med., 1994; 5:345-349
    50 Lugscheider E, Knepper M, Heimberg B, et al. Cytotoxicity investigations of plasma sprayed calcium phosphate coatings. J. Mater. Sci.: Mater. Med., 1994; 5:371-375
    51 Ong J L, Prince C W, Lucas L C. Cellular response to well-characterized calcium phosphate coatings and Ti surface in vitro. J. Biomed. Mater. Res., 1995: 29(2) :165-172
    52 Tuantuan Li, Junhee, Takayuki Kobayashi, et al. Hydroxyapatite coating by dipping method, and bone bonding strength. J. Mater. Med. Sci.: Mater. Med., 1996;7:355-357
    53 Shirkhanzadeh M. Calcium phosphate coatings prepared by electrocrystallization from
    
    aqueous electrolytes. J. Mater. Med. Sci.: Mater. Med., 1995;6:90~93
    54 Van Dijk. Influences of discharge power level on the properties of hydroxyapatite films deposited on Ti6A14V with RF magnetron sputtering. J. Biomed. Mater. Res., 1995; 29(2):269~276
    55 Yoshinari Massao, Ohtsuka Yoshito, Deraind Tore. Thin hydroxyapatite coating produced by ion beam dyanamic mixing method. Biomater., 1994; 15(7):529~535
    56 Singh Rajiv K, Qian F, Nagabushnam V, Damodaran, et al. Excimer laser deposition of hydroxyapatite thin films. Biomater., 1994:15(7):522~528
    57 邬鸿彦,朱明刚,黄立枝,孔令官,等.‘96中国材料研讨会论文集,材料研究学会组织编写.北京:化学工业出版社.1997;16
    58 Haddow D B, James P F, Van Noort R. Sol-gel derived calcium phosphate coatings for biomedical applications. J. Mater. Med. Sci.: Mater. Med., 1996;7:255~260
    59 Jim-shone Chen, Horng-Yih Juang, Min-Hsiung Hon, Calcium phosphate coating on titanium substrate by a modified electrocrystallization process. J. Mater. Med. Sci.: Mater. Med., 1998;9:297~300
    60 Shirkhanzadeh M. XRD and XPS characterization of superplastic TiO2 coatings prepared on Ti6AI4V surgical alloy by an electrochemical method. J. Mater. Med. Sci.: Mater. Med., 1995;6:206~210
    61 Shirkhanzadeh M. Nanoporous alkoxy-derived titanium oxide coating: A reactive overlayer for functionalizing titanium surface. J. Mater. Med. Sci.: Mater. Med., 1998;9:355~362
    62 Chandra P Sharma, Michael Szycher. Blood compatible materials and devices. Technomic publishing company. Pennsylvania, U.S.A., 1991; 25
    63 Evans, A.C.; Franks, J.; Revell, P.J. Diamond-like carbon applied to bioengineering materials. Surf. Coat. Techno[,. 1991; 47(1-3):662~667
    64 战德松,杨彦昌,周兴泰,邹健梧.钛表面涂覆类金刚石碳膜的生物相容性研究.材料研究学报.1999;13(4):405~408
    65 尹光福,罗教明,郑昌琼.模糊血液相容度法对DLC/Ti生物碳素梯度涂层材料的评价.生物医学工程学杂志.1999;16(增刊):49~51
    66 黄楠,杨萍,曾晓兰,刘忐农等.离子束合成Ti-O薄膜对热解碳生物材料表面改性的研究,中国生物医学工程学报.1997;16(3):199~205
    
    
    67 冷永祥,黄楠,杨萍,曾晓兰.氮化钽薄膜的制备及其血液相容性研究.功能材料.1998;29(6):639~641
    68 陈俊英,杨萍,冷永祥,孙鸿,黄楠.掺杂氧化钛薄膜的制备与血液相容性研究.功能材料.2000;31(2):212~214
    69 Toshio Yuhta, Yukiaki Kikuta, Yoshiniori Mitamura, et al. Blood compatibility of sputter-deposited alumina films. J. Biomed. Mater. Res., 1994; 28(2):217~224
    70 Amon M, Bolz A, Schaldach M. Improvement of stenting therapy with a silicon carbide coated tantalum stent. J. Mater. Med. Sci.: Mater. Med., 1996; 7:273~278
    71 Lombardi S, Yahia L H, Klemerg-Sapieha J E. Proceedings of the first international conference on shape memory and superplastic technologies. Pacific Grove, CA, USA. 1994; 465~469
    72 Seifert B, Romaniuk P, Groth T H. Bioresorbable, heparinized polymers for stent coating: in vitro studies on heparinization efficiency, maintenance of anticoagulant properties and improvement of stent haemocompatibility. J. Mater. Med. Sci.: Mater. Med., 1996; 7:465~469
    73 Hailing J. Principles of tribology, London: The Macmillan press Ltd., 1975;1~3
    74 R. 惠思克斯著.李永年,张建海泽.人工关节置换—假骨结构中的应力和热传导分析.成都:成都科技大学出版社.1993
    75 Harris W H. Lessons of 30 years total hip anthroplasty. Clin. Orthop., 1992; 274:6
    76 Langkamer V G, Case Cp, Heap P, et al. Systematic distribution of e\waer debris after Hip Replacement. J Bone Joint Surg., 1992;74B(6):831~834
    77 Myunglee J, Salvati E, Betts F, et al. Size of Metallic and polyethylene debris in failed cemented total hip replacements. 1992;74B(3):380~383
    78 Dumbleton J H, Shen C. The wear behavior of ultra-high molecular weight polyethylene. Wear. 1976; 37:279
    79 Shen C, Dumbleton J H. The friction and wear behavior of irradiated very higher molecular weight polyethylene. Wear. 1974; 30:349
    80 Rose R M, Nuasbaum J, Ries H M, Paul I, et al. On the wear rate of ultra-high molecular weight polyethylene in the total hip prothese. J. Bone Joint Surg., 1980; 62A(4):537~549
    81 Mckellop H A, Clarke I C, Markolf K L, Amstutz H C. Wear characteristics of UHMWPE:
    
    A method for accurately measuring extremely Iow wear rates. J. Biomed. Mater. Res., 1978; 12:895~927
    82 Dumbleton J H. Tribology of natural and artificial joints. Amsterdam Oxford New York: Elsevier Sci. Publ. Comp., 1981; 187~189
    83 姚志修,万金友,翁宇庆.Ti6A14V人工关节材料氮离子注入表面改性的研究.B182,中华医学会骨科学会第五次全国学术会议论文汇编.1996;西安
    84 张效忠,张剑强,王军.人工关节置换材料的磨损和改善,117,第四届全国摩擦学学术会议.1987;武汉
    85 Charley J, Cupic Z. The nine and ten years results of the Iow-friction arthroplasty of the hip. Clin. Orthop., 1973; 95:9~14
    86 Charley J, Halley D K. Rate of wear in total hip replacement. Clin. Orthop., 1975; 112:170~173
    87 Galant J O, Rostoker W. Wear in total hip prosthese, Acta. Orthop. Scand, Suppl., 1973; 145
    88 Amstutz H C, Lodwig M. Wear of polymeric bearing materials: The effect of in vivo implantation, J. Biomed. Mater. Res., 1976; 10:25~31
    89 Dumbleton J H, Shen C, Miller E H. A study of the wear of some materials in connection with total hip replacement,. Wear. 1974; 29:163~171
    90 Rostoker W, Galant J O. Some new studies of the wear behavior of UHMWPE, J. Biomed. Mater. Res., 1976; 10:303~310
    91 Dowson D, Harding R T. The wear characteristics of ultra-high molecular weight polyethylene against a high density alumina ceramic under wet(distilled water) and dry conditions, Wear, 1982; 170:107~115
    92 戴克戎,卢世璧,张育成主编.人工关节的基础与临床研究,人民卫生出版社,1993;225~235
    93 Wang A, Sun D C, Dumbleton J H. Effects of sterilization methods on the wear of ultra-high molecular weight polyethylene acetabular cups, Abstract 295, Transactions of 5th world biomaterials congress, May 29 - June 2, 1996; Torando, Canada
    94 Molsh M, Eisenberg, Such N P. Influence of sterilization technique on wear of polyethylene, Abstract 185, Transactions of 5th world biomaterials congress, May 29 - June 2, 1996; Torando, Canada
    
    
    95 Cristante S, Harris B R, Carroll M E, Trieu H H, et al. The role of sterilization in fatigue wear of UHMWPE tibial components, Abstract 295, Transactions of 5th world biomaterials congress, May 29 -June 2, 1996; Torando, Canada
    96 Oka M, Hyon S, Ikada Y, Toguchida J, et al. Wear-resistant properties of newly improved UHMWPE, Abstract 520, Transactions of 5th world biomaterials congress, May 29 - June 2, 1996; Torando, Canada
    97 Tipper J L, Ingham E, Halley J L, Besong A A, et al. Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrived Charley hip prosthyeses, J. Mater. Sci: Mater. Med., 2000; 11:117~124
    98 Ogston A G, Stanier J E. On the state of Hyaluronic Acid in synovial fluid, J. Biochemistry, 1950; 46:571~575
    99 Ogston A G, Stanier J E. The dimensions of the particle of the hyaluronic acid complex in synovial fluid, J. Biochemistry, 1952; 49:585
    100 Caygill J C, West G H. The theological behavior of synovial fluid and its possible relation to jont lubrication, Medical and Biology Engineering, 1969; 7:507~510
    101 Dowson D. Proc. Instn. Mech. Energs., 1966-1967; Part 3J:45
    102 Wright V, Dowson D. Lubrication and Caritilagt., J. Anat., 1996; 121(1):107~118
    103 (?)田直.润滑,1978;23:78
    104 Murakami T. JSME Int. J., Series Ⅲ, 1990; 33:465
    105 Charley J. Low friction anthroplasty of the hip, Springer-Verlag, 1979
    106 (?)田直.日本机械学会忠,1973;76:439
    107 沈继飞,王成焘,王野平.人类天然关节和人工关节润滑机理的探讨,上海交通大学学报,1986;6:103~117
    108 王昌祥.新型人工关节置换材料的研制及其生物摩擦磨损机理的研究,四川联合大学博十论文,1997
    109 冉均国,周勇,郑昌琼,尹光福等.等离子体沉积生物碳素材料的研究.生物医学工程杂志,1987;4(3):178~181
    110 Zheng C Q, Ran J G, Lei W H, Yin G F. Blood compatibility of amorphous carbon film by plasma chemical vapor deposition, in: Polymer and Biomaterials, Ed: Feng H, Elsevier Science B. V., Amsterdam, 1991; 471~474
    
    
    111 Zheng C Q, Ran J G, Yin G F, Lei W H,.Lei W. Application of glow discharge plasma deposited diamond-like film on prosthetic artificial heart valves, Application of diamond films and related materials, Ed: Tzeng Y, Elsevier Science B. V., Amsterdam, 1991; 711~716
    112 Zhan D S, Yang Y C, Zhou X T. Biocompatible comparison between some hard coating and titanium in vivo, in: Biomedical materials research in the far east(Ⅱ), Yoshite Ikada, Ed: Xing Dong Zhang, Kobunshi, Kankokai, Kyoto, Japan, 1996; 1:85~86
    113 韦庆.不锈钢-Si-DLC薄膜新型人工瓣膜材料的制备及其血液相容性评价,四川联合大学硕士论文,1993
    114 Huang N, Yang P, Xuan C, et al, Research on bloodcompatibility of amorphous titanium oxide films synthesized by ion beam enhanced deposition, B iomaterials, 1998; 19(79):761
    115 陈凡,吴熹,马旺扣,黄楠,杨萍等.中华实验外科杂志,2000;17(6):511~513
    116 张人佶,林子为,崔周平,宋期.CVD TiC-TiN 多层涂层与TiC及TiN单层涂层摩擦学性能的比较,摩擦学学报,1992;12(2):131~142
    117 王红卫.Ti6A14V基新型人工心瓣生物梯度材料的研究,四川联合大学博士论文,1996
    118 张镜如主编.生理学,北京:人民卫生出版社,1998
    119 俞耀庭主编.生物医用材料,天津:天津大学出版社,2000
    120 Chandra P Sharma, Michael Szycher. Blood compatible materials and devices, Technomic publishing company, Pennsylvania U.S.A., 1991; 25
    121 Jones M I, McColl I R, Grant D M, Parker K G, Parker T L. Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. J. Biomed. Mater. Res., 2000; 52(2):413~421
    122 ISO 10993-1992 International Standard: Biological evaluation of medical devices 124 Golden M A, Hanson S R, Kirkman T R, et al. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity, J. Vasc. Surg., 1990; 11(6):383~386
    123 GB/T16886-1997 医疗器械生物学评价
    124 Golden M A, Hanson S R, Kirkman T R, et al. Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity, J. Vasc. Surg., 1990; 11(6):383~386
    125 Xianghui Wang, Feng Zhang, Changrong Li, Zhihong Zheng, et al. Improvement of blood compatibility of artificial heart valves via titanium oxide film coated on low temperature isotropic carbon, Surf. Coat. Techn., 2000; 128-129:36~42
    126 Feng Zhang, Xianghuai Liu, Yingjun Mao, Nan Huang,et al. Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted
    
    deposition, Surf. Coat. Techn., 2000; 103-104: 146-150
    127 Hans Peter Wendel, Gerhard Ziemer. Coating-techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation, European Journal of Cardio-thoracic Surgery, 1999; 16:342-350
    128 Thomson LA, Law FC, Rushton N, Franks J. Biocompatibility of diamond-like carbon coating. Biomaterials 1991; 12:37-40
    129 Niedzielski P, Mitura E, Mitura S, Dluzniewski M, Pryzmusiala P, Der Sahaguian S, Stargya E, Zak J, Sokolowska A, Szmidt J, Stanishevsky A, Moll JJ, Moll JA. Comparison of the surface structure of carbon films deposited by different methods. Diam Rel Mater 1997; 6:721-724.
    130 Grant DM, McColl IR, Golozar MA, Wood JV, Braithwaite NSt.J. Plasma assisted CVD for biomedical applications. Diam. Relat. Mater. 1992; 1:727-730.
    131 Lankford J, Blanchard CR, Agrawal CM, Micallef DM, Dearnaley G, McCabe AR. Adherence of diamondlike carbon coatings on total joint substrate materials. Nucl Inst Methods Phys Res 1993;B80/81:1441-1445
    132 Narayan J, Fan WD, Narayan RJ, Tiwari P, Stadelmaier HH. Diamond, diamond-like and titanium nitride biocompatible coatings for human body parts. Mater Sci Eng 1994;B25:5-10.
    133 Mitura E, Mitura S, Niedzielski A, Has Z, Wolowiec R, Jakubowski A, Szmidt J, Sokolowska A, Louda P, Marciniak J, Koczy B. Diamond-like carbon coatings for biomedical applications. Diam Relat Mater 1994;3:896-898.
    134 Olborska A, Swider M, Wolowiec R, Niedzielski A, Rylski A, Mitura S. Amorphous carbon: Biomaterial for implant coatings. Diam Relat Mater 1994;3:899-901.
    135 McLaughlin J, Meenan B, Maguire P, Jamieson N. Properties of diamond-like carbon thin film coatings on stainless steel medical guidewires. Diam Relat Mater 1996;5:486-491.
    136 Ran JG, Zheng CQ, Yin GF, Lei W. Evaluation of multi factors on blood compatibility of diamond-like carbon films used as AHV's materials. Trans Mater Res Soc Jpn 1994;15A:29-32.
    137 de Souza T M, et al. Thin Solid Films, 1997; 308-309:254
    138 Anderreazza P, de Barros M I, Anderreaza-Vignolle C, Rats D. et al. Thin Solid Films, 1998;
    
    319:62
    139 de Barros M I, Rats D, Vendenbucke L, Farges G. Diamond Relat. Mater. 1999; 8:457
    140 Baba K, Hatada R, Surf.Coat. Techn., 1998; 103-104:235-239
    141 Deng J, Braun M. Residual stress and microhardness of DLC multilayer coatings. Diam Rel Mater 1996;5:478-482.
    142 Yoshino N, Shibuya Y, Naoi K, Nanya T. Deposition of a DLC film on a stainless steel substrate: Studies of intermediate layers.Surf Coat Technol 1991;47:84-88.
    143 Jones M I, McColl I R, Grant D M, Parker K G, Parker T L. Diamond Relat. Mater., 1999; 8:457
    144 Lin C R, Kuo C T, Chang R M, Thin Solid Films, 1997; 308-309:273
    145 Monaghan DP, Teer DG, Logan PA, Efeoglu I, Arnell RD. Deposition of wear resistant coatings based on DLC by UBM sputtering. Surf Coat Technol 1993; 60:525-530.
    146 Dumkum C, Grant DM, McColl IR. A multilayer approach to high adhesion diamond-like carbon coatings on titanium. Diam Relat Mater 1997;6:802-806.
    147 Voevodin A A. Thin Solid Films, 1997; 298:107
    148 Wilson RS, Lelah MD, Cooper SL. Blood-material interactions: Assessment of in vitro and in vivo test methods. In: WilliamsDF, editor. Techniques in biocompatibility testing. Boca Raton.FL: CRC Press; 1988; 151-181.
    149 Wilson RS, Cooper SL. In vitro and in vivo test methods for assessing blood-compatibility. In: Pishkin E, Hoffman AS, editors. Polymeric biomaterials. Dordrecht, The Netherlands: Martinus Nijhoff; 1986; 15-20.
    150 Didisheim P. Blood-material interactions: Role of species selection. Report of the International Committee on Thrombosis and Haemostasis: Subcommittee on Blood-Material Interactions. Miami Beach, FL; 1986.
    151 Dodds WJ. Animal models for the evolution of thrombotic disease. In: Leonard EF, Turitto VT, Vroman L, editors. Blood in contact with natural and artificial surfaces. New York: New York Academy of Sciences; 1987; 631-635.
    152 Hanson SR, Harker LA. Evaluation of blood-material interactions. In: Williams DF, editor. Blood compatibility. Boca Raton, FL: CRC Press; 1987; 37-85.
    153 Grabowski EF, Didisheim P, Lewis JC, Franta JT, Shopp JQ. Platelet adhesion to foreign
    
    surfaces under controlled conditions of whole blood flow: human vs. rabbit, dog, calf, sheep, pig, macaque and baboon. Trans Am Soc Artif Intern Organs 1977; 23:141-149.
    154 Mclntire LV, Addonizio VP, Coleman DL, Eskin SG, Harker LA, Kardos JL, Ratner BD, Schoen FJ, Sefton MV, Pitlick FA. Species effects in testing materials and cardiovascular devices in experimental animals. In: Guidelines for blood-material interactions: Report of the National Heart, Lung, and Blood Working Group. Bethesda, MD: U.S. Department of Health and Human Services; 1985; 203-218.
    155 Mclntire LV, Addonizio VP, Coleman DL, Eskin SG, Harker LA, Kardos JL, Ratner BD, Schoen FJ, Sefton MV, Pitlick FA. Evaluation of blood-material interactions in vitro, ex vivo, and in vivo. In: Guidelines for blood-material interactions: Report of the National Heart, Lung, and Blood Working Group, U.S. Department of Health and Human Services; 1985; 219-235.
    156 Imai Y, Nose Y. J. Biomed. Mater. Res., 1972; 6:165
    157 Yin G F, Zheng C Q, Ran J G et al. Blood compatible mechanism of diamond-like carbon film prepared by means of radio frequency plasma, First Aisa-Pacific conference on plasma science and technology, Sept. 22-25,1992; Nanjing, China, 1:179-182
    158 Miji M, Pak K. Biomaterials 1992; 13:682
    159 Viviente J L, Garcia A, Alonso F, Braceras I, Onate J I. Appli. SuYfScil999;144-145:249
    160 Butter R S and Lettington A H, in :Applications of diamond films and Related Materials: Third International Conference, Edited by Feldman A, Tzeng Y, Yarbrough W A, Yoshikawa M and Murakawa. Tokyo, 1995. 683-690
    161 Rose R M and Radin E L, Wear of Polyethylene in the Total Hip Prosthesis. Clin Orthop,1982,170:107-115
    162 Wroblewski B M, Lynch M, Atkinson I R, Dowson D, Isaac G H, External Wear of the Polyethylene Socket in Cemented Total Hip Arthroplasty. J Bone Joint Surg,1987, 698:165-168
    163 Khan M A, Williams R L, Williams D F. Titanium Alloys-Corrosion and Wear Studies in-votro. Abstract 480,Transactions of 5th World Biomaterials Cogress. Toronto, Canada. 1996
    164 Clark 1 C, and Mckellop H A. Handbook of biomaterials evaluation, edited by A Von Recum.
    
    New York: MacMillian, 1986.3~20
    165 Thompson N G, Buchanan R A. In Vitro Corrosion of Ti6AI4V and Type 316L Stainless Steel When Galvanically Coupled with Carbon. J Biomater Res, 1979,13:35~44
    166 森田真夫.人工关节摩耗试验上耐磨耗性评价[J].1992,37(4):1~7
    167 郑林庆著.摩擦学原理.北京:高等教育出版社,1994;276
    168 张剑锋 周志芳著.摩擦磨损与抗磨技术.天津:天津科技翻泽出版公司,1993;118
    169 戴雄杰著.摩擦学基础.上海:上海科技出版社,1984
    170 Enke K. Thin Solid Films, 1981, 80:227
    171 Grill A, Patel V, Meyerson B S. Plasma-deposited diamondlike carbon and related materials, J. Mater. Res., 1990, 11(5):2531
    172 王力衡,黄运添,郑海涛著.薄膜技术,北京:清华大学出版社,1991
    173 Lifshitz Y. Dianmond Relat. Mater., 1999; 8:779
    174 Touloukian Y S. Thermalophysical properties of materials, vol. 12, IFI/Plenum, New Yolk, 1975; 1272
    175 Mandelbrot B B, Fractals: Form, Chance and Dimension. San Francisco, CA: Freeman, 1977.
    176 Mandelbrot B B, The Fractal Geometry of Nature. San Francisco, CA: Freeman, 1982.
    177 Gangepain J, Roques-Carmes C. Fractal approach to two dimensional and three dimensional surface roughness. Wear, 1986, 109:119~126.
    178 贺林,朱均.粗糙表面接触分形模型的提出与发展.摩擦学学报,1996,16(4):375~384.
    179 Majudar A, Tien C L. Fractal characterization and simulation of rough surfaces. Wear, 1990, 136:313~324.
    180 葛世荣.粗糙表面的分形特征与分形表达研究.摩擦学学报,1997,17(1):73~80.
    181 Suryaprakash G, Bharat B. Generalized fractal analysis and its applications to engineering surfaces[J]. Wear, 1995, 180:17~34.
    182 Zhang M Q, Song L, Zeng H M, Friedrich K. Predictability of wear status provided by fractal dimensions of wear particles[J]. Journal of Materials Science Letters. 1996, 15:1288~1290,
    183 李成贵,董申.三维表面形貌的分形维数计算方法,航空精密制造技术,2000;
    
    36(4):36~40
    184 Pentland A P. Fractal-Based description of natural scenes. IEEE PAMI. 1984, PAMI-6(6):661~674.
    185 Ajay Kumar Bisoi, Jibitesh Mishra. On calculation of fractal dimension of images, Pattern Recognition Letters, 2001; 22:631~637
    186 吕维雪著.医学图像处理,北京:高等教育出版社,1995
    187 阮秋琦著.数字图象处理学,北京:电子工业出版社,2001
    188 章毓晋著.图象处理和分析,北京:清华大学出版社,1999
    189 崔屹著.图象处理与分析一数学形态学方法与应用,北京:科学出版社,2000
    190 杨树勤主编.卫生统计学.北京:人民卫生出版社,1993
    191 Elam J H, Nygren H. Adsorption of coagulation proteins from whole blood on to polymer materials: Relation to platelet activation. Biomaterials 1992; 13(1):3~8.
    192 Niimi Y, Yamane S, Yamaji K, Tayama E, Sueoka A, Nose Y. Protein adsorption and platelet adhesion on the surface of an oxygenator membrane. ASAIO 1997; 43(5):706~710.
    193 Horbett T A, Weathersby P K, Hoffman A S. The preferential adsorption of hemoglobin to polyethylene. J. Bio. Eng., 1977; 1:61~78
    194 Liu Y, Erdemir A, Meletis E I. A study of the wear mechanism of diamond-like carbon films. Surface and coating technology, 1996; 82:48~56
    195 Mohrbacher H, Celis J P. Friction mechanisms in hydrogenized amorphous carbon coatings. Diamond and Related Materials, 1995; 4:1267~1276
    196 Hun Le, Nery H, Zaidi H, etal. Tribological behaviur of hard carbon coatings deposited on steel substrate by PA CVD. Diamond Relat Matier, 1994; 3:1028~1033
    197 Grill A. Tribology of diamondlike carbon and related materils: an update review. Surface and Coating Technology. 1 997; 94- 95:507~513
    198 Donnet C, Belin M, Auge J C, etal. Tribochemistry of DLC coatings in Various environments. Surf Coat Technol, 1994; 68-69:626~631
    199 Donnet, Grill A. Friction control of diamond- like carbon coatings. Surface and Coating Technology, 1997; 94-95:456~462
    200 Donnet C. Recent progress on the tribology of doped diamond-like and carbon alloy coatings: a review. Surface and Coating Technology, 1998; 100-101:180~186
    
    
    201Drees D, Cells J P, Dekempeneer E, etal. The electroche-mical and wear behaviour of amorphous diamond-like carbon coatings and mulrilayered coatings in aqueous environments. Surface and Coating Technology, 1996; 81:159-163
    202Erdemir A, Bindal C, Fenske G R, etal. Characterization of transfer layers forming on surfaces sliding against diamond-like carbon. Surface and coating technology, 1996; 86-87:692-697
    203Erdemir A, Bindal C, Pagan J, etal. Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen. Surface and Coatings Technology, 1995; 76-77:559-563
    204Sohn M H, Arm Y O, Ko Y W, etal. Tribological properties of diamond-like carbon films deposited by negative carbon ionbeam. J. Vac. Sci. TechnoL, 1998; A16(6) :3554-3558
    205Mccabe A R, Jones A M, Bull S J. Mechanical properties of ion-beam deposited DLC on polymers, Diamond Relat. Mater., 1994; 3:205-209
    206Bogli U, Blatter A, Pimenov S M, etal. Tribological properties of smooth polycrystalline diamond films. Diamond and Related Materials, 1995; 4:1009-1019
    207Liu Y, Erdemir A, Meletis E I. Influence of environmental parameters on the frictional behavior of DLC coatings. Surface and Coating Technology, 1997; 94-95:463-468
    208Zaidi H, Huu T Le, Robert F, etal. Influence of defects and morphology of diamond-like carbon coatings on their tribological behaviour. Surface and Coatings Technology, 1995;76-77:564-571
    209Donnet C, Belin M, Auge J C, etal. Tribochemistry of DLC coatings in Various environments. Surf Coat Technol, 1994; 68-69: 626-631
    210Donnet C. Advanced solid lubricant coatings for high vacuum environments. Surface and Coating Technology, 1996; 80:151-156
    211Mohrbacher H, Blampain B. Frictional behavior of DLC and DC in oscillating sliding. Surf. Coat. Technol, 1993; 62:583-588
    212Goodman S L, Grasel T G, Cooper S L, Albrecht RM. Platelet shape change and cytoskeletal reorganization on polyurethaneureas. J. Biomed. Mater. Res., 1989; 23:105-123
    213Goodman S L, Lelah M D, Lambrecht L K, Cooper S L, Albrecht RM. In vitro vs. ex vivo platelet deposition on polymer surfaces. Scan. Electron. Microsc. 1984; 1:279-290
    
    
    214奚廷斐,王春仁,田文华等.四种国产嵌段聚醚聚氨酯材料血液相容性的评价,生物医 学工程学,1989;6(4) :279-283
    215 Goodman S L, Tweden K S, Albrecht R M. Three-dimensional morphology and platelet adhesion on pyrolytic carbon heart valve materials. Cells. Mater. 1995; 5:15-30
    216 Goodman S L. Microscopical imaging of pyrolytic carbon and difficult to image biomaterials (a tutorial). Cells. Mater. 1997; 6: 303-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700