新型预应力外包钢组合梁抗弯性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力外包钢-混凝土组合梁是在外包钢-混凝土组合梁的基础上发展起来的一种新型外包钢组合梁,具有用钢量省、稳定性好、刚度大、承载力高、截面开裂弯矩高、弹性工作范围大和能充分利用组合材料力学性能等优点,对其进行研究具有重要的理论意义和实用价值。本文通过模型试验和理论分析了预应力外包钢-混凝土组合简支和连续梁的抗弯受力性能。
     通过对三根2m长的预应力外包钢钢筋混凝土组合简支梁和两根6m长预应力外包钢钢筋混凝土组合连续梁的静载载荷试验和有限元数值仿真分析及理论分析,深入地探讨了预应力外包钢钢筋混凝土组合梁在预应力及各级荷载作用下抗弯力学性能。在试验中,实测了试件在预应力及各级荷载作用下控制截面的应变、裂缝宽度、挠度、承载力和各组合材料的力学性质,分析了其抗弯承载特性,为其有限元数值仿真模拟和理论研究奠定了物质基础。
     在预应力筋与构件耦合相互作用方面,通过对预应力对结构作用机理的研究,提出了直接内载法计算预应力内荷载;根据内荷载的特点,给出了预应力摩擦应力损失方程,证明了预应力内荷载的自平衡性,说明了等效荷载法是直接内在法的特例,确定结构在预应力作用下的主内力解析表达式,并根据曲线预应力筋线型特点,提出应用三次样条插值函数为预应力筋线型函数;
     根据预应力外包钢组合梁的工作特点,建立了预应力外包钢钢筋混凝土组合梁有限元数值仿真分析模型,进行了静荷载作用下结构抗弯全过程仿真分析;在有限元模型建立过程中,提出应用层状界面单元模拟外包钢板与钢筋混凝土梁之间的粘结滑移力学行为,并确定了层状界面单元等效节点刚度,实现了利用ANSYSY有限元程序模拟分析外包钢板与混凝土之间的粘结滑移;在有限元分析过程中,依据直接内载法,把预应力内荷载直接施加在结构上,分析了预应力与结构的相互作用;其数值结果和实测结果具有一致性。
     根据外包钢组合梁微单元截面内力平衡,建立了分离式外包钢板和钢筋混凝土梁粘结滑移理论分析模型,确定了外包钢板与钢筋混凝土梁年节滑移方程。理论计算结果与实测及数值结果基本一致。
     依据实测和数值分析结果,采用变形协调原理和试算法,给出了其粘结滑移的解析方程和其抗弯承载各阶段截面抗弯解析方程,其结果和实测及数值结果基本吻合,说明了理论分析的可靠性。
The prestressed outer-plated steel-concrete composite beam is a new type of outer-plated steel-concrete composite beam, which developed from the outer-plated steel-concrete composite beam, and possesses with the merits of steel-saving, good stability, large rigidity, increase crack moments at section, enlarge range of spring work, a high load-bearing capacity and plenty of utilizing mechanical performance of composite materials. The study on the prestressed outer-plated steel-concrete composite beam is important significance in both theory and application. Based on the models test numerical computation and theoretical analysis, the resistance to bending of the prestressed outer-plated steel-concrete composite beams are presented. The completion main works and obtained achievements include:
     Based on the tests of static loads for tree prestressed outer-plated steel-concrete composite simple beams which are 2 meters length, and two prestressed outer-steel-plate-concrete composite continuous beams which are 6 meters length, the resistance of bending of outer-plated steel-concrete composite beams are researched. In test, the strain of cntroled beams section, the crack widths of concrete, the deflections of midspan, the benring capacity of composite beams and the mechanical performances of composite material in all levels load are studied.
     According to the mechanism of interaction between tendons and structure, the direct inter load method is proposed to calculate prestressed internal load. Based on the theory of the direct inter load method, self-balance of prestressed internal load is proved and the analytic equations of the main internal force in prestressed internal load are given. For the curve profile of tendons, the cubic spline functions are used to describe tendons profile.
     According to the feature of prestressed outer-plated steel-concrete composite beams, the separate model of finite element is used. In the finite element model, the layered interface elements is proposed and elements matrix are derived to simulate slip mechanical behavior between steel plate and concrete. Based on the comparison between the results of finite element and the tested results, the finite element analysis can show mechanical behavior of composite materials in prestressed outer-plated steel-concrete composite beams under loads, and the data collected from experiments are close to. the results from the numerical simulation.
     Based on the tested and numerical results and the micro-elements balance of the internal force, the sliping equation of outer-plated steel-concrete composite beams are presented under various loads, and the data collected from experiments and numerical simulation are consistency to the theoretical results;
     According to tested and numerical results, the methods of compatibility of deformation and the method of trying calculation to slove the equation of bending resistance in various steps of load-bearing are proposed. By the comparison with theoretical, numerical and tested results, the reliability of theoretical analysis abort prestressed outer-plated steel-composite beam are shown.
引文
1. 聂建国.钢-混凝土组合梁结构-试验、理论与应用[M].北京:科学出版社,2005,1-3162. 王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005,1-174
    3. 钟善桐,白国良.高层建筑组合结构框架梁柱节点分析与设计[M],北京:人民交通出版社2006,1-10
    4. 范旭红,石启印,马波.钢-混凝土组合梁的研究与展望[J],江苏大学学报(自然科学版),2004,25(1):89-92.
    5. 肖辉,李爱群,陈丽华等.钢与混凝土组合梁的发展、研究和应用[J],特种结构,2005,22(1):38-41.
    6. 聂建国,余志武.钢-混凝土组合梁在我国的研究及应用[J],土木工程学报,1999,32(2):3-8.
    7. 曹宝珠.薄壁钢-混凝土组合构件静力性能研究[D],哈尔滨:哈尔滨工业大学,2004:1-30.
    8. 钟善桐.钢-混凝土组合结构在我国的研究与应用[J],钢结构,2000,15(50):41-46.
    9. 陈世鸣.钢-混凝土连续组合梁的稳定[J].工业建筑,2002,32(9):1-4.
    10. J.M. Rotter, P.Ansourian. Cross-Section Behavior and Ductility of Composite Beams[J], Proceedings of the Institution of Civil Engineerings,1979,2(67):453-474.
    11.聂建国,陈林,肖岩.钢-混凝土组合梁正弯矩区截面的组合抗剪性能[J],清华大学学报,2002,42(6):835-838.
    12. E. J. Sapountzakis, J. T. Katsikadelis. A new model for the analysis of composite steel-concrete slab and beam structures with deformable connection[J], Computational Mechanics,2003,31(3-4):340-349.
    13. Adekola A.O. Effective widths of composite beams of steel and concrete[J], Structural Engineer,1968,46(9):285-289.
    14. G. Fabbrocine, G. Manfredi, E. Cosenza. Nonlinear Analysis of Composite Beams under Positive Bending [J], Computers and Structures,1999(70):77-89.
    15. Ji Jing, Mark A. Bradford. Strength and Ductility of Composite Beams with Partial Shear Connection[J]. Journal of South China University of technology(Natural Science Edition),2000,28(12):143-148.
    16. Bradford. M.A, Kemp.A.R. Buckling in continuous composite beams[J]. Progress in Structural Engineering and Materials,2000 2(2):169-178.
    17. Ronagh. Hamid. R. Progress in the methods of analysis of restricted distortional buckling of composite bridge girders [J]. Progress in Structural Engineering and Materials,2001,3(2):141-148.
    18. Rasmussen.K.J.R, Hancock.G.J. Buckling analysis of thin-walled structures:Analytical developments and applications[J]. Progress in Structural Engineering and Materials, 1998,1(3):316-322.
    19. Wang. Quanfeng. A simple solution for lateral buckling of thin-walled symmetric members [J]. Communications in Numerical Methods in Engineering,2003,19(1): 49-58.
    20. Pi.Y. L, Bradford.M. A. Effects of approximations in analy ses of beams of open thin-walled cross-section-part Ⅰ:Flexural-torsional stability [J]. International Journal for Numerical Methods in Engineering,2001,5(7):757-772.
    21.胡少伟.钢与混凝土组合结构[M],郑州:黄河水利出版社,2005,1-118
    22.本格尼.S.塔拉纳特,罗福午.高层建筑钢混凝土组合结构设计[M],北京::中国建筑工业出版社,1999,1-60
    23.陈德坤.钢-混凝土组合梁结构的应力重分布与蠕变断裂[M],上海:同济大学出版社,2006,100-142
    24.石启印,马波,李爱群.新型外包钢-砼组合梁的受力性能分析[J],试验力学,2005,20(1): 115-122.
    25.建设部人事教育司等.MB轻型房屋钢结构建筑体系[M],北京:中国建筑工业出版社,2005,1-138
    26.林于东,宗周红.帽型截面钢-混凝土组合梁受弯强度[J],工业建筑,2002,32(9):11-13.
    27.毛小勇张耀春.轻钢-混凝土组合梁、组合板的静力及抗火性能研究[D],哈尔滨:哈尔滨工业大学2002,19-33.
    28. 劳埃.扬,张培信.钢-混凝土组合梁结构设计[M],上海:同济大学出版社,1991, 1-20
    29.赵世春.型钢混凝土结构计算原理[M],成都:西南交通大学出版社,2003,144
    30. Bota.V. Plastic design of composite prestressed steel-concrete beams[J], Construction Metal,1971,2:21-34.
    31. Saadatmanesh, Hamid Albrecht, Pedro. Ayyub, Bilal M. Guidelines for flexural design of prestressed composite beams Journal of Structural Engineering[J],1989,115(11): 2944-2961.
    32.房贞政,郑则群,陈红媛,韩艳.预应力钢-混凝土组合连续结构的应用研究[J],福州大学学报,2001,29(6):87-91.
    33. Park, Sang.Yeol,Naaman, Antoine E. Shear behavior of concrete beams prestressed with FRP tendons[J], PCI Journal,1999,44(1):74-85.
    34. 蔡绍怀.现代钢管混凝土结构[M],北京:人民交通出版社,2003,246-267.
    35.赵风华.钢-混凝土组合梁的试验研究[J],河北建筑工程学院学报,1999,17(1):43-48.
    36. Oehlers DJ. Reinforced concrete beams with plates glued to their soffits[J], Structural Engineering, ASCE,1992,118(8):2023-2038.
    37. Smith.S.T, Bradford.M.A, Oehlers.D.J. Elastic buckling of unilaterally constrained rectangular plates in pure shear[J]. Structural Engineering.1999,21(5):443-453.
    38. Vrcelj Z, Bradford M A, Uy B, Wright H D. Buckling of the steel component of a composite member caused by shrinkage and creep of the concrete component[J], Progress in Structural Engineering and Materials,2002,4(2):186-192.
    39. Smith.S.T,Bradford.M.A, Oehlers.D.J. Unilateral buckling of elastically restrained rectangular mild steel plates, Computational Mechanics,2000,26 (4):317-324.
    40. Anwar Hossain, K.M. Wright H.D. Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction[J]. Structural Engineering and Mechanics,2005,21(6):659-676.
    41. Anwar Hossain, K.M. Designing thin-walled composite-filled beams, Proceedings of the Institution of Civil Engineers[J]. Structures and Buildings,2005,158(4):267-78.
    42. Anwar Hossain, K.M Wright.H.D. Experimental and theoretical behaviour of composite walling under in-plane shear[J], Journal of Constructional Steel Research,2004,60(1): 59-83.
    43. Xiao Hui, Li Aiqun, Du Deru. Experimental study on ultimate flexural capacity of steel encased concrete composite beams [J]. Joumal of Southease University(English Edition), 2002,21(2):191-196.
    44.宗周红,魏潮红,程浩德等.帽型截面钢-混凝土组合梁的试验研究[J],建筑结构,2003,33(2):48-50.
    45.周天华,何保康,李鑫全等.帽型冷弯薄壁型钢-混凝土组合梁的试验研究[J],建筑结构,2003,33(1):26-33.
    46.张耀春,毛小勇,曹宝珠.轻钢-混凝土组合梁的试验研究及非线性有限元分析[J],建筑结构学报,2003,24(1):26-33.
    47.郭红梅,徐利明.帽型截面钢-混凝土组合梁变形计算公式[J],中外建筑,2003,(5):90-91.
    48.杜德润,李爱群,娄宇,李培彬.外包钢—混凝土组合简支梁设计问题探讨[J],特种结构,2005,22(4):16-18.
    49.石启印,马波,李爱群.新型外包钢-混组合梁的受力性能分析[J],实验力学,2005,20(1):117-122.
    50.吴元祥,石启印,杜德润.新型外包钢-混组合梁滑移性能的试验[J],江苏建筑,2006,105(2): 15-17.
    51.吴元祥.新型外包钢混凝土组合框架抗震性能试验[J],苏州科技学院学报,2006,19(1): 1-5.
    52. 石启印,章荣国,李爱群.部分剪力连接新型外包钢-硷组合梁的滑移性能[J],四川大学学报,2006,28(3):112-116.
    53. 张秀峰.低周反复荷载作用下新型组合框架结构的性能研究[D],镇江:江苏大学,2006:25-40
    54. 马波.外包钢-混凝土组合梁静力分析[D],镇江:江苏大学,2005,10-30.
    55. 王伟.外包钢组合梁受力性能数值分析[D],沈阳:东北大学,2006,22-37.
    56.房贞政.预应力结构理论与应用[M],北京:中国建筑工业出版社,2005,255-318.
    57. 薛伟辰,现代预应力结构设计[M],北京:中国建筑工业出版社,2003,161-178.
    58. Thomas, J. Finite element analysis of shear critical prestressed SFRC beams[J], Computers and Concrete,2006,3(1):65-77.
    59.郑则群,房贞政,宗周红.预应力钢-混凝土组合梁非线性有限元解法[J],哈尔滨工业大学学报,2004,36(2):218-222.
    60. Hamelin.P Composite for building and bridge construction-modeling of mechanical behavior of structural element using mixed steel composite reinforced concrete or mixed composite prestressed concrete, International Journal of Materials & Product Technology[J],2003,19(1-2):68-82.
    61.陆新征,江见鲸.预应力钢-混凝土组合双向楼板的非线性有限元分析[J],东南大学学报,2002,33(7):57-59.
    62. Dall'Asta Andrea Zona, Alessandro. Finite element model for externally prestressed composite beams with deformable connection Journal of Structural Engineering[J],2005, 131(5):706-714.
    63. Sharif, Alfarabi. Time-dependent losses in prestressed, continuous composite beams[J]. Journal of Structural Engineering,1993,119(11):3151-3168.
    64.薛伟辰,李昆,李杰.钢混凝土组合梁低周反复荷载试验研究[J],地震工程与工程振动,2002,22(6):65-70.
    65. Dezi, Luigino. Time-dependent analysis of prestressed composite beams, Journal of Structural Engineering[J],1995.121(4):621-633.
    66. Albrecht, Pedro Li, Wulin Saadatmanesh, Hamid. Fatigue strength of prestressed composite steel-concrete beams[J], Journal of Structural Engineering,1995,121(12): 1850-1856.
    67. Bennett, E.W, Joynes, H.W. Fatigue strength of cold-worked non-prestressed reinforcement in prestressed concrete beams[J], Magazine of Concrete Research,1979, 31(106):13-18.
    68. El Metwally, Ahmed, Loov, Robert E. Prestressed concrete beams with corrugated steel webs[J], Proceedings of the Conference:Composite Construction in Steel and Concrete Ⅳ,2000:81-92.
    69. Uy, Brian. Time dependent service load behaviour of prestressed composite beams[J]. Structural Engineering and Mechanics,1997,5(3):07-327.
    70. Garden..N. Hollaway.C. Experimental study of the failure modes of reinforced concrete beams strengthened with prestressed carbon composite plates,omposites[J], Part B: Engineering,1998,29(4):411-424.
    71. Al-Emrani, M., Kliger,R.Analysis of interfacial shear stresses in beams strengthened with bonded prestressed laminates[J], Composites Part B:(Engineering),2006,37(4-5): 265-72.
    72. Wollmann, Gregor P, Anderson, Robert B, Roberts-Wollmann, Carin L. Creep and shrinkage effects in spliced prestressed concrete girder bridges[J], PCI Journal,2003, 48(6):92-105.
    73. Dezi, Luigino.Leoni, Graziano, Tarantino, Angelo Marcello. Algebraic methods for creep analysis of continuous composite beams [J], Journal of Structural Engineering, 1996,122(4):423-430.
    74.刘莉,王连广.预应力钢与高强混凝土组合梁的变形计算分析[J],东北大学学报,2005,26(7):699-702.
    75.王连广,刘嵩,杨丽君.预应力钢与高强混凝土组合梁有限元分析[J],沈阳建筑大学,2005,21(3):192-195.
    76.张鹏,薛伟辰,韦树英.预应力组合梁工程应用进展[J],建筑科学,2005,21(3):27-28.
    77.薛伟辰,何池,王桦,李杰,新型预应力组合梁的力学性能[J],同济大学学报,31(3):268-272.
    78. Zou, Patrick X.W. Long-term deflection and cracking behavior of concrete beams prestressed with carbon fiber-reinforced polymer tendons [J], Journal of Composites for Construction,2003,7(3).187-193.
    79. Lopes, Sergio M.R, Harrop J, Gamble A.E. Study of moment redistribution in prestressed concrete beams[J], Journal of Structural Engineering,1997,123(5): 561-566.
    80. Lopes S.M.R, Harrop J. Flexural behaviour of prestressed continous beams Proceedings of the Institution of Civil Engineers[J], Structures and Buildings,2001,146(1).67-74
    81.聂建国,温凌燕.体外预应力加固钢-混凝土连续组合梁的承载力分析[J],工程力学,2006,23(1):81-86.
    82.余志武,周凌宇,罗小勇.钢-部分预应力混凝土连续组合梁内力重分布研究[J],建筑结构学报,2002,23(6):64-69.
    83. Bradford M.A. Elastic stability of composite tee-beams strengthened by prestress[J], Proceedings-Institution of Civil Engineers, Part 2:Research and Theory,1991,91: 875-885.
    84. Kennedy, John B, Grace, Nabil F.Prestressed continuous composite bridges under dynamic load[J], Journal of Structural Engineering,1990,116(6):1660-1678.
    85.罗小勇,周凌宇,余志武.预制装配式预应力钢桁-混凝土组合梁桥的应用研究[J],公路,2002,7:75-78.
    86.祝明桥.混凝土薄壁箱梁受力性能的试验研究与分析[D],长沙:湖南大学,2004,1-10.
    87.周凌宇.钢-混凝土组合箱梁受力性能及空间非线性分析[D],长沙:中南大学,2004,1-15.
    88.杜德润.新型外包钢-混凝土组合简支梁及组合框架试验研究[D],南京:东南大学,2005,1-74.
    89. 陈丽华.新型外包钢-混凝土组合连续梁及梁柱节点的试验研究[D],南京:东南大学,2005,1-61.
    90. 石启印,章荣国,李爱群.部分剪力连接新型外包钢—砼组合梁的滑移性能[J],湘潭大学自然科学学报,2006,28(3):112-116.
    91. 石启印,章荣国,李爱群.新型外包钢-砼组合梁滑移及变形性能的试验[J],四川大学学报,2006,38(6):13-17.
    92.赵鸿铁,杨勇,薛建阳,王彦宏,林艺勇.型钢混凝土粘结滑移力学性能研究及基本问题[J],力学进展,2003,33(1):76-84.
    93.郑山锁,邓国专,杨勇,俞茂宏,张俊峰.型钢混凝土结构粘结滑移性能试验研究[J],工程力学,2003,20(5):63-69.
    94. K M Anwar Hossain, H D Wright. Finite element modeling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction[J]. structural engineering and mechanics,2005,21(6):659-676.
    95. K. M. Anwar hossain. Designing thin-walled composite-filled beams [J], Structures & building,2005,158(SB4):267-278.
    96. 张道明,梁力,尹新生,李明.预应力内荷载的新计算方法-直接内载法[J],工程力学,2007,24(3):104-109.
    97. R.B.B.Moorman. Equivalent load method for analyzing prestressed concrete structure, ACI, Journal,1952(1):405-416.
    98. 吕志涛,孟少平.现代预应力设计[M].北京:中国建筑工业出版社,1998,20-30
    99.林同炎,BURNS. N.预应力混凝土结构设计[M],北京:中国铁道出版社,1983,54-250
    100. Michael Chi, Frank A.Bierstein. Theory of prestressed concrete [M], U.S.A: prentice-Hall, Inc. Englewood cliffs, N.J.1963,17-51
    101. Lin T Y. Secondary moment and moment redistribution in continuous prestressed concrete beams [J]. Prestressed Concrete Instute,1972,17(1):8-20.
    102.熊学玉.现代预应力混凝土结构设计理论及实践研究[D].上海:同济大学,1998,1-89.
    103.薛伟辰.现代预应力结构设计[M].北京:中国建筑工业出版社,2003,46-55
    104. Keyder, Engin. Friction losses in prestressed steel by equivalent load method[J], Prestressed Concrete Institute,1990,35(2):74-77.
    105. Ames R. Libby. Modern Prestressed Concrete Design Principles And Construction Methods[M], Published Van Nostrand Reinhold Company,1979,322-331.
    106. Rishna Raju. Prestressed Concrete[M], Tata McGraw-Hill Publishing Company Limited, New Delhi,1983.47-69.
    107.陆惠民.部分预应力混凝土超静定结构非线分析、内力重分布和弯矩调幅[D],东南大学,1998:30-31.
    108.俞志松,欧新新,刘勇.平板结构预应力等效结点荷载计算讨[J].浙江工业大学学报,2003,31(6):652-657.
    109. Park. S.K, Kim K.S. A new design method for perstressed contrete continuous flat slabs[J]. Struct. Design Tall Spec. Build,2004,13(4):265-276.
    110.赵勇,黄鼎业,李云贵,荣维生.预应力混凝土板的等效荷载计算[J].建筑科学,2002,18(4):8-11.
    111.孙保俊.预应力连续配筋线形与等效荷载研究[J].工业建筑,1998,28(11):19-23.
    112.吴京.多高层建筑无粘结预应力板系楼盖的设计研究[D],南京:东南大学1999:35-47.
    113.常先军.预应力地下连续墙模型试验及计算理论研究[D],上海:同济大学,2003, 15-24.
    114.张道明,梁力,李明.预应力筋线型及预应力内荷载的分布规律[J],东北大学学报,2006,27(5):267-270.
    115.王增春.高层建筑预应力基础[D],上海:同济大学,1999,27-31.
    116.杜拱辰,现代预应力混凝土结构[M],北京:中国建筑工业出版社,1986,199-264.
    117. ANSYS, CiviFEM Theory Manual II (ANSYS8.0) [M], SouthPointe:2003,20,5-7.
    118.熊学玉,黄鼎业.预应力结构设计施工手册[M],北京:中国建筑工业出版社,2003,146-153.
    119.同济大学计算数学教研室.数值分析基础[M], 上海:同济大学,2002,146-159
    120. Navascues M A, Some results of convergence of cubic spline fractal interpolation functions[J]. Fractals,.2003,11(1):1-7.
    121.吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M],上海:同济大学出版社,1997,7-13.
    122.过镇海.钢筋混凝土原理[M],北京:清华大学出版社,1999,111-131.
    123.过镇海.混凝土强度和本构关系-原理与应用[M],北京:中国建筑工业出版社,1999,1-221.
    124.江见鲸,陆新征,叶列平.混凝土结构有限元分析[M],北京:清华大学出版社,2005,1-99.
    125.江见鲸.钢筋混凝土非线性有限元分析[M],陕西:陕西科技出版社,1994,5-144
    126.何政,欧进萍.钢筋混凝土结构非线性分析[M],哈尔滨:哈尔滨工业大学出版社,2006,6-167.
    127.朱伯龙,董振祥.钢筋混凝土非线性分析[M],上海:同济大学出版社,1985,6-17.
    128.董毓利.混凝土非线性力学基础[M],北京:中国建筑工业出版社,1997,1-75.
    129.顾祥林,孙飞飞.混凝土结构的计算机仿真[M],上海:统计大学出版社,2002.5,6-14.
    130. ANSYS.结构分析指南(ANSYS 8.0)[M], 北京:2003.
    131.朱伯芳.有限单元法基本原理与应用[M],北京:中国水利水电出版社,1998,535-540.
    132.王来.方钢管混凝土框架抗震性能的试验与理论研究[D],天津:天津大学,2005,71-106.
    133.戎贤.高强钢筋混凝土构件裂缝控制试验研究及有限元分析[D],天津:天津大学,2005,61-70.
    134.杨勇.型钢混凝土粘结滑移基本理论及应用研究[D],西安:西安建筑科技大学,2003,101-105.
    135.石启印,章荣国,李爱群.部分剪力连接新型外包钢—砼组合梁的滑移性能[J],四川大学学报,2006,28(3):112-116.
    136.石启印,章荣国,李爱群.新型外包钢-砼组合梁滑移及变形性能的试验[J],四川大学学报.2006,38(6):13-17.
    137.王连广.钢与混凝土组合结构理论与计算[M].北京::科学出版社,2005,161-168.
    138.赵鸿铁,杨勇,薛建阳,王彦宏,林艺勇.型钢混凝土粘结滑移力学性能研究及基本问题[J],力学进展,2003,33(1):76-84.
    139.郑山锁,邓国专,杨勇,俞茂宏,张俊峰,型钢混凝土结构粘结滑移性能试验研究[J],工程力学,2003,20(5):63-69.
    140.K M Anwar Hossain, H D Wright. Finite element modeling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction[J]. structural engineering and mechanics,2005,21(6):659-676.
    141. K. M. Anwar hossain. Designing thin-walled composite-filled beams [J], Structures & building,2005,158(SB4):267-278.
    142. Charles W. Roeder, Robert Chmielowski and Colin B. Brown. Shear connector requirements for embedment steel sections [J]. J. of structure engineering,1999,125(2), 142-151.
    143. Wium, Jan A. and Lebet Jean-Paul. Simplifed Caculation Method for Force Transfer in Composite Columns, J. of structural Engineering, Proceedings of ASCE,1992, 120(3):728-745.
    144.邱文亮,张哲,姜萌,钢-混凝土组合梁非线性有限元分析[J],计算力学学报,2003,20(5):627-630.
    145.李国强.型钢混凝土粘结性能研究现状[J].结构工程师,2005,21(5):84.-88.
    146.刘文会.预应力钢—混凝土组合梁桥结构行为研究[D].长春:吉林大学,2005,27-28.
    147.蔡绍怀.现代钢管混凝土结构[M],北京:人民交通出版社,2003,267-273.
    148.薛守义,有限单元法,北京:中国建材工业出版社,2006,114-175.
    149.卢明奇钢管混凝土结构三维非线性有限元分析和设计理论的研究[D],天津:天津大学,2005,55-59.
    150.王伟,梁力,张道明,外包钢组合梁抗弯性能的仿真模拟[J],低温建筑技术,2006年,116(6):51-99.
    151.郑文中,李和平王英,超静定预应力混凝土结构塑性设计[M],哈尔滨:哈尔滨工业大学出版社,2002,1-104.
    152.宋玉普,新型预应力混凝土结构[M],北京:机械工业出版社,2006,31-88.
    153.张道明,预应力钢筋混凝土框架结构受力全过程次生内力的分析及试验研究[D],上海:同济大学,2004,47-51.
    154.梁兴文,王社良,李晓文,混凝土结构设计原理,北京:科学出版社,2004,383-384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700