急性弓形虫小鼠感染模型的建立与抗动物弓形虫病药物的初步筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弓形虫病是一种重要的机会致病性人兽共患寄生虫病,能在人和多种哺乳动物之间传播。动物感染后不但会影响生产性能,还将会成为人类弓形虫病的传染源,因此,对该病的防治具有重要的经济学价值和公共卫生学意义。本研究通过建立急性弓形虫小鼠感染模型后,进行抗弓形虫药物的筛选,拟发现用于动物弓形虫病防治的药物,并对有效药物的抗虫机制进行初步研究,为临床上用于治疗动物弓形虫病提供理论依据。
     1.弓形虫复苏方法及虫体毒力的摸索及急性弓形虫小鼠感染模型的建立
     通过对弓形虫株经不同保存时间及复苏条件后对小鼠致病性的研究,评价虫体保存方法。使用液氮冻存和体内传代法,摸索出了得到毒力稳定的虫体最佳保存时间、复苏代次与接种剂量。在此基础上,确立了急性弓形虫小鼠感染模型:使用本实验室保存半年以内的弓形虫RH虫株速殖子,经小鼠体内传代2次后,腹腔接种超过4 000个虫体/鼠/0.2 mL(KM系、体重20-24 g),将保证所有小鼠在6-10 d内全部死亡。通过模型的建立,为后续弓形虫虫体生物学和药物筛选研究奠定了基础。
     2.抗弓形虫病药物筛选的研究
     鉴于目前无专用于动物的抗弓形虫病药物,本研究拟通过选用11种已用于抗动物其它原虫病及其病原微生物的药物,来进行抗弓形虫病的研究。发现原用于抗动物球虫病的药物—磺胺氯吡嗪具有很好的抗弓形虫效果,能明显减少弓形虫在小鼠体内的生长、繁殖,可保护50%以上的小鼠免于死亡并长时间存活,并无法检测到虫体。
     3.磺胺氯吡嗪对弓形虫速殖子超微结构的影响
     弓形虫速殖子经磺胺氯吡嗪溶液处理后,通过扫描电镜与透射电镜观察虫体结构的变化。在扫描电镜下,药物处理后的虫体大小不均,细胞膜凹凸不平、皱缩呈现不完整,部分虫体出现破损、崩解,虫体反光度不均一等。在透射电镜下,药物处理后,部分虫体发生崩解,虫体细胞膜和核膜结构损坏;致密斑颗粒数量明显减少,细胞质发生均质样改变,细胞质中出现许多空泡;细胞核发生异染色质化,染色质边缘与核膜分离并出现空泡;顶端类锥体结构模糊,出现类似多细胞生物的凋亡特征。
     4.磺胺氯吡嗪处理前后弓形虫速殖子消减文库的构建
     以正常弓形虫速殖子cDNA作为Driver(驱动组),分别以磺胺氯吡嗪、磺胺嘧啶+乙胺嘧啶处理速殖子cDNA作为Tester(实验组),构建了2个消减文库(T1-1、T2-1),经鉴定文库重组率超过85%,片段长度大小不一,均在250~750 bp范围内,后续基因功能分析有待进一步研究。
Toxoplasma gondii is a ubiquitous, apicomplexan parasite of warm-blooded animals, and is one of the most common parasitic infections of humans. It can spread among humans and a variety of mammals. Infected animals will not only affect performance, but also it will become a source of infection human toxoplasmosis. So, prevention and treatment of the disease has important value of economics and public health. This study constructed a model of acute toxoplasmosis in mice infected with Toxoplasma gondii and then screened many drugs. We have found a significant drug (Sulfachloropyrazine). The preliminary mechanism against parasites was studied. It provides a theoretical basis for putting this drug into clinical use. The results are as follows:
     Toxoplasma gondii is a ubiquitous, apicomplexan parasite of warm-blooded animals, and is one of the most common parasitic infections of humans. It can spread among humans and a variety of mammals. Infected animals will not only affect performance, but also it will become a source of infection human toxoplasmosis. So, prevention and treatment of the disease has important value of economics and public health. This study constructed a model of acute toxoplasmosis in mice infected with Toxoplasma gondii and then screened many drugs. We have found a significant drug (Sulfachloropyrazine). The preliminary mechanism against parasites was studied. It provides a theoretical basis for putting this drug into clinical use. The results are as follows:
     1. Research the preservation method and the virulence of Toxoplasma gondii and construct a model of acute toxoplasmosis in mice
     We assess the preservation methords by the pathogenicity in mice infected with toxoplasma gondii being saved and recoveried differently. Using liquid nitrogen freezing and passage method in vivo, we get the optimum way to preserve and the best time for passaging to achieve stable parasite virulence. Then, the acute Toxoplasma gondii infection model in mice has been established: Keeping Toxoplasma gondii tachyzoites in liquid nitrogen within six months and passaging twice in mice, we can get the parasites which can lead all mice infected with at least 4 000 organs die within a week. The model provides the foundation for screening new drugs and researching the biology of parasite.
     2. Screening drugs against Toxoplasma gondii
     As there are no great anti-toxoplasmosis drugs for animals, tens of drugs which were used as anti-protozoal or other pathogens were chosen against animal toxoplasmosis. A drug Sulfachloropyrazine were found with great efficacy, it can inhibit growth and reproduction of parasites. The survival rate of mice treated with the drug was over 50% and the survivals can live over 2 months.
     3. Observe the ultrastructural changes of Toxoplasma gondii tachyzoite dealt with the drug Sulfachloropyrazine.
     In the normal group, considerable numbers of viable tachyzoites showed normal features under SEM and TEM. Under the SEM, in the Sulfachloropyrazine group, tachyzoites take outdifferent size, rugged and incomplete cell membrane, some parasites appear damaged and collapsed, with non-uniform reflectivity. Under the TEM, Sulfachloropyrazine group, some parasites collapse, the cell membrane and nuclear membrane structural were damaged, the number of dense granules reduce lowly. The cytoplasmic vacuoles appeared; the nucleus occured heterochromatin and other changes, pyramidal became fuzzy. After all, they appeared similar characteristics of multi-cellular apoptosis.
引文
1.贝祝春,王京燕.伯氏疟原虫青蒿素抗药性相关的消减cDNA文库构建[J].中国寄生虫学和寄生虫病杂志, 2004, 22(3): 139-143.
    2.陈才英.大通县家畜弓形虫病流行病学调查[J].青海畜牧兽医杂志, 2008, 38(1): 124-125.
    3.陈俏梅,张俐,何国声.检测实验动物弓形虫感染的两种PCR方法的建设和比较[J].中国兽医寄生虫病, 2003, 11(2): 5-8.
    4.陈盛霞.弓形虫速殖子体外培养及银杏酸等对其增殖抑制作用的研究[D].镇江:江苏大学, 2008.
    5.陈晓光,谭峰.弓形虫研究的过去、现在与未来[J].中国寄生虫学与寄生虫病杂志, 2009, 27(5): 426-431.
    6.陈永军,王权,龚朋飞,等.弓形虫两种保种方法的试验[J].中国兽医寄生虫病, 2007, 15(5): 22-24.
    7.邓吉华,傅玲,陈运生,等.自拟弓形虫汤治疗儿童弓形虫病50例[J].中医杂志,1996, 37(2): 102.
    8.丁洁琼.不同保护剂冻存弓形虫速殖子的观察[J].咸宁学院学报(医学版), 2009, 23(3): 197.
    9.丁贞英,曾小军,陈红根,等.阿奇霉素、复方新诺明和干扰素治疗弓形虫病协同作用的观察[J].中国人兽共患病杂志, 2001, 17(3): 106-107.
    10.董辉.巨型艾美尔球虫早熟株生物学特性及相关基因研究[D].北京:中国农业科学院, 2009.
    11.董靖,邓旭明,邓彦宏.抗寄生虫新药硝唑尼特研究进展[J].中国兽药杂志, 2010, 44(5): 51-53.
    12.冯超,薛飞群,张丽芳,等. 2-(4-氯-3-甲基苯基)-1,2,4-三嗪-3,5(2H,4H)-二酮的合成[J].中国医药工业杂志, 2007, 38(7): 472-474.
    13.高剑,叶彬,武卫华.刚地弓形虫细胞培养上清对人结肠癌细胞sw480增殖与凋亡的影响[J].中国人兽共患病学报, 2010, 26(3): 229-234.
    14.韩红玉,赵其平,姜连连,等.柔嫩艾美耳球虫抗马杜拉霉素、地克珠利虫株特异消减文库的构建[J].中国农业科学, 2005, 38 (8): 1712-1716.
    15.韩红玉.柔嫩艾美耳球虫孢子化卵囊和子孢子差异性表达基因的研究[D].北京:中国农业科学院, 2007.
    16.何毅勋,龚祖埙,马金鑫.日本血吸虫卵卵壳的超微结构[J].中国医学科学院学报. 1979, 1(2): 144-146.
    17.黄兵,朱顺海,曾艳波,等.几种药物抗小鼠弓形虫感染的初步效果[J].中国动物传染病学报, 2010, 18(3): 45-50.
    18.江涛,何会时.荆州市鸡弓形虫病的流行现状与分析[J].养殖与饲料, 2009, (12): 16-17.
    19.李芸茜,黄佩君,王祝鸣,等.黄芪对急性弓形虫RH株感染小鼠的保护作用研究[J].中国血吸虫病防治杂志, 2004, 16(2):129.
    20.刘佩梅,郑凯,申力,等.大蒜素、替硝唑抗小鼠弓形虫感染的疗效观察[J].中国人兽共患病杂志, 2002, 18(1): 129-130.
    21.刘扬,杨少毅,张永浩,等.弓形虫对小鼠肝脏的损害与蒿甲醚的保护作用[J].西安医科大学学报, 1997, 618(2): 162.
    22.罗新萍,罗新华,王爱华.两种药物治疗育龄妇女弓形虫感染的效果比较[J].中国寄生虫病防治杂志, 2005, 18(4): 315.
    23.马运荣,孔晓燕.乙酰螺旋霉素治疗弓形虫感染的效果观察[J].中国寄生虫病防治杂志, 2005, 18(3): 216.
    24.米晓云,巴音查汗,李文超.新疆猪牛羊弓形虫病的血清学调查[J].中国兽医寄生虫病, 2007, 15(2): 22-24.
    25.欧阳颗,杨家芬,李镇辉,等.青蒿提取物对刚地弓形虫的抑制作用[J].湖南医科大学学报, 1994, 21(1): 7.
    26.全国人体重要寄生虫病现状调查办公室.全国人体重要寄生虫病现状调查报告[J].中国寄生虫学与寄生虫病杂志, 2005, 23(5-增刊): 332-340.
    27.申川军,詹希美,杨绍基,等.青蒿琥酯抗弓形虫病的疗效观察[J].中国人兽共患病杂志, 2003, 19(5):128.
    28.舒衡平,蒋立平.大蒜素、美浓霉素对小鼠脑内弓形虫包囊形成的影响[J].人兽共患病杂志. 2002, 18(1): 100-101.
    29.舒衡平,蒋立平,刘多.美浓霉素体外抗弓形虫作用的效果观察[J].人兽共患病杂志. 2000, 16(5):74-76.
    30.司开卫,李哲,程彦斌.扁桃酸对感染小鼠腹水中弓形虫速殖子超微结构的影响[J]中国寄生虫病防治杂志, 2000, 13(4): 258-260.
    31.司开卫,李哲,程彦斌等.扁桃酸对小鼠腹水中假包囊内弓形虫速殖子的作用[J].西安交通大学学报(医学版), 2004, 25(1):42.
    32.唐贵文,陈艳,蒋红涛.电子显微镜技术在寄生虫学领域中的应用[J].贵州医药, 2010, 34: 274-278.
    33.田葱,阮秀花,张效本等.自拟扶正去原汤治疗弓形虫病60例[J].国外医学寄生虫病分册, 1997, 38(10):627.
    34.王崇功.艾滋病与寄生虫病[J].中国人兽共患病杂志, 1988, 4(2):37.
    35.王崇功.弓形虫病危害性的主要临床表现[J].江苏医药, 1996, 22(6):399.
    36.王世海,陈兆义,李安梅等.贵州省人体重要寄生虫病现状调查与分析[J].中国病原生物学杂志, 2007, 2(6): 450-453.
    37.吴观陵.人体寄生虫学[M].北京:人民卫生出版社, 2005, 255.
    38.吴中光,郑葵阳.实用寄生虫病学[M] .南京:江苏科学技术出版社, 2003, 152-156.
    39.肖运本,陈晓林,巴瑞琦.弓形虫病研究进展[J].武汉市医学科研, 1991, 13(2): 55-56.
    40.严笠,甘邵伯,齐志群等.双氢青蒿素治疗急性弓形虫感染小鼠疗效的进一步观察[J].寄生虫与医学昆虫学报, 2000, 7(2): 70-75.
    41.杨连第,洛若愚,鲁敏等.弓形虫感染致实验动物体温异常的实验观察[J].中国寄生虫病防治杂志, 2005, 18(6): 433-435.
    42.杨秋林,徐丽芳,桂庆军等.红霉素、阿奇霉素、磺胺嘧啶、大蒜素体外抗弓形虫作用的研究[J].南华大学学报(医学版), 2007, 35(1): 27-30.
    43.杨树森,杨秀珍,吴增强等.中药抗寄生虫速殖子作用的体外实验[J].中国寄生虫病防治杂志, 1989, 2(3):177.
    44.杨树森,杨秀珍,张新明等. 120种中药对弓形虫RH株速殖体的体外效应(初报)[J].天津医学院学报, 1983, (2):12.
    45.于振华,胡颖新,曹健等.氯喹治疗小鼠弓形虫感染的实验观察[J].中国寄生虫病防治杂志, 2005, 18(3): 184-187.
    46.曾艳波,朱顺海,韩红玉等.抗急性动物弓形虫病药物疗效的研究[J].中国人兽共患病学报, 2010, 27(4):316-319.
    47.张可煜,王国永,薛飞群等.抗寄生虫新药硝唑尼特研究进展[J].兽药研究与应用, 2007, 12: 30-31.
    48.张瑞琳,梁炽,林六文.微孢子虫及人芽囊原虫混合感染与病原体形态观察[J].中国人兽共患病杂志, 1999, 27(4): 17-19.
    49.张祝明,曾明华.鸡球虫耐药性研究进展[J].中国兽医寄生虫病, 13(2) :29-36.
    50.中国兽药杂志编辑部.农业部批准新兽药的通知[J].中国兽药杂志, 1996, 30(2): 45.
    51.周变华.地克珠利抗鸡柔嫩艾美尔球虫第二代裂殖子作用机理的研究[D].北京:中国农业科学院, 2010.
    52.庄国正,孟佩云,安克贵.细胞培养和液氮冻存弓形虫的研究[J].中国寄生虫学与寄生虫病杂志, 1992, 10(2):153.
    53. Allegra C.J., Boarman D., Kovacs J.A., et al. Interaction of sulfonamide and sulfone compounds with Toxoplasma gondii dihydropteroate synthase [J]. The Journal of Clinical Investigation, 1990, 85: 371-379.
    54. Araujo E.G., Shepard R.M., Remington J.S. In Vivo Activity of the Macrolide Antibiotics Azithromycin, Roxithromycin and piramycin against Toxoplasma gondii [J].New Antimicrobial Agents, 1991,10(6):519-524.
    55. Araujo F.G., Guptill D.R., Remington J.S. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii [J]. Antimicrobial Agents and Chemotherapy, 1988, 32(5): 755-757.
    56. Araujo F.G., Shepard R.M., Remington J S. In vivo activity of the macrolide antibioties azithromycin, roxithromycin and spiramycin against Toxoplasma gondii [J]. European Journal of Clinical Microbiology Infectious Diseases, 1991, 10(6): 519-524.
    57. Araujo F.G., Khan A.A., Slifer T.L., et al. The ketolide antibiotics HMR 3647 and HMR 3004 are active against Toxoplasma gondii in vitro and in murine models of infection [J]. Antimicrob. Agents Chemother, 1997, 41: 2137-2140.
    58. Araujo F.G., Williams D.M., Grumet F.C., et al. Strain-dependent differences in murine susceptibility to Toxoplasma [J]. Infection Immunity, 1976, 13: 1528–1530.
    59. Beverley J.K., Fry B.A. Sulphadimidine, pyrimethamine and dapsone in the treatment of Toxoplasmosis in mice [J]. British Journal of Pharmacology, 1957, 12(2): 189-193.
    60. Bhopale G.M. Development of a vaccine for Toxoplasmosis: current status [J]. Microbes andInfectiont, 2003, 5(5):457-462.
    61. Brown C.R., McLeod R. Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasma gondii infection [J]. Journal of Immunology, 1990, 145: 3438-3441.
    62. Brown C.R., Hunter C.A., Estes R.G. Definitive identification of a gene that confers resistance against Toxoplasma cyst burden and encephalitis [J]. Immunology, 1995, 85: 419-428.
    63. Chan J., Luft B.J. Activity of roxithromycin (RU 28965), a macrolide, against Toxoplasma gondii infection in mice [J]. Antimicrobial Agents and Chemotherapy, 1986, 30(2): 323-324.
    64. Chang H.R, Pechère J.C. Effect of roxithromycin on acute Toxoplasmosis in mice [J]. Antimicrobial Agents and Chemotherapy, 1987, 31(7): 1147-1149.
    65. Darcy F., Zenner L. Experimental models of Toxoplasmosis [J]. Research in immunology, 1993, 144:16-23.
    66. Deckert-Schluter M., Schluter D., Schmidt D., et al. Toxoplasma encephalitis in congenic B10 and BALB mice: impact of genetic factors on the immune response [J]. Infection Immunity, 1994, 62: 221-228.
    67. Derouin F, Almadany R, Chun F, et al. Synergistic activity of azithromycin and pyrimethamine or sulfadiazine in acute experimental Toxoplasmosis [J]. Antimicrobial Agents and Chemotherapy, 1992, 36(5): 997-1001.
    68. Derouin F., Lacroix C., Sumyuen M.H., et al. Experimental models of Toxoplasmosis [J]. Pharmacological applications. Parasite, 1995, 2: 243–256.
    69. Diatchenko L., Lau Y.F., Campbell A.P., et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proceeding of the National Academy of Sciences of the United States of America, 1996, 93: 6025-6030.
    70. Djurkovic-Djakovic O., Nikolic T., Robert-Gangneux F., et al. Synergistic effect of clindamycin and atovaquone in acute murine Toxoplasmosis [J]. Antimicrobial Agents and Chemotherapy, 1999, 43: 2240-2244.
    71. Dubey J.P. Re-examination of resistance of Toxoplasma gondii tachyzoites and bradyzoites to pepsin and trypsin digestion [J]. Parasitology, 1998, 116: 43-50.
    72. Dumas J.L., Pizzolato G., Pechère J.C. Evaluation of trimethoprim and sulphamethoxazole as monotherapy or in combination in the management of Toxoplasmosis in murine models [J]. International Journal of Antimicrobial Agents, 1999, 13(1): 35-39.
    73. Durant J., Hazime E., Caries M., et al. Prevention of Pneumocystis carinii Pneumonia and of Cerebral Toxoplasmosis by Roxithromycin in HIV-Infected Patients [J]. Infection, 1995, 23: 33-38.
    74. Eyles D.E. The Present Status of the Chemotherapy of Toxoplasmosis [J]. The American Journal of Tropical Medicine and Hygiene, 1953, 2(3): 429-444.
    75. Fialho C.G., Teixeira M.C., Araujo F.A. Animal Toxoplasmosis in Brazil [J]. Acta Scientiae Veterinariae, 2009 37(1):1-23.
    76. Fox S.A., Loh S., Thean A.L., et al. Identification of differing expressed genes in murine mesothelioma cell lines of differing tumorigenicity using suppression subtractive hybridization [J].Biochimicaet Biophysica Acta, 2004, 1 688: 237-244.
    77. Fujii H., Kamiyama T., Hagiwara T. Species and strain differences in sensitivity to Toxoplasma infection among laboratory rodents [J]. Japanese Journal of Medical Science & Biology, 1983, 36: 343–346.
    78. Grossman P.L, Remington J.S. The effect of trimethoprim and sulfamethoxazole on Toxoplasma gondii in vitro and in vivo [J]. The American Journal of Tropical Medicine and Hygiene, 1979, 28(3): 445-455.
    79. Grujic J., Djakovic O.D. Effectivess of spiramycin in murine models of acute and chronic Toxoplasmosis [J]. International Journal of antimicrobial Agents, 2005, 25:226-230.
    80. Howe D.K., Sibley L.D. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease [J]. Journal of Infectious Diseases, 1995, 172: 1561-1566.
    81. Howe D.K., Summers B.C., Sibley L.D. Acute virulence in mice is associated with markers on chromosome VIII in Toxoplasma gondii [J]. Infection Immunity, 1996, 64: 5193–5198.
    82. Dubey J.P. History of the discovery of the life cycle of Toxoplasma gondii [J]. International Journal for Parasitology, 2009, 39(8):877-882.
    83. Johnson A.M. Strain dependent, route of challenge-dependent susceptibility to Toxoplasmosis [J]. Z. Parasitenk, 1984, 70: 303-309.
    84. Johnson J., Suzuki Y., Mack D. Genetic analysis of influences on survival following Toxoplasma gondii infection [J]. International Journal for Parasitology, 2002, 32: 179-185.
    85. Kaufman H.E., Remington J.S., Jacobs L. Toxoplasmosis: the nature of virulence. American Journal of Ophthalmology, 1958, 46: 255-261.
    86. Khan A.A., Nasr M., Araujo F.G. Two 2-hydroxy-3-alkyl-1,4-naphthoquinones with in vitro and in vivo activities against Toxoplasma gondii [J]. Antimicrobial Agents and Chemotherapy, 1998, 42: 2284-2289.
    87. Khan A.A., Slifer T., Araujo F.G. Remington J.S. Trovafloxacin is active against Toxoplasma gondii [J]. Antimicrobial Agents and Chemotherapy, 1996, 40: 1855–1859.
    88. Kim K.B. A novel technique for projection-type electron-beam lithography. Spie Newsroom, 2008, 12: 1396-1399.
    89. Kouni M.H. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy [J]. Curr Phar J- Teisai Des, 2007, 13(6):581-597.
    90. Kovacs J.A., Masur H. Prophylaxis against opportunistic infections in patients with human immunodeficiency virus infection. The New England Journal of Medicine, 2000, 342: 1416-1429.
    91. Kowalski C.J., ?ebkowska-Wieruszewska B., Osypiuk M. High performance liquid chromatography determination of sulphachloropyrazine residues in broiler and turkey edible tissues [J]. Journal of Chromatography B, 2009, 877:1787-1791.
    92. Lass A., Pietkiewicz H., Modzelewska E., et al. Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2009, 28: 599-605.
    93. (?)ebkowska-Wieruszewska B., Kowalski C.J. Sulfachlorpyrazine residues depletion in turkey edible tissues. Journal of Veterinary Pharmacology and Therapeutics, 2009, 33: 389-395.
    94. Liguoro M.D., Fioretto B., Poltronieri C., et al. The toxicity of sulfamethazine to daphnia magna and its additivity to other veterinary sulfonamides and trimethoprim [J]. Chemosphere, 2009, 75: 1519-1524.
    95. Knoll M., Ruska E. Das Elektronenmikroskop [J]. Zeitschrift fur Physik, 1932, 78: 318-339.
    96. McLeod R., Estes R.G., Mack D.G et al. Immune response of mice to ingested Toxoplasma gondii: a model of Toxoplasma infection acquired by ingestion [J]. Journal of Infectious Diseases, 1984, 149: 234-244.
    97. McLeod R., Frenkel J.K., Estes R.G., et al. Subcutaneous and intestinal vaccination with tachyzoites of Toxoplasma gondii and acquisition of immunity to peroraland congenital Toxoplasma challenge [J]. The Journal of Immunology, 1988, 140: 1632–1637.
    98. Meneceur P, Bouldouyre M.A., Aubert D., et al. In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrobial Agents and Chemotherapy, 2008, 52: 1269-1277.
    99. Miedouge M., Bessieres M.H., Cassaing S., et al. Parasitemia and parasitic loads in acute infection and after anti-gamma-interferon treatment in a Toxoplasmic mouse model [J]. Parasitology Research, 1997, 83: 339-344.
    100. Moshkani S.K., Dalimi A. Evaluation of the efficacy of atovaquone alone or in combination with azithromycin against acute murine Toxoplasmosis [J]. Veterinary Research Communication, 2000, 24(3): 169-177.
    101. Moshkani S.K., Dalimi A. Evaluation of the efficacy of atovaqune alone or in combination with azithromycin against acute murine Toxoplasmosis [J]. Veterinary Research Communications, 2000, 24:169-177.
    102. Nguyen B.T., Stadtsbaeder S. Comparative effects of cotrimoxazole (trimethoprim- sulphamethoxazole), pyrimethamine- sulphadiazine and spiramycin during avirulent infection with Toxoplasma gondii (Beverley strain) in mice [J]. British Journal of Pharmacology, 1983, 79(4): 923-928.
    103. Payam H.K., Seyed S. R., Gita, A.A., et al. Comparative Investigation of Efficacy of Two Sulfonamides on Broiler Coccidiosis Infected by Iranian Eimeria Spp in Iran [M]. Mediterranean Summit of WPSA, 2009, 2th Edited: 79-82.
    104. Remington J.S. Trimethoprim-sulfamethoxazole in murine Toxoplasmosis [J]. Antimicrobial Agents and Chemotherapy, 1976, 9(2): 222-223.
    105. Rosowsky A., Forsch R.A., Sibley C.H. New 2,4-diamino-5-(2',5'-substituted benzyl) pyrimidines as potential drugs against opportunistic infections of aids and other immune disorders[J]. Journal of Medicinal Chemistry, 2004, 47(6): 1475-1486.
    106. Rosowsky A., Mota C.E., Wright J.E. 2,4-diaminothieno[2,3-d]pyrimidine analogues of trimetrexate and piritrexim as potential inhibitors of pneumocystis carinii and Toxoplasma gondiidihydrofolate reductase [J]. Journal of Medicinal Chemistry, 1993, 36(21): 3103-3112.
    107. Sabin A.B. Toxoplasmic encephalitis in children [J]. J. Am. Med. Assoc, 1941, 116: 801-807.
    108. Sibley L.D. Boothroyd J.C. Virulent strains of Toxoplasma gondii comprise a single clonal lineage [J]. Nature, 1992, 359: 82-85.
    109. Sibley L.D., Dana G.M., Su C.L., et al. Genetic approaches to studying virulence and pathogenesis in Toxoplasma gondii [J]. Philosophical Transactions of the Royal Society B, 2002, 357: 81–88.
    110. Sonda S., Hehl A.B. Lipid biology of Apicomplexa: perspectives for new drug targets, particularly for Toxoplasma gondii [J]. Trends in Parasitology, 2006, 22(1): 4147.
    111. Sun W.Y., Zhang K.T., Zhang X.Y., et al. Identification of differentially expressed genes in human lung squamous cell carcinoma using suppression subtractive hybridization. Cancer Letters, 2004, 212: 83-93.
    112. Suzuki Y., Joh K., Kwon O.C., Yang Q., et al. Remington J.S. MHC class I gene(s) in the D/L region but not the TNF-alpha gene determines development of Toxoplasmic encephalitis in mice [J]. The Journal of Immunology, 1994, 153: 4649-4654.
    113. Suzuki Y., Yang Q., Remington J.S. Genetic resistance against acute Toxoplasmosis depends on the strain of Toxoplasma gondii [J]. The Journal of Parasitology, 1995, 81: 1032-1034.
    114. Suzuki Y., Joh K., Orellana M.A., et al. A gene(s) within the H-2D region determines the development of Toxoplasmic encephalitis in mice [J]. Immunology, 1990, 74: 732-739.
    115. Wang Q., Wang Q.Q., Pan S.J., et al. Establishment of Nested PCR-RFLP for detecting Toxoplasma gondii in animal-derived food2007. Chinese Journal of Veterinary Parasitology, 15: 1-7 (In Chinese).
    116. Weiss L.M., Udem S.A., Salgo M., et al. Sensitive and specific detection of Toxoplasma DNA in an experimental murine model: use of Toxoplasma gondii-specific cDNA and the polymerase chain reaction [J]. Journal of Infectious Diseases, 1991, 163: 180-186.
    117. Weiss L.M., Kim K. Toxoplasma gondii: the model apicomplexan [J]. The International Journal for Parasitology, 2004, 34: 423-432.
    118. Williams D.M., Grumet F.C., Remington J.S. Genetic control of murine resistance to Toxoplasma gondii [J]. Infection and Immunity, 1978, 19: 416-420.
    119. Yardley V., Khan A.A., Martin M.B. In vivo activities of farnesyl pyrophosphate synthase inhibitors against Leishmania donovani and Toxoplasma gondii [J]. Antimicrobial Agents and Chemotherapy, 2002, 46: 929-931.
    120. Zhou P., Zhang H., Lin R.Q., et al. Genetic characterization of Toxoplasma gondii isolates from China [J]. Parasitology International, 2009, 58: 193-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700