中上扬子上元古界—中生界碎屑锆石年代学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们对大陆地壳演化过程的了解,在很大程度上依赖于出露地表的各类岩石形成时代的认识,而这方面的认识常常受到多种因素的限制。沉积岩中的碎屑锆石来自于其物源区出露的各种岩石中锆石的混合,因而提供了认识地质历史时期大陆地壳表层平均年龄组成、了解地壳生长与改造和恢复构造—古地理格局的极佳对象。本文对中扬子及邻区的新元古界南华系、志留系、泥盆系、三叠系和侏罗系典型沉积剖面进行了较系统的岩相学、地球化学和LA-ICPMS和SHRIMP碎屑锆石年代学研究,分析了这些沉积物及其中碎屑锆石的来源,并以此探讨了扬子地块的基底年龄组成和构造转折时期的古地理格局。文章取得的主要认识或发现的问题如下:
     1.各时期沉积岩中碎屑锆石形貌和阴极发光特征指示其绝大多数为岩浆成因,但锆石微量元素特征与典型花岗岩锆石有明显差异。不同位置、不同时代地层中的碎屑锆石大多数来自于岩浆岩:它们具有典型的振荡环带,轻稀土元素相对亏损,重稀土元素强烈富集,具有明显的Eu负异常和Ce正异常,Th/U比值一般大于0.3。所有的锆石具有一致的特征,因而稀土元素和Th/U比值都难以成为有效的沉积物源判别指标。另一方面,绝大多数碎屑锆石的轻稀土和总稀土含量分别为70 ppm和723 ppm,均明显低于前人提出的花岗岩中锆石的平均含量(分别为207 ppm和1800 ppm),而由于花岗岩是提供锆石的最主要源区,而在沉积和成岩过程中发生了轻/重稀土元素分馏的可能性不大,因此一些花岗岩中锆石的轻稀土过量可能不具有普遍意义,而本文的大量碎屑锆石微量元素数据更能代表地壳各种岩石中锆石的微量元素组成。
     2.通过最年轻的碎屑锆石限定地层的时代通常可获得具有实际意义的结果,提供的地层时代下限一般与实际情况相差在50Ma以内。鄂东南南华系莲沱组为787±13 Ma;鄂东南上志留统中最年轻的谐和锆石为427±5 Ma,与该套地层底界时代仅相差4 Ma,与生物地层资料一致;鄂北宜城中泥盆统云台观组石英砂岩中最年轻的谐和锆石年龄为411±7Ma,鄂东南崇阳五通组石英砂岩最年轻的谐和锆石为423±4 Ma,两者分别比其已知的沉积时代老30~40 Ma和50~70 Ma;对中生代砂岩中的最年轻的碎屑锆石年龄与其地层底界时代的对比显示,两者差距变化于2~50 Ma之间,总的来说比较一致:萍乐盆地上三叠统安源组最年轻的谐和锆石为253±7 Ma,与该组底界(221 Ma)相差32Ma;江汉盆地上三叠统鸡公山组216±2 Ma,与该组底界(~207Ma)相差~10Ma;沅麻盆地上三叠统小江口组砂岩最年轻的谐和锆石年龄为256±2 Ma,与该组底界(~207 Ma)相差~50Ma;四川盆地上三叠统须家河组两件样品中最年轻的谐和锆石分别为244±7 Ma和234±6 Ma,与该组底界(~210 Ma)分别相差~35Ma和25 Ma;下侏罗统桐竹园组最年轻的谐和锆石为207±2 Ma,与该组底界(~205 Ma)基本一致。以上对比表明,绝大多数的砂岩中最谐和的碎屑锆石年龄与地层底界的时代差距在50Ma以内,这种对于较年轻地层时代限定的意义在一定程度上可能受到制约,但对于缺少化石的前寒武系岩石来说是完全可以满意的。
     3.扬子地块内部鄂西—鄂东南地区的南华系碎屑锆石年龄分布可限定扬子地块基底形成的主要时期为~2500Ma、~2000Ma和~800Ma,并对各时期基底相对发育程度提供大致的制约;而扬子北缘和西缘元古界中广泛分布的1100~900Ma的碎屑锆石年龄与扬子地块周缘在中—新元古代时期的强烈岩浆活动和地块增生一致。元古界碎屑锆石年代学揭示了扬子地块的基底的演化过程,即由内部的新太古代—古元古代基底和周缘的中—新元古代增生地体组成,显示了逐渐向外生长扩展的特点。分述如下:(1)鄂东南通山和鄂西峡东地区的莲沱组中的碎屑锆石年龄集中分布于~2500Ma、~2000Ma和~800Ma,在更晚期的古城组和南沱组冰碛岩中也呈现类似的年龄分布模式,在一定的时间和空间范围内,碎屑锆石组成显示高度的一致性,说明了在该地区相当大的范围内出露地表的岩石主要为2500Ma、2000Ma和700~800Ma。莲沱组碎屑锆石年龄分布特征可以大致代表中扬子地块(甚至整个扬子地块)中浅层次基底的年龄组成及其相对比例,即新元古代物质占16%,古元古代物质占23%,新太古代物质占61%。尽管扬子地块中存在~2900Ma的结晶岩石以及更老的年龄信息,但其在元古界碎屑岩中的并未构成主要组分,根据统计学规律,其所占比例应小于4%。这一年龄组成模式与安徽铜陵地区的中生代石英闪长岩中继承锆石和扬子地块几个地区元古宙钾镁煌斑岩中锆石捕虏晶的年龄分布基本一致,表明扬子地块深部基底年龄组成与沉积岩中来自曾经出露于地表的基底年龄组成一样。(2)扬子北缘、西缘和邻区元古界中不同程度的出现1600~900Ma的锆石,特别是1100~900Ma的年龄信息广泛出现于秦岭—大别、胶东、华夏甚至昆仑山,与扬子地块内部元古界碎屑锆石年龄分布完全不一致,表明在这些沉积物源区中—新元古代岩石的普遍存在。这些中元古代—新元古代早期碎屑锆石与这些地区同时期岩浆岩的广泛分布一致,可能形成于1100~900Ma期间扬子周缘广泛发育的岩浆作用、地体增生过程以及相关的沉积作用。
     4.萍乐盆地、江汉盆地、四川盆地和松潘—甘孜盆地中的早中生代砂岩碎屑锆石年龄分布与扬子地块古生界和元古界沉积岩截然不同,而以广泛出现1900~1800Ma的锆石为特征,其物源最可能来自华夏地块北部的武夷地块中的古元古代基底岩石及其衍生物,结合岩相学资料推测当时的华南地理格局为东高西低,存在一条自东向西横贯华南大陆的大型河流体系,将来自华夏地块的碎屑物质向西搬运。各盆地早中生代砂岩碎屑锆石分布特征如下:(1)萍乐盆地上三叠统安源组砂岩和江汉盆地鸡公山组砂岩碎屑锆石年龄分布呈现非常突出的单峰式分布特征,2000~1700Ma年龄组占总数的分别占58%和56%,其中绝大多数的年龄又分布于1900~1800Ma之间。对扬子地块及其边缘地区的结晶基底和碎屑锆石年龄组成的综合分析表明,这些呈单峰分布的1900~1800Ma的锆石不可能来自扬子地块,包括扬子地块内部、秦岭—大别造山带以及江南造山带,因为一方面1900~1800Ma的基底年龄信息与广泛分布的新元古代岩石相比实在太少;另一方面在扬子地块内部或北缘地区早期的沉积岩中,无论是元古界还是古生界碎屑沉积物中都很少出现1900~1800Ma的年龄组,而这些锆石在三叠系碎屑岩中的突然出现并且同时广泛出现于扬子内部、边缘甚至外部的盆地中,这种现象只有用外来的物源进行解释才较合理;华北克拉通的各个地块均形成于新太古代前,直接来自华北克拉通或者再旋回的碎屑物质至少应该包含较多的太古宙年龄组分,因此也不可能是这些单峰分布的1900~1800Ma锆石的主要物源区;而华夏地块东北部浙闽一带(武夷地块)是唯一的年龄分布以2000~1700Ma年龄组占优势的地区,因而是其最可能的物源区,而对萍乐盆地上三叠统—侏罗系的沉积相和古水流分析表明,古水流一直指向W-SW,支持物源来自东侧华夏地块的推断。(2)四川盆地3件早中生代样品也给出了相似的年龄组成,但多了~2500Ma的组分,显示它们来自于和萍乐盆地安源组砂岩和江汉盆地鸡公山组相似的物源区,但有部分来自扬子地块的物质加入,这表明当时中、上扬子盆地可能是连通的,与古水流方向研究结果一致;在四川盆地以西的松潘—甘孜三叠系复理石中同样含有大量1900~1800Ma的碎屑锆石,由于在扬子地块找不到可以匹配的年龄,具有这些年龄的锆石以前均被解释为来自华北克拉通,但这些特征与扬子地块的中生界沉积岩的碎屑锆石年龄分布则可以很好地对比,表明它们很可能也来源于华夏地块。(3)这些点滴的资料暗示了早中生代时一条横贯华南大陆自东向西的大型河流体系的存在,它连接了江汉盆地、四川盆地和松潘—甘孜盆地,将来自华夏地块的碎屑物质源源不断地向西搬运。
     5.综合碎屑锆石年代学资料和已有研究成果揭示扬子地块和华夏地块可能都广泛存在古元古代的地质事件,但其性质存在明显差异:扬子地块以2100~2000Ma的岩浆事件和2000~1900Ma变质作用为特征,前者可能与碰撞前的洋—陆俯冲消减作用有关,而后者可能代表了扬子地块北缘的一次弧—陆碰撞造山事件;华夏地块存在1900~1800Ma的强烈岩浆事件,这次事件可能导致了华夏地块最早的大规模基底的形成。它们可能都属于Columbia超级大陆体系的一部分,但处于不同位置,因而具有不同的演化历史。
Our knowledge on the evolution of the continental crust relies heavily on the understandingof the formation age of various types of rocks that are exposed to the surface of the Earth. That,however, is frequently hampered by a variety of geological factors. Detrital zircons preserved inclastic rocks are a mixture of zircons derived from various source rocks, and thus provide us withan ideal way to study the average age composition of the continental crust, to understand thegrowth and modification of continents and to reconstruct paleogeography of the past Earth. Inthis paper we present results of petrographic, geochemical and LA-ICPMS detrital zircongeochronological study on representative profiles of the Nanhua, Silurian, Devonian, Triassic andJurassic systems in the Mid-Yangtze and sedimentary provenance analysis in an attempt to probeinto the age composition of the Yangtze basement and paleogeography during periods of tectonicregime transition.
     Detrital zircons from the Yangtze sediments are largely of magmatic origin, as indicated bytypical oscillatory zoning, depletion of light rare earth elements (REEs) and enrichment of heavyREEs and significant negative Eu anomaly and positive Ce anomaly, with Th/U ratios mostly>0.3. The uniform characters argue against trace element as a viable sedimentary provenanceindicator. Nevertheless, light REEs and total REE contents of these zircons average at 70 ppmand 723 ppm, respectively, and are surprisingly lower than those of zircons from granitoids (207ppm and 1800 ppm, respectively) reported in literature. If the REE composition of zircons fromgranitoids is universal, this difference requires that LREE/HREE fractionation have happenedduring deposition and diagenesis as granitoids are the major source of detrital zircons. However,this interpretation is not viable because zircons are highly stable mineral that are unlikely toundergo REE fractionation during sedimentary processes. Therefore, the previously reportedchemical characteristics of zircons from granitoids may not be representative, whereas detritalzircon REE composition presented in this work is a more reasonable estimation for crustal zirconcomposition.
     Proterozoic successions from different localities display distinct zircon age patterns. Thosefrom W Hubei-SE Hubei regions consistently show prominent peaks at~2500 Ma、~2000Ma and~800 Ma, this age pattern is interpreted to represent the shallow basement of theMid-Yangtze region in the context of paleogeographical background and geochronological dataof inherited zircon from the granitoids that formed in the Yangtze craton. Therefore, the YangtzeBlock is composed of 16%Neoproterozoic (~800 Ma) rocks, 23%Paleoproterozoic (~2000Ma)rocks and 61%Neoarchean (2500~2400 Ma) rocks. In contrast, Proterozoic successionsfrom the northern and western margin of the Yangtze Block are characterized by much youngerage populations, such as the 1600~900 Ma one, in particular the universal presence of 1100~900 Ma zircons. They also lack~2000 Ma and~2500 Ma age populations. These age patternsare consistent with the wide occurrence of coeval magmatic rocks and support the existence ofextensive oceanic subduction and arc-magmatism all around the Yangtze Block during the Late Mesoproterozoic-Early Neoproterozoic.
     The Upper Triassic sandstones from the Pingle and Jianghan basins show unimodal agepatterns with prominent peak at 1900~1800 Ma, which match that of the Cathaysia Block, thenorthern portion of the Cathaysia, and are distinct from that of the Yangtze Block. The NorthChina Craton is also not a viable source as it contains abundant Archean basement rocks.Derivation from the Cathaysia Block is most favorable, and is supported by paleocurrent studies.Besides the presence of~2500 Ma and Paleozoic age population, the Late Triassic-EarlyJurassic sandstones from the Sichuan Basin also contain abundant 1900~1800 Ma zircons,which are not available from either the interior of Yangtze Block or the Qinling-Dabie Orogen,and are close to those of the Triassic Pingle and Jianghan sediments, point to partial derivationfrom Cathaysia. In the Triassic flysch from the Songpan-Ganzi basin, West China, a prominent1900~1800 Ma age peak is also present, suggest that the sediments might also have beensourced by the Cathaysia Block. This requires a westward draining trans-continental fluvialsystem, which is more than 1000 km long. The abrupt occurrence of these Cathaysian zircons inthe interior, marginal and even the outside of the Yangtze Block imply that the Cathaysia blockhave been rapidly uplifted, probably as a result of the oblique collision starting from the east.Detritus shed from the Cathaysia Block was transported along the continental margin of theSouth China Block across the Jianghan and Sichuan basins and finally reached theSongpan-Ganzi remnant basin.
     In combination with published geochronological data in South China, detrital zircongeochronology reveals the universal presence of Paleoproterozoic events in both the Yangtze andthe Cathaysia blocks that are correlated with different tectonic setting. Paleoproterozoic events inthe Yangtze block are characterized by a 2100~2000Ma magmatic event and a 2000~1900Mametamorphic event, with the former probably associated with ocean-continent subduction and thelatter with subsequent arc-continent collision and orogeny in the northern margin of the Yangtzeblock. The Cathaysia block has underwent intensive magmatism during the period of 1900~1800Ma, which might have led to the formation of the oldest continental crust. Although both theYangtze and the Cathaysia blocks are likely part of the Columbia supercontinent, they havedifferent evolutionary history.
引文
1. Qiu, Y. M., Gao, S., Neal, J. M., et al., 2000. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28: 11-14.
    2.高山,Qiu,Y.,凌文黎,2001.崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究—扬子克拉通>3.2Ga陆壳物质的发现.中国科学:D辑,31(1):27-35.
    3.董树文,吴锡浩,吴珍汉,等,2000.论东亚大陆的构造翘变.地质论评,46(1):8-13.
    4.张旗,钱青,王二七,等,2001.燕山中晚期的中国东部高原:埃达克岩的启示.地质科学,36(2):248-255.
    5.陈斌,翟明国,邵济安,2002.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据.中国科学,D辑,32:896-907.
    6.葛小月,李献华,陈志刚,等,2002.中国东部燕山期高Sr低Y中酸性火成岩的地球化学特征及成因:对中国地壳厚度的制约.科学通报,47:474-480.
    7. Taylor, S. R., McLennan, S. M., 1985. The continental crust: Composition and evolution. Oxford: Blackwell. 312.
    8. Fedo, C. M., Eriksson, K. A., 1996. Stratigraphic framework of the ~3.0 Ga Buhwa Greenstone Belt: a unique stable-shelf succession in the Zimbabwe Archean Craton. Precambrian Research, 77(3): 161-178.
    9. Sircombe, K. N., Freeman, M. J,, 1999. Provenance of detrital zircons on the Western Australia coastline: implications for the geologic history of the Perth Basin and denudation of the Yilgarn Craton. Geology, 27(10): 879-882.
    10. Rainbird, R. H., McNicoll, V. J., Theriault, R. J., et al., 1997. Pan-continental river system draining Grenville Orogen recorded by U-Pb and Sm-Nd geochronology of Neoproterozoic quartzarenites and mudrocks, northwestern Canada. Journal of Geology, 105(1): 1-17.
    11. Yue, Y., Graham, S. A., Ritts, B. D., et al., 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics, 406(3-4): 165-178.
    12. Wilde, S. A., Valley, J. W., Peck, W. H., et al., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature, 409: 175-178.
    13. Barton, E. S., Compston, W., Williams, I. S., et al., 1989. Provenance ages for the Witwatersrand Supergroup and the Ventersdorp contact reef: constraints from ion microprobe U-Pb ages of detrital zircons. Economic Geology and the Bulletin of the Society of Economic Geologists, 84(7): 2012-2019.
    14. Sircombe, K. N., Bleeker, W., Stem, R. A., Archean provenance: a systematic detrital zircon investigation of supracrustals in the Slave Craton, Canada, in 4th International Archaean Symposium, Extended Abstracts, K.F. Cassidy, J. M. Dunphy, and M. J. van Kranendonk, Editors. 2001. p. 263-265.
    15. Krogh, T. E., Keppie, J. D., 1990. Age of detrital zircon and titanite in the Meguma Group, southern Nova Scotia, Canada: Clues to the origin of the Meguma Terrane. Tectonophysics, 177(1-3): 307-323.
    16. Soegaard, K., Eriksson, K. A., 1989. Origin of thick, first-cycle quartz arenite successions: Evidence from the 1.7 Ga Ortega Group, northern New Mexico. Precambrian Research, 43(1-2): 129-141.
    17. Aspler, L. B., Wisotzek, I. E., Chiarenzelli, J. R., et al., 2001. Paleoproterozoic intracratonic basin processes, from breakup of Kenorland to assembly of Laurentia: Hurwitz Basin, Nunavut, Canada. Sedimentary Geology, 141: 287-318.
    18. Nelson, D. R., 2001. An assessment of the determination of depositional ages for precambrian elastic sedimentary rocks by U-Pb dating ofdetrital zircons. Sedimentary Geology, 141-142: 37-60.
    19. Ross, G. M., Parrish, R. R., Winston, D., 1992. Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): implications for age of deposition and pre-Panthalassa plate reconstructions. Earth and Planetary Science Letters, 113(1-2): 57-76.
    20. Dalziel, I. W. D., 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology, 19(6): 598-601.
    21. Li, Z. X,, Zhang, L., Powell, C. M., 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410.
    22. Wingate, M. T. D., Pisarevsky, S. A., Evans David, A. D., 2002. Rodinia connection between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova, 14(2): 121-128.
    23. Young, G. M., 1978. Proterozoic (<1.7 b.y.) stratigraphy, paleocurrents and orogeny in North America Egyptian Journal of Geology, 22: 45-64.
    24. Rainbird, R. H., Heaman, L. M., Young, G. M., 1992. Sampling Laurentia: detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville Orogen. Geology, 20(4): 351-354.
    25. Goodge, J. W., Myrow, P., Williams, I. S., et al., 2002. Age and provenance of the Beardmore Group, Antarctica: constraints on Rodinia supercontinent breakup. Journal of Geology, 110(4): 393-406.
    26. Moores, E. M., 1991. Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology, 19(5): 425-428.
    27. Rainbird, R. H., Villeneuve, M. E., Cook, D. G., et al., 1996. Detrital zircon ages from two wells in the Northwest Territories: implications for the correlation and provenance of Proterozoic subsurface strata. Current Research Geological Survey of Canada: 29-38.
    28. Fedo, C. M., Farmer, G. L., Constraints on the evolution of the Cordilleran margin from detrital zircon analyses in the middle member Wood Canyon Formation, Marble Mountains, southeastern California, in Abstracts with Programs Geological Society of America. 2001. p. 223.
    29. Stewart, J. H., Gehrels, G. E., Barth, A. P., et al., 2001. Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the Western United States and northwestem Mexico. Geological Society of America Bulletin, 113(10): 1343-1356.
    30. Condie, K. C., Rosen, O. M., 1994. Laurentia-Siberia connection revisited. Geology (Boulder), 22(2): 168-170.
    31. Khudoley, A. K., Rainbird, R. H., Stem, R. A., et al., 2001. Sedimentary evolution of the Riphean-Vendian basin of southeastern Siberia. Precambrian Research, 111(1-4): 129-163.
    32. Rainbird, R. H., Stem, R. A., Khudoley, A. K., et al., 1998. U-Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth and Planetary Science Letters, 164(3-4): 409-420.
    33. Dickinson, W. R., Suczek, C. A, 1979. Plate tectonics and sandstone compositions. AAPG Bulletin, 63(12): 2164-2182.
    34. Kositcin, N., Krapez, B., 2004. Relationship between detrital zircon age-spectra and the tectonic evolution of the Late Archaean Witwatersrand Basin, South Africa. Precambrian Research, 129(1-2): 141-168.
    35.刘福来,许志琴,宋彪,2003.苏鲁地体超高压和退变质时代的厘定:来自片麻岩锆石微区SHRIMP U—Pb定年的证据.地质学报,77(2):229-237.
    36. Grimmer, J. C., Ratschbacher, L., McWilliams, M., et al., 2003. When did the ultra-high-pressure rocks reach the surface? A 207 Pb/206Pb zircon, 40Ar/39Ar white mica, Si-in-white mica, single-grain provenance study of Dabie Shan synorogenic foreland sediments. Chemical Geology, 197(1-4): 87-110.
    37. Li, R. W., Wan, Y. S., Cheng, Z. Y., et al., 2005. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth and Planetary Science Letters, 231(3-4): 279-294.
    38. Froude, D. O., Ireland, T. R., Kinny, P. D., et al., 1983. Ion microprobe identification of 4, 100-4, 200-Myr-old terrestrial zircons. Nature, 304: 616-618.
    39. Amelin, Y. V., 1998. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chemical Geology, 146(1-2): 25-38.
    40. Compston, W., Pidgeon, R. T., 1986. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321(6072): 766-769.
    41. Maas, R., Kinny, P. D., Williams, I. S., et al., 1992. The Earth's oldest known crust: A geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56(3): 1281-1300.
    42. Nelson, D. R., Robinson, B. W., Myers, J. S., 2000. Complex geological histories extending for >4.0 Ga deciphered from xenocryst zircon microstructures. Earth and Planetary Science Letters, 181 (1-2): 89-102.
    43. Valley, J. W., Peck, W. H., King, E. M., et al., 2002. A cool early Earth. Geology, 30(4): 351-354.
    44. Mojzsis, S. J., Harrison, T. M., Pidgeon, R. T., 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4, 300 Myr ago. Nature, 409(6817): 178-181.
    45.温春齐,多吉,范小平,等.2006.西藏普兰石英岩中发现41亿年碎屑锆石.地质学搬,80(9):1249-1261.
    46. Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of>3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342.
    47.吴福元,杨进辉,柳小明,等,2005.冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代.科学通报,50(18):1996-2003.
    48.柳小明,高山,凌文黎,等,2005.扬子克拉通35亿年碎屑锆石的发现及其地质意义.自然科学进展,15(11):1334-1337.
    49. Zhang, S.-B., Zheng, Y.-F., Wu, Y.-B., et al., 2006. Zircon isotope evidence for >3.5 Ga continental crust in the Yangtze craton of China, Precambrian Research, 146(1-2): 16-34.
    50. Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71.
    51.贾宝华,彭和求,等,2005.湘东北前寒武纪地质与成矿.北京:地质出版社.138.
    52.甘晓春,赵风清,金文山,等,1996.华南火成岩中捕获锆石的早元古代—太古宙U-Pb年龄信息.地球化学,25(2):112-120.
    53.唐晓珊,贾宝华,黄建中,等,2004.湖南早前寒武纪变质结晶基底的Sm-Nd同位素年龄.资源调查与环境,25:55~63.
    54.陈能松,刘嵘,孙敏,等,2006.北大别黄土岭长英质麻粒岩的原岩、变质作用及源区热事件年龄的锆石LA-ICPMS U-Pb测年约束.地球科学:中国地质大学学报,31(3):294-300.
    55.涂荫玖,杨晓勇,郑永飞,等,2001.皖东南黄片麻岩的锆石U—Pb年龄.岩石学报,17(1):157-160.
    56.张寿广,张宗清,宋彪,等,2004.东秦岭陡岭杂岩中存在新太古代物质组成—SHRIMP锆石U-Pb和Sm-Nd年代学证据.地质学报,78(6):800-806.
    57.陈岳龙,罗照华,赵俊香,等,2004.从锆石Shrimp年龄及岩石地球化学特征论四川冕宁康定杂岩的成因.中周科学:D辑,34(8):687-697.
    58.陈道公,夏群科,Etienne,D.,等。2002.大别山双河超高压榴辉岩中变质锆石:离子探针和微区结构研究.岩石学报,18(3):369-377.
    59. Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Widespread Archean basement beneath the Yangtze Craton. Geology, 34(6): 417-420.
    60.于津海,周新民,O'Reilly,S.Y.,等,2005.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报,50(16):1758-1767.
    61.彭松柏,金振民,刘云华,等,2006.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景.地球科学:中国地质大学学报,(1):110-120.
    62.覃小锋,潘元明,李江海,等,2006.桂东南云开地区变质杂岩锆石SHRIMP U-Pb年代学.地质通报,25(5):553-559.
    63. Ames, L., Zhou, G., Xiong, B., 1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 15(2): 472-489.
    64. Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151(3-4): 265-288.
    65.吴元保,陈道公.夏群科,等,2002.北大别黄土岭麻粒岩锆石U-Pb离子探针定年.岩石学报,18(3):378-382.
    66.吴元保,陈道公,夏群科,等,2003.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年.中国科学:D辑,33(1):20-28.
    67.夏群科,郑水飞,葛宁洁,等,2003.大别山北部黄土岭片麻岩的锆石U-Pb年龄和氧同位素组成:古老的原岩和多阶段历史.岩石学报,19(3):506-512.
    68.甘晓春,李惠民,孙大中,等,1993.闽北前寒武纪基底的地质年代学研究.Journal,12(Issue):17-32.
    69.李献华,王一先,赵振华,等,1998.闽浙古元古代斜长角闪岩的离子探针锆石U-Pb年代学.地球化学,27(4):327-334.
    70.胡雄健,1994.浙两南下元古界八都群的地质年代学.地球化学,23(增刊):18-24.
    71.胡雄健,许金坤。章朝旭,等,1993.浙西南19亿年花岗闪长岩的地质特征及发现意义.地质论评,39(6):557-563.
    72.陈江峰,郭新生,汤加富,等,1999.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学),35(6):649-658.
    73. Wan, Y., Liu, D., Xu, M,, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research, In Press, Corrected Proof.
    74. Wan, Y. S., Zhang, J. X., Yang, J. S., et al., 2006. Geochemistry of high-grade metamorphic rocks of the North Qaidam mountains and their geological significance. Journal of Asian Earth Sciences, 28(2-3): 174-184.
    75.于津海,O'Reilly,S.Y.,王丽娟,等,2007.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,52(1):11—18.
    76. Dalziel, I. W. D., 1992. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent: Reply. Geology, 20(2): 190-191.
    77. Li, W. X., Li, X. H., 2003. Adakitic granites within the NE Jiangxi ophiolites, South China: geochemical and Nd isotopic evidence. Precambrian Research, 122(1-4): 29-44.
    78.李献华,周国庆,1994.赣东北蛇绿岩的离子探针锆石U—Pb年龄及其构造意义.地球化学,23(2):125-131.
    79.邢凤鸣,陈江峰,1992.江南古陆东南缘晚元古代大陆增生史.地质学报,66(001):59-72.
    80.周新民、杨杰东,1989.安徽歙县伏川蛇绿岩套的Sm—Nd等时线年龄及其地质意义.科学通报,34(016):1243-1245.
    81.徐备,乔广生,1989.赣东北晚元古代蛇绿岩套的Sm—Nd同位素年龄及原始构造环境.南京大学学报(地球科学版),3:108-114.
    82.李江海,穆剑,1999.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约.地质科学,34(003):259-272.
    83.吴根耀,2000.华南的格林威尔造山带及其坍塌:在罗迪尼亚超大陆演化中的意义.大地构造与成矿学,24(002):112-123.
    84.章邦桐,凌洪飞,1990.浙江绍兴西裘双溪坞群细碧—角斑岩的Sm-Nd等时线年龄.南京大学学报(地球科学),2:9-14.
    85.沈渭洲,高剑峰,徐士进,等.2003.四川盐边冷水箐岩体的形成时代和地球化学特征.岩石学报,19(1):27-37.
    86.邓家瑞,张志平,1998.闽,浙.赣晚前寒武纪构造格局探讨.地质论评,44(006):561-567.
    87.徐步台,1994.浙西北前震旦纪火山岩地Nd、Sr同位素地球化学.浙江地质,10(2):45-51.
    88. Ye, M.f., Li, X.h., Li, W.x., et al., In Press. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Research.
    89.王孝磊,2006.江南造山带西段中-新元古代构造-岩浆演化.南京大学博士学位论文,23-30.
    90.钟玉芳,马昌前,佘振兵,等,2005.江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学.地球科学:中国地质大学学报,30(6):685-691.
    91. Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85-109.
    92.吴荣新,郑永飞,吴元保,2005.皖南新元古代花岗闪长岩体锆石U-Pb定年以及元素和氧同位素地球化学研究.岩石学报,21(3):587-606.
    93.沈渭洲,徐士进,李惠民,等,2003.四川石棉蛇绿岩的地球化学特征及其构造意义.地质论评,49(1):17-27.
    94. Li, Z.X., Li, X., Zhou, H., et al., 2002. Grenvillian continental collision in South China: new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30(2): 163-166.
    95. Ling, W.L., Gao, S., Zhang, B.R., et al., 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Research, 122(1-4): 111-140.
    96.王涛,张宗清,王晓霞,等,2005.秦岭造山带核部新元古代碰撞变形及其时代—强变形同碰撞花岗岩与弱变形脉体锆石Shrimp年龄限定.地质学报,79(2):220-231.
    97.杨经绥,吴才来,陈松永,等.2006.甘肃北山地区榴辉岩的变质年龄:来自锆石的U-Pb同位素定年证据.中国地质,33(2):317-325.
    98.林慈銮,孙勇,陈丹玲,等,2006.柴北缘鱼卡河花岗质片麻岩的地球化学特征和锆石LA-ICPMS定年.地球化学,35(5):489-505.
    99. Gehrels, G.E., Yin, A., Wang, X.F., 2003. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research, 108(B9): 2423.
    100. Wang, J., Li, Z.X., 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122(1-4): 141-158.
    101.徐士进,王汝成,沈渭洲,等,1996.松潘—甘孜造山带中晋宁期花岗岩的U—Pb和Rb—Sr同位素….中国科学D辑,26(001):52-58.
    102.张宏飞,骆庭川,张本仁,等,1994.扬子克拉通北缘新元古代岛弧花岗岩类成分极性及成因的地球化学探讨.地球科学——中田地质大学学报,19(2):219~225.
    103.李武显,李献华,2004.赣东北蛇绿岩中的埃达克型花岗岩—地球化学和Nd同位素证据.高校地质学报,10(2):199-208.
    104.凌洪飞,徐士进,沈渭洲,等,1998.格宗、东谷岩体Nd、Sr、Pb、O同位素特征及其与扬子板块边缘其它晋宁期花岗岩对比.岩石学报,14(3):269-277.
    105.李献华,1999.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,28(1):1-9.
    106.葛文春,李献华,李正祥,等,2001.龙胜地区镁铁质侵入体:年龄及其地质意义.地质科学,36(1):112-118.
    107.邱检生,周金城,张光辉,等,2002.桂北前寒武纪花岗岩类岩石的地球化学与成因.岩石矿物学杂志,21(3):197-208.
    108. Chen J.F., Foland K.A., Xing F.M., et al., 1991. Magmatism along the southerneast margin of the Yangtze block: Precambrian collision of the Yangtze and Cathysia blocks of China. Geology, 19:815-818.
    109.周新民,2003.对华南花岗岩研究的若干思考.高校地质学报,9(4):556-565.
    110.王德滋,沈渭洲,2003.中国东南部花岗岩成凶与地壳演化.地学前缘,10(3):209-220.
    111. Wang, X., Zhou, J., Qiu, J., et al., 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, south China: implications for the evolution of the western Jiangnan Orogen. Precambrian Research, 135(1-2): 79-103.
    112. Li, Z.X., Li, X.H., Kinny, P.D., et al., Ca. 825 Ma mafic to felsic igneous activities in South China: part of plume-induced rifting events that led to the breakup of Rodinia?, in Abstracts Geological Society of Australia. 1998. p. 42-44.
    113. Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173(3): 171-181.
    114. Li, X.H., Li, Z.X., Zhou, H.W., et al., 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 113(1-2): 135-154.
    115.唐红峰,李武显,周新民,1998.浙赣皖交界区新元古代火山—沉积岩系的比较—有关火山作用同期异相的探.地质学报,72(01):36—43.
    116.Li,W.X.,Li,X.H.,Li,Z.X.,2005.Neoproterozoic bimodal magmatism in the Cathaysia Block Of South China and its tectonic significance.Precambrian Research,136(1):51-66.
    117.李献华,李正祥,周汉文,等,2002.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,9(4):329-338.
    118, Zhou, M.F., Kennedy, A.K., Sun, M., et al., 2002. Neoproterozoic arc-related marie intrusions along the northern margin of South China: implications for the accretion of Rodinia. Journal of Geology, 110(5): 611-618.
    119. Zbou, M., Kennedy Allen, K., Sun, M., et al., 2002. Neoproterozoic arc-related marie intrusions along the northem margin of South China; implications for the accretion of Rodinia. Journal of Geology, 110(5): 611-618.
    120. Zhou, M.-F., Ma, Y., Yan, D.-P., et al., 2006. The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block.Precambrian Research, 144(1-2): 19-38.
    121.杨经绥,许志琴,裴先治,等,2002.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,76(4):484-283.
    122.刘宝珺.许效松,潘杏南,等,1993.中国南方古大陆沉积地壳演化与成矿.北京:科学出版社.
    123.袁正新,钟国芳,谢岩豹,等,1997.华南地区加里东期造山运动时空分布的新认识.华南地质与矿产,4:19-25.
    124.丁兴,周新民,孙涛,2005.华南陆壳基底的幕式生长—来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息.地质论评,(4):382-392.
    125.水涛,1995.华夏碰撞造山带.浙江地质,11(2):25—32.
    126.孙明志,徐克勤,1990.华南加里东花岗岩及其形成地质环境浅析.南京大学学报(地球科学),2(4):10-22.
    127.周新民,2003.对华南花岗岩研究的若干思考.高校地质学报,9(4):556-565.
    128.周名魁,王汝植,李志明,等,1993.中国南方奥陶—志留纪岩相古地理与成矿作用.北京:地质出版社.73.
    129.冯增昭,彭勇民,金振奎,等,2001.中国南方寒武纪和奥陶纪岩相古地理.北京:地质出版社.203.
    130.任纪舜主编,1999.中国及邻区大地构造图.北京:地质出版社.1-50.
    131.邓晋福,赵海岭,莫宣学,等,1996.中国大陆根—柱构造.北京:地质出版社.
    132.邓晋福,赵国春,赵海玲,等,2000.中国东部燕山期火成岩构造组合与造山深部过程.地质论评,46:41-48
    133. Rubatto, D., Gebauer, D., Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps, in Cathodoluminescence in Geosciences, M. Pagel, et al., Editors. 2000, Springer: Berlin. p. 373-400.
    134. Gehrels, G.E., Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and Northern California, in Paleozoic and Triassic paleogeography and tectonics of western Nevada and Northern California, M. Soreghan, J. and G.E. Gehrels, Editors. 2000. p. 1-17.
    135.尹福光,许效松,万方,等,2001.华南地区加里东期前陆盆地演化过程中的沉积响应.地球学报,(5):425-428.
    136.湖北省地质矿产局,1990.湖北省区域地质志.北京:地质出版社.14-207.
    137. Xu, X.S., O'Reilly, S.Y., Griffin, W.L., et al., 2005. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics.
    138.湖南省地质矿产局,1988.湖南省区域地质志.Vol.26-238.北京:地质出版社.
    139.广东省地质矿产局,1988.广东省区域地质志.北京地质出版社.60-93.
    140.程裕淇,1990.中国地质图(1:500万).北京:地质出版社.
    141.湖南省地质局,1965.湖南省株洲幅G-49-6区域地质报告.
    142.黄恩宇,1976.湖北省蒲圻幅H-49-24区域地质调查报告1:20万.湖北省蒲圻幅H-49-24区域地质调查报告1:20万.
    143.江西省地质矿产局,1984.江西省区域地质志.北京:地质出版社.
    144.四川省地质矿产局,1987.四川省区域地质志.北京:地质出版社.
    145.高红灿,郑荣才,柯光明,2005.川东北前陆盆地须家河组层序.岩相古地理特征.沉积与特提斯地质,25(3):38-45.
    146. Tyler, I.M., Page, R.W., Griffin, T.J., 1999. Depositional age and provenance of the Marboo Formation from SHRIMP U-Pb zircon geochronology: Implications for the early Palaeoproterozoic tectonic evolution of the Kimberley region, Western Australia- Precambrian Research, 95(3-4): 225-243.
    147.全国地层委员会,2002.中国区域年代地层(地质年代)表说明书.北京:地质出版社.
    148.王孝磊,周金城,王汝成,等,2006.江南造山带西段前寒武纪基底地层LA-ICP-MS碎屑锆石U-Pb年代学.Journal,(Issue).
    149. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622.
    150. Moeller, A., O'Brien, P.J., Kermedy, A., et al., Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland, SW Norway, in Geochronology; linking the isotopic record with petrology and textures. 2003. p. 65-81.
    151. Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123-138.
    152. Sun, S.S., McDough, W.F., Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes, in Magmatism in ocean Basins, A.D. Saunders, Editor. 1989, Geological Society Publication: London. p. 313-345.
    153. Hoskin, P.W.O., 1998. Minor and trace element analysis of natural zircon(ZrSiO4) by SIMS and laser ablation ICPMS: A consideration and comparison of two broadly competitive techniques. Journal of trace and microprobe techniques, 16(3): 301-326.
    154. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y, 1998. Cathodoluminescence and geochemical properties of kimberlitic and lamproitic zircons: application to diamond exploration, in 7th International Kimberlite Conference. Cape Town.
    155. Hoskin, P.W.O., Schaltegger, U., The Composition of Zircon and Igneous and Metamorphic Petrogenesis, in Reviews in Mineralogy and Geochemistry, J.M. Hanchar and P.W.O. Hoskin, Editors. 2003. p. 27-62.
    156. Hoskin, P.W.O., 2005. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648.
    157.吴元保,郑永飞,2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604.
    158. Hoskin, P.W.O., Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7): 627-630.
    159. Whitehouse, M.J., Kamber, B.S., 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth's earliest magmatic differentiation. Earth and Planetary Science Letters, 204(3-4): 333-346.
    160. Hidaka, H., Shimizu, H., Adachi, M., 2002. U-Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso Conglomerate, central Japan: evidence for an Archean orovenance. Chemical Geology. 187(3-4): 279-293.
    161.张金阳,马昌前,余振兵,等,2007.大别造山带北部铁佛寺早古生代同碰撞型花岗岩:地球化学和年代学证据.中国科学,D辑,37:1-9.
    162. Rowley, D.B., Xue, F., Tucker, R.D., et al., 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/ Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4): 191-203.
    163. Vavra, G., Schmid, R., Gebauer, D., 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134(4): 380-404.
    164. Wan, Y.S., Song, B., Liu, D,Y., et al., 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event Precambrian Research, 149(3-4): 249-271.
    165.万渝生,张巧大,宋天锐,2003.北京十三陵长城系常州沟组碎屑锆石Shrimp年龄:华北克拉通盖层物源区及最大沉积年龄的限定 科学通报,48(18):1970-1975.
    166.王自强,尹崇玉,高林志,等,2006.宜昌三斗坪地区南华系化学蚀变指数特征及南华系划分、对比的讨论.地质论评,52(5):577-585.
    167.柳小明,高山,第五春荣,等,2006.扬子克拉通前寒武纪地壳演化:来自碎屑锆石U-Pb年代学和Hf同位素的证据.2006年全国岩石学与地球动力学研讨会.南京.350.
    168. Chen, F.K., Guo, J.H., Jiang, L.L., et al., 2003. Provenance of the Beihuaiyang lower-grade metamorphic zone of the Dabie ultrahigh-pressure collisional orogen, China: evidence from zircon ages. Journal of Asian Earth Sciences, 22(4): 343-352.
    169.李向辉,陈福坤,李秋立,等,2005.胶东地区蓬莱群沉积岩碎屑锆石年龄和物源.地球学报,26(B09):123-124.
    170. Li, X.H., Chen, F.K., Guo, J.H., et al., 2007. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal, 29-45.
    171.王国灿,王青海,简平,等,2004.东昆仑前寒武纪基底变质岩系的锆石Shrimp年龄及其构造意义.地学前缘,11(4):481-490.
    172.陆松年,陈志宏,相振群,等,2006.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨.地学前缘,13(6):303-310.
    173. Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Research, 151 (1-2): 79-100.
    174.于津海,王丽娟,周新民,等,2006.粤东北基底变质岩的组成和形成时代.地球科学:中国地质大学学报,31:38-48.
    175.王鸿祯,楚旭春,刘本培,等,1985.中国古地理图集.北京:地质出版社.
    176.张成立,张国伟,刘爽,等,2004.东秦岭宽坪岩群变质火山碎屑岩及碎屑岩LA-ICPMS锆石U—Pb年龄及其地质意义.2004年岩石学与地球动力学研讨会.
    177.王海珊,1964.江西省宜春幅G-50-1地质图说明书,1:20万.
    178.湖南省地质局区测队,1973.湖南省衡阳幅G-49-11区域地质调查报告.
    179.湖南省地质局区测队,1977.湖南省邵阳幅G-49-10区域地质调查报告.
    180.舒良树,2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报,12(4):418-431.
    181.李伍平,王涛,王晓霞,2001.北秦岭灰池子花岗质复式岩体的源岩讨论—元素—同位素地球化学制约.地球科学:中国地质大学学报,26(3):269-278.
    182.马昌前,明厚利,杨坤光,2004.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报,20(3):393-402.
    183.裴先治,李勇,陆松年,等,2005.西秦岭天水地区关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义.地质通报,24(1):23-29.
    184.李惠民,相振群,李怀坤,等,2005.秦岭富水杂岩的变辉长岩中斜锆石与锆石U-Pb同位素年龄的差异及其地质意义.地球学报,26(B09):57-60.
    185.陈志宏,陆松年,李怀坤,等,2004.秦岭造山带富水中基性侵入杂岩的成岩时代—锆石U-Pb及全岩Sm、Nd同位素年代学新证据.地质通报,23(4):322-328.
    186.陆松年,李怀坤,陈志宏,2003.塔里木与扬子新元古代热-构造事件特征,序列和时代—扬子与塔里木连接(YZ-TAR)假设.地学前缘,10(4):321-326.
    187.史仁灯,杨经绥,吴才来,等,2004.柴达木北缘超高压变质带中的岛弧火山岩.地质学报,78(1):52-64
    188.陈强,陈能松,王勤燕,等,2006.秦岭造山带秦岭岩群独居石电子探针化学年龄:晚泛非期变质证据?.科学通报,51(21):2512-2516.
    189.李怀坤,陆松年,相振群,等,2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U—Pb年代学研究.地学前缘,13(6):311-321.
    190.张建新,万渝生,等,2001.柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代.岩石学报,17(3):453-458.
    191.张建新,万渝生,孟繁聪,等,2003.柴北缘央榴辉岩的片麻岩(片岩)地球化学、Sm-Nd和U-Pb同位素研究—深俯冲的前寒武纪变质基底?.岩石学报,19(3):443-451.
    192.薛怀民,董树文,刘晓春,2002.大别山东部花岗片麻岩的锆石U—Pb年龄.地质科学,37(2):165-173.
    193.谢智,高天山,陈江峰,2004.北大别片麻岩的多阶段演化:锆石U-Pb年代学证据.科学通报,49(16):1653-1659.
    194.赵子福,郑水飞,魏春生,等,2004.大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究.岩石学报,20(5):1151-1174.
    195.于津海,魏震洋,王丽娟,等.2006.华夏地块:一个由古老物质组成的年轻陆块.高校地质学报,12(4):440-447.
    196.刘玉平,叶霖,李朝阳,等,2006.滇东南发现新元古代岩浆岩:SHRIMP锆石U-Pb年代学和岩石地球化学证据.岩石学报,22(4):916-926.
    197.沈渭洲,凌洪飞,李武显,等,2000.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑),30(5):471-478.
    198.孔祥生,李东正,冯长根.等,1995.浙江省陈蔡地区前寒武纪地质.北京:地质出版社.136.
    199.金文山,孙大中,1997.华南大陆深部地壳结构及其演化.北京地质出版社.82—102.
    200.吴元保,陈道公,夏群科,等,2002.北大别黄土岭麻粒岩锆石U—Pb离子探针定年.岩石学报,18(3):378-382.
    201. Li, R.W., Li, S.Y., Jin, F.Q., et al., 2004. Provenance of Carboniferous sedimentary rocks in the northern margin of Dabie Mountains, central China and the tectonic significance: constraints from trace elements, mineral chemistry and SHRIMP dating of zircons. Sedimentary Geology, 166(3-4): 245-264.
    202.李宝芳,马文璞,2000.大别山北麓石炭纪盆地沉积和构造研究.地学前缘,7(3):153-167.
    203.沈传波.2006.川东北—大巴山地区中、新生代盆山体系与海相油气成藏作用.中国地质大学(武汉)博士学位论文.143.
    204. Bhatia, M.R., 1983. Plate tectonics and geochemical composition of samdstons. Journal of Geology, 91: 611—627.
    205. Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin. Contributions to Mineralogy and Petrology, 92:181-193.
    206. Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67:119~139.
    207. Nesbitt, H., Young, G., 1984. Prediction of some weathering trends ofplutonic and volcanic rocks based on thermodynamic and kinetic onsiderations. Geochimica et Cosmochimica Acta, (48): 1523-1534.
    208.张旗,简平,刘敦一,等,2003.宁芜火山岩的锆石Shrimp定年及其意义.中国科学:D辑,33(4):309-314.
    209. Zhang, H., Zheng, Y.F., Zhen, M.G., et al., 1990. Early Archean inheritance in zircon from Mesozoic Dalongshan granitoids in the Yangtze Foldbelt of Southeast China. Geochemical Journal, 24(3): 133-141.
    210. Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society of London, 149(Part 2): 171-184.
    211. Lan, C.Y., Chung, S.L., Lo, C.H., et al., 2001. First evidence for Archean continental crust in northern Vietnam and its implications for crustal and tectonic evolution in Southeast Asia. Geology, 29(3): 219-222.
    212. Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology, 216(3-4): 249-270.
    213.秦正水,雷世和,1996.武当群成岩年龄新资料兼讨论.中国区域地质,2:176-185.
    214.江来利,吴维平,刘贻灿,等,2003.大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义.岩石学报,19(3):497-505.
    215.王彦斌,刘敦一,曾普胜,等,2004.铜陵地区小铜官山石英闪长岩锆石SHRIMP的U-Pb年龄及其成因指示.岩石矿物学杂志,23(4):298-304.
    216. Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67.
    217. Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2004. Geochemistry of Meso- and Neoproterozoic mafic-ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochemical Journal, 38(2): 139-152.
    218. Condie, K.C., 2002. Continental growth during a 1.9-Ga superplume event. Journal of Geodynamics, 34(2): 249-264.
    219. Condie, K.C., 2000. Episodic continental growth models: afterthoughts and extensions. Tectonophysics, 322: 153-162.
    220. Wu, R.-X,, Zheng, Y.-F., Wu, Y,-B., et al,, 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Research, 146(3-4): 179-212.
    221.陈卫锋,陈培荣,周新民,等,2006.湖南阳明山岩体的La—ICP—MS锆石U—Pb定年及成因研究.地质学报,80(7):1065-1077.
    222.李献华,Matsumoto,M.,桂训唐,1989.华南汤湖花岗岩中25亿年太古代残留锆石的发现及其意义初探.科学通报,3:206-209.
    223.袁海华,张志兰,刘炜,等,1991.直接测定颗粒锆石207Pb/206Pb年龄的方法.矿物岩石,11(2):72-79.
    224.赵风清,赵文平,左义成,等,2006.崆岭杂岩中混合岩的锆石U—Pb年龄.地质调查与研究,29(2):81-85.
    225.谢国刚,李均辉,李武显,等,1997.庐山前震旦纪岩石中锆石U-Pb法定年与其地质意义.地质科学,32(1):110-115.
    226. Darby, B.J., Gehrels, G., 2006. Detrital zircon reference for the North China block Journal of Asian Earth Sciences, 26(6): 637-648.
    227. Zhao, G., 2001. Palaeoproterozoic assembly of the North China Craton. Geological Magazine, 138(1): 87-91.
    228. Zhao, G., Sun, M., Wilde, S.A., et al., 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 28(1): 3-19.
    229.赵风清,孙大中,1995.华夏地块前加里东期变质基底的特征以及深部地壳性质.地球学报:中国地质科学院院报,3:235-245.
    230.彭海波,1987.萍乡拗陷西段晚三叠—早白垩世沉积特征及其构造控制.中国科学院地质研究所博士学位论文,17-110.
    231.陈忠权,李文辉,等,2001.粤东北发现元古宙花岗岩.广东地质,16(4):16-21.
    232.李忠,李任伟,2002.大别山南麓中生代盆地充填记录对造山作用属性的反映.中国科学:D辑,32(006):469-478.
    233. Weislogel, A.L., Graham, S.A., Chang, E.Z., et al., 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34: 97-100.
    234. Nie, S., Yin, A., Rowley, D.B., et al., 1994. Exhumation of the Dabie Shan ultra-high-pressure rocks and accumulation of the Songpan-Ganzi fiysch sequence, central China. Geology, 22(11): 999-1002.
    235. Bruguier, O., Lancelot, J.R., Malavieille, J., 1997. U-Pb dating on single detrital zircon grains from the Triassic Songpan-Ganze flysch (Central China): provenance and tectonic correlations. Earth and Planetary Science Letters, 152(1-4): 217-231.
    236.古凤宝,姜常义,1996.东昆仑花岗岩岩石组合及其构造环境.青海地质,(2):13-24.
    237.马昌前,佘振兵,许聘,等,2004.桐柏-大别山南缘的志留纪A型花岗岩类:Shrimp锆石年代学和地球化学证据.中国科学:D辑,34(12):1100-1110.
    238. Zhou, D., Graham, S.A., Songpan-Ganzi complex of the Western Qinling Shah as a Triassic remnant ocean basin, in Tectonic Evolution of Asia, A. Yin and T.M. Harrison, Editors. 1995, Cambridge University Press: Cambridge. p. 218-299.
    239.杜利林,耿元生,杨崇辉,等,2005.扬子地台西缘盐边群玄武质岩石地球化学特征及SHRIMP锆石U-Pb年龄.地质学报,79(6):805-813.
    240.刘文中,徐士进,王汝成,等,2005.攀西麻粒岩锆石U—Pb年代学:新元古代扬子陆块西缘地质演化新证据.地质论评,51(4):470-476.
    241.何世平,王洪亮,陈隽璐,等,2007.北秦岭西段宽坪岩群斜长角闪岩锆石LA ICP-MS测年及其地质意义.地质学报,81(1):79-87.
    242.李靠社,2002.陕西宽坪岩群变基性熔岩锆石U—Pb年龄.陕西地质,20(1):72-78.
    243.张宗清,宋彪,唐索寒,等,2004.秦岭佛坪变质结晶岩系年龄和物质组成特征—SHRIMP锆英石U-Pb年代学和全岩Sm-Nd年代学数据.中国地质,31(2):161-168.
    244. Huang, J., Zheng, Y.-F., Zhao, Z.-F., et al., 2006. Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology, 229(4): 227-256.
    245. Bryant, D.L., Ayers, J.C., Gao, S., et al., 2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/ Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of America Bulletin, 116(5-6): 698-717.
    246. Maruyama, S., Tabata, H., Nutman, A.P., et al., 1998. SHRIMP U-Pb geochronology of ultrahigh-pressure metamorphic rocks of the Dabie Mountains, central China. Continental Dynamics, 3(1-2): 72-85.
    247. Ayers, J.C., Dunkle, S., Gao, S., et al., 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3-4): 315-331.
    248. Li, X., Zheng, Y., Wu, Y., et al., 2004. Low-T eciogite in the Dabie Terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443-470.
    249. Yang, J.S., Wooden, J.L., Wu, C.L., et al., 2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu Terrane, East China. Journal of Metamorphic Geology, 21(6): 551-560.
    250.唐俊,郑永飞,吴元保,等,2004.胶东地块西部变质岩锆石U-Pb定年和氧同位素研究.岩石学报,20(5):1063-1086.
    251.尹崇玉,刘敦一,高林志,等,2003.南华系底界与古城冰期的年龄:Shrimp Ⅱ定年证据.科学通报,48(16):1721-1725.
    252.彭头平,王岳军,范蔚茗,等,2006.澜沧江南段早中生代酸性火成岩SHRIMP锆石U—Pb定年及构造意义.中国科学:D辑,36(2):123-132.
    253. Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution. Precambrian Research, 145(1-2): 111-130.
    254.刘邦秀,刘春根,邱永泉,2001.江西南部鹤仔片麻状花岗岩类Pb-Pb同位素年龄及地质意义.火山地质与矿产,22(4):264-268.
    255. Li, X.H., 1997. Timing of the Cathaysia Block formation: constraints from SHRIMP U-Pb zircon geochronology. Episodes, 20(3): 188-192.
    256.黄圭成,陈龙清,杨世义,等,2001.两广云开隆起区存在中—古元古代基底的年代学证据.中国区域地质,20(2):194-199.
    257. Jian, P., Zhang, Z., Zhu, J., et al., 1997. Dabie basement older than 2800 Ma: 207Pb/206Pb zircon dating of Huangtuling Granulite, Dabie area, central China. Acta Geoscientia Sinica, 18: 65-67.
    258. Zhou, H., Li, X., Liu, Y., et al., 1999. Age of granulite from Huangtuling, Dabie Mountain: Pb-Pb dating of garnet by a stepwise dissolution technique. Chinese Science Bulletin, 44(10): 941-944.
    259.凌文黎,1996.扬子克拉通北缘元古宙基底同位素地质年代学和地壳增生历史:Ⅰ.后河群和西乡群.地球科学—中国地质大学学报,21(5):491—494.
    260.甘晓春,李惠民,孙大中,等,1995.浙西南新元古代花岗质岩石的年代.岩石矿物学杂志,14(1):1-8.
    261. Rogers, J.J.W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22.
    262. Condie, K.C., 1998. Episodic continental growth and supercontinents: a mantle avalanche connection?. Earth and Planetary Science Letters, 163: 97-108.
    263. Condie, K.C., Des Marais, D.J., Abbott, D., 2001. Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Research, 106(3-4): 239-260.
    264. Zhai, M.G., Precambrian tectonic evolution of the North China Craton, in Aspects of the tectonic evolution of China., J. Malpas, et al., Editors. 2004, Geological Society of London. London, United Kingdom. 2004.
    265. Zhai, M., Guo, J., Liu, W., 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. Journal of Asian Earth Sciences, 24(5): 547-561.
    266. Zhai, M.G., Liu, W.J., Palaeoproterozoic tectonic history of the North China Craton: a review, in Precambrian tectonics of East Asia and relevance to supercontintent evolution., X. Li Zheng, M. Cho, and X. Li, Editors. 2003, Elsevier. Amsterdam, International. 2003.
    267. Wilde, S.A., Zhao, G., Wang, K., et al., 2004. First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan; further evidence for Palaeoproterozoic amalgamation of North China Craton. Chinese Science Bulletin, 49(1): 83-90.
    268. Kroner, A., Wilde, S.A., Li, J.H., et al., 2005. Age and evolution of a late Arehean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700