百草枯、代森锰联合暴露对多巴胺能系统的损伤及饮食限制对其的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson’s disease,PD)是中老年人最常见的中枢神经系统退行性疾病之一,发病率仅次于阿尔茨海默病(Alzheimer’s disease,AD)。PD的病变特征是黑质——纹状体多巴胺(Dopamine,DA)能系统功能受损,但发病机制至今尚不明确。目前认为PD是由遗传、环境及老龄等因素共同作用的结果。百草枯(Paraquat,PQ)是一种除草剂,代森锰(Maneb,MB)是一种杀真菌剂,他们属于农业化学药品范围,在很多地理区域常联合使用。PQ、MB都具有一定的中脑DA能神经元损伤效应,但目前明确的观点是两者合用时能够产生更稳定的协同效应,且与人类散发性PD的多重环境危险因素暴露条件相近。因此,PQ和MB联合(PQMB)诱导DA能系统损伤是研究散发性PD的有效手段之一。
     饮食限制(Dietary restriction,DR)能够显著延长实验动物的生存期,诱导大鼠和小鼠脑内神经元产生良性应激反应,具有神经保护作用并能改善多种老年退行性疾病的症状[1]。是否DR对PQMB引起的DA能系统损伤也具有保护作用?另外,既往已有实验表明星形胶质细胞(Astrocyte,Ast)过度激活在PD进展中起到一定的负面影响。在PQMB诱导的PD环境模型中,中脑Ast反应如何?DR与胶质细胞活化的关系如何?目前报道很少。本实验拟采用DR对PQMB诱导的PD小鼠模型施加干预,旨在探讨DR在其中的保护作用,并观察Ast的标志物——胶质细胞原纤维酸性蛋白(Glial fibrillary acidic protein,GFAP)的表达与DR之间的关系,揭示DR可能的保护机制。实验内容如下:
     实验一
     目的:探讨PQMB对小鼠黑质DA能神经元及Ast活化程度的影响。方法:将C57BL/6J小鼠随机分为药物注射组(PQMB组)和生理盐水组(Saline组)。PQMB组按PQ 8 mg/kg,MB 24 mg/kg剂量行腹腔注射,共6周。Saline组腹腔注射0.9%无菌生理盐水,注射时间、剂量和方法同PQMB组。在PQMB首次注射前(Blank group)和末次注射后处死动物,行黑质抗酪氨酸羟化酶(Tyrosine hydroxylase,TH)、GFAP的免疫组化染色,观察PQMB暴露对中脑DA能神经元和Ast的影响。结果: PQMB组小鼠黑质致密部(Substantial nigra pars compact,SNpc)TH阳性神经元数目为116.50±7.44,显著少于Saline组的178.83±5.68(P < 0.001),以Blank组的神经元数目作为基数进行标准化(后同),PQMB组神经元百分比为70.2±4.4%,减少了近30%。细胞形态呈现突起细小,分支减少等不健康表现。PQMB组黑质Ast分布稀疏,胞体小、突起细而短,染色浅淡,Ast的GFAP免疫阳性产物表达少于Saline组。PQMB组相对灰度值(△Gray Value,△GV)为45.98±1.46,低于Saline组(P < 0.001)。结论: PQMB暴露对小鼠SNpc DA能神经元有轻度的损伤作用,模拟了人类PD的特征性病理学改变,同时对黑质区Ast也有一定的损伤作用。
     实验二
     目的: PQMB对小鼠黑质的持续损伤效应及DR对其的保护作用。方法:按照实验一的方法将注射过PQMB的动物随机分为PQMB并随意(adlibitum,AL)进食组(PQMB/AL),PQMB并饮食限制组(PQMB/DR)。以DR干预后第0周,3周、5周和8周为观察时间点,行抗TH、GFAP免疫组化染色,选取第5周的部分切片行TH/GFAP和Fos/TH的双重标记染色。结果: PQMB/AL组小鼠SNpc TH阳性神经元数目呈持续减少趋势,第8周时为82.64±5.10(相对数为49.8±3.0 %),明显少于0周的116.50±7.44(相对数为70.2±4.4 %)(P < 0.05)。而PQMB/DR组,DA能神经元数目缺失明显减缓,自DR干预5周起,PQMB/DR与PQMB/AL比较有显著差异(P < 0.05)。PQMB/AL组小鼠Ast的活化程度经过短暂降低后开始上升,第3周时恢复到对照组水平,之后呈升高趋势,第5、8周△GV分别为69.02±1.25和63.3±1.67,均高于同期对照组的51.66±0.92和53.04±1.12(P < 0.01),而在PQMB/DR组GFAP的表达明显受到抑制,第5、8周△GV分别为48.92±1.28和47.5±2.68,均低于同期PQMB/AL组数值(P < 0.01)。结论: PQMB PD模型小鼠能够模拟人类PD DA能神经元渐进性缺失的特点,而DR可减缓这种持续损伤进程,DR对Ast活性的抑制可能是实现这一保护作用的机制之一。
     实验三
     目的: DR对PQMB联合暴露引起的小鼠运动功能损伤的影响。方法:动物处理及分组同实验第一、二部分,在初次注射PQMB前(-6周)和末次注射后各时间点(0、3、5、8周)行自发活动实验和爬杆实验等行为学检测。结果:动物经PQMB注射后出现急性行为学改变,如运动减少、后肢张开、僵直、步态不稳、弓背、竖尾、竖毛等。后期出现动作迟缓、肢体僵硬、步态不稳等症状。0周时PQMB/AL组小鼠的水平运动距离(935.01±146.27 cm)小于Saline/AL组(1903.38±203.14 cm),两组比较差异显著(P < 0.01)。同期爬杆实验中的Tturn和TLA分别为2.59±0.21 s和13.85±0.69 s,较Saline/AL组的0.90±0.12 s和6.34±0.37 s显著延长,两组间差异显著(P < 0.01)。随着时间延长,PQMB/AL组小鼠行为学测试数据没有改善的趋势,而PQMB/DR组的水平运动距离和爬杆测试中的Tturn值在DR 5周后明显改善,TLA在DR 8周后改善明显,但行为学指标均未能达到对照组的水平。结论: PQMB可引起小鼠运动功能减退,而较长时间DR干预后小鼠的运动功能有好转的趋势。
Parkinson’s disease (PD), a profound movement disorder resulting from nigrostriatal dopaminergic (DA) system degeneration, has been linked to living in a rural environment, farming, and occupational exposure to agricultural chemicals, suggesting an environmental exposure basis for the disease. Exposure to paraquat (PQ) as a risk factor for sporadic PD has been associated with Parkinsonism. Other agricultural chemicals, including dithiocarbamate fungicides such as maneb (MB), are widely used in the same geographical regions and also impact dopamine systems, suggesting that mixtures may be more relevant to sporadic PD.
     The chemical constitution of PQ is extremely similar to MPP+, the active metabolite of MPTP which is known as a neurotoxin and their pathogenesis mechanism is also similar. Additionally, it was shown that MB is able to alter the biodisposition of DA and PQ, resulting in a prolonged exposure to reactive oxygen species (ROS) and reactive nitrogen species generating compounds. MB is capable of converting a non-toxic dose of PQ and other xenobiotics into a toxic dose through alterations in toxicokinetics.
     Epidemiological studies demonstrate long-term co-exposure to PQ and MB obviously increases the risk of PD onset. Experiments indicate that PQ selectively kills dopaminergic neurons in the substantia nigra and produces some of the syndrom of PD in laboratory animals, while, it is clear that MB enhances the PQ toxicity.
     Dietary restriction has been shown to have several health benefits including increased insulin sensitivity, stress resistance, reduced morbidity in some disease, and increased life span, while the mechanism remains unclear. Studies reveal it plays significantly therapeutical effects on Huntington disease (HD). Whether DR has the protective effects on the damage of dopaminergic neurons induced by systemic exposure to combination of PQ and MB? There is few related report yet. This study plans to use the combination of PQ and MB to set up the PD model mimicing the environmental toxin related PD, to demonstrate whether DR has the protective effects on nerve injury induced by PQ and MB, and to reveal the possible mechanism of its protective effects. Experimental contents as follows:
     Experiment 1
     Objective: To investigate the insult of PQ and MB on DA neurons in SNpc and the expression of glial fibrillary acidic protein (GFAP) in substantia nigra in C57BL/6J mice. Methods: Animals were divided into saline and PQMB group randomly. All were injected with either Vehicle (0.9%) or a combination of PQ (8 mg/kg) and MB (24 mg/kg) twice a week (Tuesday and Thursday, 9:00 am) for 6 weeks intraperitoneally. Before the first injection and after the last injection, the mice were perfused and the brains were removed and cut with the common practice. Expression of tyrosine hydroxylase (TH) and GFAP in substantial nigra were investigated utilizing the immunohistochemical methods. Results: The survival number of TH positive cells in SNpc in PQMB group was 116.50±7.44, which was less than that of the saline group (178.83±5.68) (P < 0.001). And the DA neurons did not appear as healthy as those in saline-treated animals, with fewer dendrites and less intense TH immunoreactivity within cells. The reactive level of Asts decreased in PQMB group and the△GV of GFAP was 45.98±1.46, which is lower than that of saline group (P < 0.001). Conclusion: The results suggested that combination of PQ and MB can induce loss of DA neurons in SNpc in mice to some extent, which is the characteristic change of pathology in PD patient. PQ and MB can also insult Ast in area of substantia nigra.
     Experiment 2
     Objective: To explore the persistent neurotoxic effects of combinded use of PQ and MB on mice, and to observe the protective function of DR to this damage. Methods: The PQ and MB combination injected mice were divided into two groups randomly; one group had access to food ad libitum (PQMB/AL), while another fed on alternate days only (PQMB/DR). Animals were tested on three different time-points, the follow0, 3, 5, 8 weeks, the mice were perfused and the brains were removed and cut with the common practice. Expression of TH in SNpc was investigated utilizing the immunohistochemical methods. Expression of GFAP was localized on frozen sections by immunohistochemical methods and BX51 microscopy, and GFAP content (△Gray Value,△GV) was evaluated by Leica Q570c True colour image analysis system. Results: immunohistochemical results showed that the number of TH positive neurons in SNpc reduced continuously and irreversably at the end of 8 weeks, the survival TH positive cells in SNpc in PQMB/AL group decreased sharply to 82.64±5.10 and was lower than that of 0 week in the samel group (P < 0.05). While, the dietary restriction seemed to be able to slow down this process, the statistical significance for the number of the survival neurons could be found between the PQMB/DR and PQMB/AL group from the 5th week (P < 0.05). The glial reactivity was different among the PQMB groups and Saline groups. The expression level of GFAP in PQMB/Al group reduced first, upregulated to the same level to the control group in 3 weeks, then△GV reached 69.02±1.25 and 63.3±1.67 in 5 and 8 weeks, which was much higher than that of control group (51.66±0.92 and 53.04±1.12), respectively (P < 0.01). While, DR reduced the expression level significantly and the△GV was 48.92±1.28 and 47.5±2.68 in 5 and 8 weeks respectively, which was lower than it of the PQMB/AL group simultaneously (P < 0.01). Conclusion: the nigrostriatal dopaminergic neurotoxicity of the PQ and MB combination was progressive and irreversible. DR can limit the TH neurons necrosis or apoptosis and relieve the reaction of Asts induced by PQ and MB in mice brain, which may be one of the conceivable mechanisms for the neuroprotection of DR.
     Experiment 3
     Objective: To explore the effects of DR on behavioral alterations in mice induced by combination of PQ and MB. Methods: Mice were divided into saline and PQMB group randomly. All were injected with either saline (0.9%) or a combination of PQ (8 mg/kg) and MB (24 mg/kg) twice a week (Tuesday and Thursday, 9:00 am) for 6 weeks intraperitoneally. On the last injection, the PQMB treated mice were divided into two groups randomly; one group had access to food ad libitum (PQMB/AL), while another fed on alternate days only (PQMB/DR). The saline treated mice were divided into two groups randomly too, Saline/AL and Saline/DR. The pole test and the open-field test were used to analyze the behavioral abnormalities. Animals were tested on five different time-points, time just before the first injection (-6 weeks), time after the last-injection (0 week) and the following 3, 5, 8 weeks. Results: Injection of PQMB caused behavioral syndromes including restlessness, straub tail, hindlimb abduction, tremor and instability of gait in C57BL/6J mice. Symptoms of Bradykinesia, akinesia and instability of gait appeared after several weeks of PQMB administration. In locomotor activity test, the horizontal movement distance in PQMB/AL group was 935.01±146.27 cm in 0 week, which was lower than that of saline group (1903.38±203.14 cm) (P < 0.01). In the pole test, Tturn (defined as the time taken until mice turned completely downward) and TLA (defined as the time until mice had climbed down to the floor) were 2.59±0.21 s and 13.85±0.69 s respectively in 0 week after the last injection of PQMB, which showed significantly prolongation compared with the saline group (0.90±0.12 s; 6.34±0.37 s) (P < 0.01). And motor deficits were persistent in PQMB group over time, while the horizontal movement distance in locomotor activity test increased (P < 0.05) and TLA in the pole test decreased after 8 weeks’dietary restriction (P < 0.01) and Tturn decreased significantly in PQMB/DR group from the 5th week after the last injection (P < 0.01). Conclusion: PQMB can induce behavioral alteration in C57BL/6J mice and motor deficits were persistent over time. Mid or long term of Dietary restriction may have protection effects on those motor deficits.
引文
1. Mattson MP, Duan W, Wan R, Guo Z. Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx JT - NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2004;1(1):111-6.
    2. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol JT - Lancet neurology 2006;5(6):525-35.
    3. Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease. N Engl J Med JT - The New England journal of medicine 2003;348(14):1356-64.
    4. Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB.et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet JT - Lancet 2005;365(9459):595-7.
    5. American Academy of Neurology Sums up Scientific Highlights from 57th Annual Meeting. American Academy of Neurology 57th Annual Meeting, 2005.
    6. Gorell JM, Peterson EL, Rybicki BA, Johnson CC. Multiple risk factors for Parkinson's disease. J Neurol Sci JT - Journal of the neurological sciences 2004;217(2):169-74.
    7. 邰文琳( 综述)[1], 李治纲( 审校)[2]. 帕金森病致病基因研究进展 . 中华医学研究杂志 2005;5(8):773-774.
    8. Yamamura Y, Hattori N, Matsumine H, Kuzuhara S, Mizuno Y. Autosomal recessive early-onset parkinsonism with diurnal fluctuation: clinicopathologic characteristics and molecular genetic identification. Brain Dev JT - Brain & development 2000;22 Suppl 1:S87-91.
    9. Yamamura Y, Kohriyama T, Kawakami H, Kaseda Y, Kuzuhara S, Nakamura S. [Autosomal recessive early-onset parkinsonism with diurnal fluctuation (AR-EPDF)--clinical characteristics]. Rinsho Shinkeigaku JT - Rinsho shinkeigaku = Clinical neurology 1996;36(8):944-50.
    10. Holthoff VA, Vieregge P, Kessler J, Pietrzyk U, Herholz K, Bonner J.et al. Discordant twins with Parkinson's disease: positron emission tomography and early signs of impaired cognitive circuits. Ann Neurol JT - Annals of neurology 1994;36(2):176-82.
    11. Ball J. Current advances in Parkinson's disease. Trends Neurosci JT - Trends in neurosciences 2001;24(7):367-9.
    12. Donaire V, Niso M, Moran JM, Garcia L, Gonzalez-Polo RA, Soler G.et al. Heat shock proteins protectboth MPP(+) and paraquat neurotoxicity. Brain Res Bull JT - Brain research bulletin 2005;67(6):509-14.
    13. 任今鹏, 任惠民, 蒋雨平. 百草枯致帕金森病模型小鼠脑纹状体多巴胺 D1、D2 受体变化. 中华老年医学杂志 2002;21(1):48-51.
    14. 丁正同[1], 蒋雨平[1], 任惠民[1], 吕元[2]. 小鼠慢性暴露于百草枯对其脑线粒体呼吸链复合酶活性的影响. 中国临床神经科学 2003;11(3):243-246.
    15. 杜芸兰[1], 刘振国[1], 陈生弟[1], 陆国强[1], 胡庆沈[2]. 百草枯诱导小鼠 α-突触核蛋白表达升高并聚集的实验研究. 中国神经免疫学和神经病学杂志 2005;12(1):14-17,33,i001.
    16. Bove J, Prou D, Perier C, Przedborski S. Toxin-induced models of Parkinson's disease. NeuroRx JT - NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics 2005;2(3):484-94.
    17. Li X, Yin J, Cheng CM, Sun JL, Li Z, Wu YL. Paraquat induces selective dopaminergic nigrostriatal degeneration in aging C57BL/6 mice. Chin Med J (Engl) JT - Chinese medical journal 2005;118(16):1357-61.
    18. McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA.et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis JT - Neurobiology of disease 2002;10(2):119-27.
    19. Corasaniti MT, Strongoli MC, Rotiroti D, Bagetta G, Nistico G. Paraquat: a useful tool for the in vivo study of mechanisms of neuronal cell death. Pharmacol Toxicol JT - Pharmacology & toxicology 1998;83(1):1-7.
    20. Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease?. Brain Res JT - Brain research 2000;873(2):225-34.
    21. Uversky VN. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res JT - Cell and tissue research 2004;318(1):225-41.
    22. 陈生弟 , 周海燕 . 帕金森病发病机制的研究进展 . 中国实用内科杂志:临床前沿版 2006;26(2):246-248.
    23. Biglan KM, Schwid S, Eberly S, Blindauer K, Fahn S, Goren T.et al. Rasagiline improves quality of life in patients with early Parkinson's disease. Mov Disord JT - Movement disorders : official journal ofthe Movement Disorder Society 2006;21(5):616-23.
    24. Clarke CE. Rasagiline for motor complications in Parkinson's disease. Lancet JT - Lancet 2005;365(9463):914-6.
    25. Stocchi F, Olanow CW. Continuous dopaminergic stimulation in early and advanced Parkinson's disease. Neurology JT - Neurology 2004;62(1 Suppl 1):S56-63.
    26. Eckles-Smith K, Clayton D, Bickford P, Browning MD. Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res JT - Brain research. Molecular brain research 2000;78(1-2):154-62.
    27. Major DE, Kesslak JP, Cotman CW, Finch CE, Day JR. Life-long dietary restriction attenuates age-related increases in hippocampal glial fibrillary acidic protein mRNA. Neurobiol Aging JT - Neurobiology of aging 1997;18(5):523-6.
    28. Payami H, Larsen K, Bernard S, Nutt J. Increased risk of Parkinson's disease in parents and siblings of patients. Ann Neurol JT - Annals of neurology 1994;36(4):659-61.
    29. Tang B, Xiong H, Sun P, Zhang Y, Wang D, Hu Z.et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet JT - Human molecular genetics 2006;15(11):1816-25.
    30. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A.et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science JT - Science (New York, N.Y.) 1997;276(5321):2045-7.
    31. 尹琳琳(综述), 朱兴族(审校). 帕金森病的发病机制及其药物治疗研究进展. 国外医学:药学分册 2006;33(2):93-96,110.
    32. Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology JT - Neurology 1998;50(5):1346-50.
    33. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. Mitochondrial complex I deficiency in Parkinson's disease. Lancet JT - Lancet 1989;1(8649):1269.
    34. Hattori N, Ikebe S, Tanaka M, Ozawa T, Mizuno Y. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson's disease. Adv Neurol JT - Advances in neurology 1993;60:292-6.
    35. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron JT - Neuron2003;39(6):889-909.
    36. Zhang P, Land W, Lee S, Juliani J, Lefman J, Smith SR.et al. Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J Struct Biol JT - Journal of structural biology 2005;150(2):144-53.
    37. 王岚, 孙圣刚. 帕金森病发病机制研究进展. 临床内科杂志 2006;23(6):365-368.
    38. Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol JT - Progress in neurobiology 2000;62(1):63-88.
    39. Petrucelli L, O'Farrell C, Lockhart PJ, Baptista M, Kehoe K, Vink L.et al. Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron JT - Neuron 2002;36(6):1007-19.
    40. Fiskum G, Starkov A, Polster BM, Chinopoulos C. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease. Ann N Y Acad Sci JT - Annals of the New York Academy of Sciences 2003;991:111-9.
    41. da Costa CA, Ancolio K, Checler F. Wild-type but not Parkinson's disease-related ala-53 --> Thr mutant alpha -synuclein protects neuronal cells from apoptotic stimuli. J Biol Chem JT - The Journal of biological chemistry 2000;275(31):24065-9.
    42. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R.et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol JT - Progress in neurobiology 2001;65(2):135-72.
    43. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson's disease. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America 2001;98(18):10433-8.
    44. Abramsky O, Litvin Y. Automimmune response to dopamine-receptor as a possible mechanism in the pathogenesis of Parkinson's disease and schizophrenia. Perspect Biol Med JT - Perspectives in biology and medicine 1978;22(1):104-14.
    45. Hao R, Ebadi M, Pfeiffer RF. Selegiline protects dopaminergic neurons in culture from toxic factor(s) present in the cerebrospinal fluid of patients with Parkinson's disease. Neurosci Lett JT - Neuroscience letters 1995;200(2):77-80.
    46. Defazio G, Dal Toso R, Benvegnu D, Minozzi MC, Cananzi AR, Leon A. Parkinsonian serum carriescomplement-dependent toxicity for rat mesencephalic dopaminergic neurons in culture. Brain Res JT - Brain research 1994;633(1-2):206-12.
    47. Le WD, Rowe DB, Jankovic J, Xie W, Appel SH. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol JT - Archives of neurology 1999;56(2):194-200.
    48. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson's disease. J Neural Transm Suppl JT - Journal of neural transmission. Supplementum 2000;(60):277-90.
    49. Le WD, Colom LV, Xie WJ, Smith RG, Alexianu M, Appel SH. Cell death induced by beta-amyloid 1-40 in MES 23.5 hybrid clone: the role of nitric oxide and NMDA-gated channel activation leading to apoptosis. Brain Res JT - Brain research 1995;686(1):49-60.
    50. Teismann P, Schulz JB. Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res JT - Cell and tissue research 2004;318(1):149-61.
    51. Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology JT - Immunopharmacology 1998;39(3):167-80.
    52. 王延华,冯忠堂, Eng-AL. 神经细胞培养理论技术. 第一版版:北京:科学出版社,2005. 1101 - 1101.
    53. Ciesielska A, Joniec I, Przybylkowski A, Gromadzka G, Kurkowska-Jastrzebska I, Czlonkowska A.et al. Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson's disease. Acta Neurobiol Exp (Wars) JT - Acta neurobiologiae experimentalis 2003;63(2):117-26.
    54. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK.et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci JT - Journal of molecular neuroscience : MN 2003;20(2):173-88.
    55. Van Wagoner NJ, Benveniste EN. Interleukin-6 expression and regulation in astrocytes. J Neuroimmunol JT - Journal of neuroimmunology 1999;100(1-2):124-39.
    56. Zaheer A, Mathur SN, Lim R. Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun JT - Biochemical and biophysical research communications 2002;294(2):238-44.
    57. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem JT - Journal of neurochemistry 2000;74(4):1605-12.
    58. Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem JT - Journal of neurochemistry 1995;64(4):1703-7.
    59. Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl JT - Journal of neural transmission. Supplementum 1997;50:55-66.
    60. Marti MJ, Saura J, Burke RE, Jackson-Lewis V, Jimenez A, Bonastre M.et al. Striatal 6-hydroxydopamine induces apoptosis of nigral neurons in the adult rat. Brain Res JT - Brain research 2002;958(1):185-91.
    61. He Y, Lee T, Leong SK. 6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra. Brain Res JT - Brain research 2000;858(1):163-6.
    62. Barneoud P, Parmentier S, Mazadier M, Miquet JM, Boireau A, Dubedat P.et al. Effects of complete and partial lesions of the dopaminergic mesotelencephalic system on skilled forelimb use in the rat. Neuroscience JT - Neuroscience 1995;67(4):837-48.
    63. Deumens R, Blokland A, Prickaerts J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol JT - Experimental neurology 2002;175(2):303-17.
    64. Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS. A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res JT - Brain research 1989;494(2):285-93.
    65. Ahn TB, Kim JM, Kwon KM, Lee SH, Jeon BS. Survival and migration of transplanted neural stem cell-derived dopamine cells in the brain of parkinsonian rat. Int J Neurosci JT - The International journal of neuroscience 2004;114(5):575-85.
    66. Yasuhara T, Shingo T, Muraoka K, Kobayashi K, Takeuchi A, Yano A.et al. Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson disease. J Neurosurg JT - Journal of neurosurgery 2005;102(1):80-9.
    67. Singh A, Kulkarni SK. Nitecapone and selegiline as effective adjuncts to L-DOPA in reserpine-induced catatonia in mice. Methods Find Exp Clin Pharmacol JT - Methods and findings in experimental and clinical pharmacology 2002;24(1):23-9. 66
    68. Gossel M, Schmidt WJ, Loscher W, Zajaczkowski W, Danysz W. Effect of coadministration of glutamate receptor antagonists and dopaminergic agonists on locomotion in monoamine-depleted rats. J Neural Transm Park Dis Dement Sect JT - Journal of neural transmission. Parkinson's disease and dementia section 1995;10(1):27-39.
    69. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science JT - Science (New York, N.Y.) 1983;219(4587):979-80.
    70. Calne DB, Langston JW, Martin WR, Stoessl AJ, Ruth TJ, Adam MJ.et al. Positron emission tomography after MPTP: observations relating to the cause of Parkinson's disease. Nature JT - Nature 1985;317(6034):246-8.
    71. Vingerhoets FJ, Snow BJ, Tetrud JW, Langston JW, Schulzer M, Calne DB. Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions. Ann Neurol JT - Annals of neurology 1994;36(5):765-70.
    72. Javitch JA, D'Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America 1985;82(7):2173-7.
    73. Ramsay RR, Singer TP. Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. J Biol Chem JT - The Journal of biological chemistry 1986;261(17):7585-7.
    74. Klaidman LK, Adams JD Jr, Leung AC, Kim SS, Cadenas E. Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic Biol Med JT - Free radical biology & medicine 1993;15(2):169-79.
    75. Liu Y, Roghani A, Edwards RH. Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America 1992;89(19):9074-8.
    76. 许耀刚[1,2], 庞晓峰[1], 汲娟娟[2]. MPTP 损伤的小鼠 PD 模型的制作与评价. 生物化学与生物物理进展 2006;33(10):1014-1018.
    77. Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, Imai Y.et al. Cerebral alterations in a MPTP-mouse model of Parkinson's disease--an immunocytochemical study. J Neural Transm JT -Journal of neural transmission (Vienna, Austria : 1996) 2003;110(10):1129-44.
    78. Sedelis M, Hofele K, Auburger GW, Morgan S, Huston JP, Schwarting RK. MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behav Genet JT - Behavior genetics 2000;30(3):171-82.
    79. Shimoji M, Zhang L, Mandir AS, Dawson VL, Dawson TM. Absence of inclusion body formation in the MPTP mouse model of Parkinson's disease. Brain Res Mol Brain Res JT - Brain research. Molecular brain research 2005;134(1):103-8.
    80. Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG. Pesticides and Parkinson's disease. Biomed Pharmacother JT - Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 1999;53(3):122-30.
    81. Matthews RT, Ferrante RJ, Klivenyi P, Yang L, Klein AM, Mueller G.et al. Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol JT - Experimental neurology 1999;157(1):142-9.
    82. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ. Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res JT - Brain research 1999;823(1-2):1-10.
    83. Shimizu K, Matsubara K, Ohtaki K, Shiono H. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res JT - Neuroscience research 2003;46(4):523-32.
    84. Takahashi RN, Rogerio R, Zanin M. Maneb enhances MPTP neurotoxicity in mice. Res Commun Chem Pathol Pharmacol JT - Research communications in chemical pathology and pharmacology 1989;66(1):167-70.
    85. Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease. J Neurosci JT - The Journal of neuroscience : the official journal of the Society for Neuroscience 2000;20(24):9207-14.
    86. Shimizu K, Matsubara K, Ohtaki K, Fujimaru S, Saito O, Shiono H. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats. Brain Res JT - Brain research 2003;976(2):243-52.
    87. Yang W, Sun AY. Paraquat-induced free radical reaction in mouse brain microsomes. Neurochem Res JT - Neurochemical research 1998;23(1):47-53.
    88. Schapira AH. Mitochondrial complex I deficiency in Parkinson's disease. Adv Neurol JT - Advances 68in neurology 1993;60:288-91.
    89. McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol JT - Toxicology and applied pharmacology 2004;201(1):21-31.
    90. Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci JT - The Journal of neuroscience : the official journal of the Society for Neuroscience 2003;23(8):3095-9.
    91. Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet JT - Clinical pharmacokinetics 2002;41(2):81-92.
    92. Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates. J Neurochem JT - Journal of neurochemistry 2003;85(4):1075-86.
    93. Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA. Modulation of antioxidant defense systems by the environmental pesticide maneb in dopaminergic cells. Neurotoxicology JT - Neurotoxicology 2005;26(1):63-75.
    94. Dinis-Oliveira RJ, Remiao F, Carmo H, Duarte JA, Navarro AS, Bastos ML.et al. Paraquat exposure as an etiological factor of Parkinson's disease. Neurotoxicology JT - Neurotoxicology 2006;27(6):1110-22.
    95. Li X, Matsumoto K, Murakami Y, Tezuka Y, Wu Y, Kadota S. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice. Pharmacol Biochem Behav JT - Pharmacology, biochemistry, and behavior 2005;82(2):345-52.
    96. Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW.et al. Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats. Neurobiol Dis JT - Neurobiology of disease 2005;20(2):360-71.
    97. Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA.et al. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci JT - The European journal of neuroscience 2003;18(3):589-600.
    98. Hadj Tahar A, Ekesbo A, Gregoire L, Bangassoro E, Svensson KA, Tedroff J.et al. Effects of acute and repeated treatment with a novel dopamine D2 receptor ligand on L-DOPA-induced dyskinesias inMPTP monkeys. Eur J Pharmacol JT - European journal of pharmacology 2001;412(3):247-54.
    99. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci JT - Nature neuroscience 2000;3(12):1301-6.
    100. Ferrante RJ, Schulz JB, Kowall NW, Beal MF. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res JT - Brain research 1997;753(1):157-62.
    101. Sherer TB, Kim JH, Betarbet R, Greenamyre JT. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol JT - Experimental neurology 2003;179(1):9-16.
    102. 赵喜林, 顾振纶, 秦正红. 长期低剂量皮下注射鱼藤酮制作大鼠帕金森病模型. 中国药理学通报 2005;21(10):1274-1277.
    103. Huang J, Liu H, Gu W, Yan Z, Xu Z, Yang Y.et al. A delivery strategy for rotenone microspheres in an animal model of Parkinson's disease. Biomaterials JT - Biomaterials 2006;27(6):937-46.
    104. 姚尧, 杜俊蓉. 帕金森病的药物治疗进展. 中国临床药理学与治疗学 2005;10(4):367-370.
    105. Hubble JP. Long-term studies of dopamine agonists. Neurology JT - Neurology 2002;58(4 Suppl 1):S42-50.
    106. Dingemanse J. Issues important for rational COMT inhibition. Neurology JT - Neurology 2000;55(11 Suppl 4):S24-7; discussion S28-32.
    107. Jankovic J. Levodopa strengths and weaknesses. Neurology JT - Neurology 2002;58(4 Suppl 1):S19-32.
    108. 陈海波. 帕金森病药物治疗目前存在的问题. 药物不良反应杂志 2005;7(3):161-164.
    109. 徐评议. 帕金森病的诊断和治疗进展. 新医学 2006;37(11):754-756.
    110. Chauhan NB, Siegel GJ, Lee JM. Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson's disease brain. J Chem Neuroanat JT - Journal of chemical neuroanatomy 2001;21(4):277-88.
    111. Dostrovsky JO, Lozano AM. Mechanisms of deep brain stimulation. Mov Disord JT - Movement disorders : official journal of the Movement Disorder Society 2002;17 Suppl 3:S63-8.
    112. Ashrafi K, Lin SS, Manchester JK, Gordon JI. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev JT - Genes & development 2000;14(15):1872-85.
    113. Lane MA. Nonhuman primate models in biogerontology. Exp Gerontol JT - Experimental gerontology 2000;35(5):533-41.
    114. Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med JT - The New England journal of medicine 1997;337(14):986-94.
    115. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev JT - Physiological reviews 2002;82(3):637-72.
    116. Velthuis-te Wierik EJ, van den Berg H, Schaafsma G, Hendriks HF, Brouwer A. Energy restriction, a useful intervention to retard human ageing? Results of a feasibility study. Eur J Clin Nutr JT - European journal of clinical nutrition 1994;48(2):138-48.
    117. Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein AS, Stone D.et al. The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience JT - Neuroscience 1999;89(3):687-99.
    118. Dubey A, Forster MJ, Lal H, Sohal RS. Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys JT - Archives of biochemistry and biophysics 1996;333(1):189-97.
    119. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet JT - Nature genetics 2000;25(3):294-7.
    120. McIlroy SP, Vahidassr MD, Savage DA, Patterson CC, Lawson JT, Passmore AP. Risk of Alzheimer's disease is associated with a very low-density lipoprotein receptor genotype in Northern Ireland. Am J Med Genet JT - American journal of medical genetics 1999;88(2):140-4.
    121. Guo Z, Ersoz A, Butterfield DA, Mattson MP. Beneficial effects of dietary restriction on cerebral cortical synaptic terminals: preservation of glucose and glutamate transport and mitochondrial function after exposure to amyloid beta-peptide, iron, and 3-nitropropionic acid. J Neurochem JT - Journal of neurochemistry 2000;75(1):314-20.
    122. Ku HH, Sohal RS. Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev JT - Mechanisms of ageing and development 1993;72(1):67-76.
    123. Yu ZF, Mattson MP. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J Neurosci Res JT - Journal of neuroscience research 1999;57(6):830-9.
    124. Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America 2003;100(5):2911-6.
    125. Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol JT - Experimental neurology 1999;155(2):302-14.
    126. Mattson MP. Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med JT - Annals of internal medicine 2003;139(5 Pt 2):441-4.
    127. Morato GS, Lemos T, Takahashi RN. Acute exposure to maneb alters some behavioral functions in the mouse. Neurotoxicol Teratol JT - Neurotoxicology and teratology 1989;11(5):421-5.
    128. 任今鹏[1,2], 任惠民[1], 蒋雨平[1]. 百草枯对小鼠黑质多巴胺能神经元的选择性损害. 中国临床神经科学 2005;13(3):230-235,238.
    129. Greenamyre JT, Sherer TB, Betarbet R, Panov AV. Complex I and Parkinson's disease. IUBMB Life JT - IUBMB life 2001;52(3-5):135-41.
    130. Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK. Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect JT - Environmental health perspectives 2005;113(9):1263-70.
    131. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB. Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. Ann Neurol JT - Annals of neurology 1989;26(4):507-14.
    132. 王坚, 蔡振林, 任惠民, 吕传真, 蒋雨平. 百草枯和氧桥氯甲桥萘对离体大鼠中脑多巴胺神经元的损害. 上海医科大学学报 2000;(04):260-263.
    133. Maharaj H, Sukhdev Maharaj D, Scheepers M, Mokokong R, Daya S. l-DOPA administration enhances 6-hydroxydopamine generation. Brain Res JT - Brain research 2005;1063(2):180-6.
    134. Melvin KG, Doan J, Pellis SM, Brown L, Whishaw IQ, Suchowersky O. Pallidal deep brain stimulation and L-dopa do not improve qualitative aspects of skilled reaching in Parkinson's disease. Behav Brain Res JT - Behavioural brain research 2005;160(1):188-94.
    135. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A.et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of theUnited States of America 2003;100(10):6216-20.
    136. Saitoh T, Niijima K, Mizuno Y. Long-term effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal dopamine content in young and mature mice. J Neurol Sci JT - Journal of the neurological sciences 1987;77(2-3):229-35.
    137. Date I, Felten DL, Felten SY. Long-term effect of MPTP in the mouse brain in relation to aging: neurochemical and immunocytochemical analysis. Brain Res JT - Brain research 1990;519(1-2):266-76.
    138. Tripanichkul W, Sripanichkulchai K, Finkelstein DI. Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. Brain Res JT - Brain research 2006;1084(1):28-37.
    139. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci JT - Molecular and cellular neurosciences 2000;16(6):724-39.
    140. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG.et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med JT - Nature medicine 1999;5(12):1403-9.
    141. Benveniste EN, Kwon J, Chung WJ, Sampson J, Pandya K, Tang LP. Differential modulation of astrocyte cytokine gene expression by TGF-beta. J Immunol JT - Journal of immunology (Baltimore, Md: 1950) 1994;153(11):5210-21.
    142. 刘道宽. 帕金森病治疗研究的现状. 临床神经病学杂志 2003;16(2):65-68.
    143. 陈生弟,刘振国. 帕金森病临床新技术:人民军医出版社,2002. 28.
    144. Mitra N, Mohanakumar KP, Ganguly DK. Dissociation of serotoninergic and dopaminergic components in acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Brain Res Bull JT - Brain research bulletin 1992;28(3):355-64.
    145. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y. A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol JT - Research communications in chemical pathology and pharmacology 1985;50(3):435-41.
    146. Matsuura K, Kabuto H, Makino H, Ogawa N. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods JT - Journal of neuroscience methods 1997;73(1):45-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700