下颌皮质骨颊向牵张成骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口腔颌面部先天性和获得性畸形与缺损,特别是下颌骨畸形在临床是比较常见的,多为发育畸形或肿瘤术后、外伤和炎症所引起,造成病员外貌畸形及功能障碍。对于这一类疾病,以往的治疗方法是采用正颌外科或植骨的手段,常常都需要另开辟手术区取骨,给患者带来痛苦。自1992年McCarthy最先成功利用口外牵引治疗颜面发育不足中下颌骨畸形以来,牵张成骨(Distraction Osteogenesis DO)已经逐渐成为矫治牙颌面发育不足及整复颌骨畸形的一个重要手段。它的最大优点是不需额外取骨来治疗某些颌骨缺损或畸形,减小了手术创伤。
     近年来,国内学者在近远中向及垂直向牵张进行了大量动物实验和临床研究,并已将牵张成骨用于治疗颌骨缺损、小颌畸形、阻塞性呼吸睡眠暂停综合征、腭裂等临床病例,疗效是确切的。本实验在复习文献的基础上,设计了犬下颌骨颊向牵张成骨机理的研究课题,旨在探讨下颌骨颊舌向牵张的可行性,为三维牵张提供一定的实验基础。
     本实验将12只犬下颌骨左侧单皮质骨方块截骨,安置半埋置型牵张器,延迟7天后,以2次/天,0.5mm/次的速度向颊侧牵引,延长7天后固定,右侧截骨后不牵引做为对照。分别在固定后第4天、第1、2、4、6、8周等时段取材,多聚甲醛固定。脱钙后行常规HE及改良Mallory's三色法染色,结果示左侧牵张区明显向颊侧隆起7mm,牵张区有大量新骨形成,至8周时钙化良好,x线显示与周围正常骨相连续。而对照组则
    
     第四军医大学硕士学位论文
    为正常骨折愈合过程。
     另取材不脱钙,行成骨组织扫描电镜观察和二线能谱分析钙磷元素
    含量变化。结果发现随牵张后固定时间的延长,各实验组钙、磷元素含
    量逐渐增高,新骨组织是向着正常骨组织质和量的方向进行矿化,钙磷元
    素参与了骨质矿化的全过程。
     牵张成骨中有很多生长因于参与,本实验观察了各个时段整合素el
    在新骨成骨细胞和破骨细胞上的表达,发现其在不同时段的表达水平不
    同。成骨细胞膜上整合素pl在牵张后第一周开始表达,第2-4周表达最
    强,第8周恢复正常水平。破骨细胞在第4天弱阳性表达,一周后明显抑
    制,第4周基本消失。初步论证其可能介导了牵张中机械应力信号转导。
    有关其与其它信号分子间的相互作用以及对其介导的细胞内应力信号
    (第二信号通道)传递有待作进一步的研究。
     总之,本课题的实验结果表明下颌骨颊舌向牵张成骨是可行的,其
    组织学变化与前后向、垂直向牵张相似。扫描电镜及能谱分析提示颊舌
    向牵张过程符合DO基本原则,固定至4-6周可考虑拆除牵张器,至8周时
    可行使正常生理功能。CI、P元素参与了牵张的整个过程。整合素el可
    能介导了机械应力转导,将机械信号转化为成骨信号。以上结果为临床
    颊向牵张治疗偏面小颌畸形提供了有效的实验依据。
The congenital or acquired deformity and defect, esp the deformity of mandible, is common in clinic. Most of them were caused by postoperation, trauma and inflammation, leading to dysfunction and physiognomy malformation. From 1992, McCarthy firstly introduced the use of extraoral distractor to treat deformity of mandible, distraction osteogenesis became an important method to correct oral and maxillofacial underdevelopment and formities of facial skeleton.
    Many animal experiments and clinic cases have been reported to investigate the medial-distal and vertical distraction in recent years. Such as dysostosis, defect of mandible,micrognathia,OSAS,palate cleft and so on.At the bottom of many reviews, this study designed bucco-lingular distraction of canine's mandible,in order to inquiry the possibility of bucco-lingular distraction.Also,the study might supply a experimental basis of three-dimensional distraction.
    In this experiment, a half-buried distractor has been used after the square osteotomy to unilateral cortical bone of twelve canine's bilateral mandible. The bone segment of left mandible was elongated buccally after a consolidation phase of 7 days. The distraction protocol consisted of a rate of 0.5mm twice daily for 7 days, while right bone segment didn't proceed
    
    
    distraction as control. The new osteogenesis were obtained and decalcified and paraffin slices were made respectively on the 4th day, the 1st, 2nd, 4th, 6th, 8th week after distraction complete. The slices were stained with HE and modified Mallory's. The results indicated that the left distraction segment obviously eminence buccally. The newly generated bone could be observed in distraction gap and it calcificate well at 8th week. The newly bone were continuous with circumference normal bone.
    Other specimens didn't decalcify and processed for SEM evaluation and Ca/P ratio assay.With elongation time of the consolidation,the contents of Ca, P bundle were found to be elevated in the experiment. The newly generated bone decalcified as well as nomal bone with the maturity of distracted callus. It also shows that Ca, P element took part in the whole procedure of bone generation.
    Many growth factors have been proved to produce a marked effect on
    DO. In this study, The expression of integrin β1 in bone tissue, especially in the membrane of osteoblast and osteoclast was detected differently. In
    osteoblasts, integrin β1 expressed increased on the 1 st week, maximum on the 2nd~4th week and normal on the 8th week. In osteoclast, inferior positive expression of integrin β1 was observed on the 4th day, decreased on the 1 st week and disappeared on the 4th week.The increased expression of integrin β 1 in osteoblast suggested that integrin β1 has a critical influence on distraction osteogenesis, and likely relates to the mechanical signal transduction. The interaction of the integrin and other signal molecul and the strain delivering from inter-cells should be studied further and deeply in future.
    In general, the experiments in this study showed that bucco-lingular
    
    
    distraction is feasible and coincident with the principle of DO by XRS. The Ca, P element had been proved to participate the whole distraction. Integrin β1 probably took part in transducting the mechanical signal to osteogenesis's signal.The results of the study might provide effective basis on treating HFM in clinic.
引文
1. McCarthy JG, Schreiber J, Karp N,et al. Lengthening of mandible by gradual distraction. Plast Reconstr Surg 1992;89(1): 1-8.
    2. Lanza RP, Langer R, Chick WL.Principle of tissue engineering. R.G.Landes Company and Academic Press,lnc,USA. 1997.
    3. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Ⅰ The influence of stability of fixation and soft-tissue preservation. Clin Orthop, 1989: (238): 249-281.
    4. Ilizarov GA. The tention-stess effect on the genesis and growth of tissues: Ⅱ The influence of the rate and frequence of distraction. Clin Orthop, 1989, (239): 263-285.
    5. Dwyer JSM, Owen GA, Kuiper JH, et al. Stiffness measurements to assess healing during leg lengthening: a preliminary report. J Bone Joint Surg, 1996;78B:286-289.
    6. Califano L,Cortese A,Aupi A,et al. Mandibular lengthening by external distraction: An experimental study in the rabbit. J Oral Maxillofac Surg, 1994, 52:1179-1183.
    7. Williams JK, Rowe NM, Mackool RJ,et al. Controlled multiplanar distraction of the mandible,Part Ⅱ :Laboratory studies of sabittal (anterorosterior) and vertical (superoinferior) movements. J Craniofac Surg, 1998,9(6):504-513.
    8. Milkbail L. Samcbukov, Jason B. Cope, Ricbard P.Harper, et al.Biomechanical considerations mandibular lengthening and widening gradual distraction using a computer model. J Oral Maxillofac, 1998, Surg 56(1):51-59.
    9. Samcbukov ML, Cope JB,Cberkasbin AM. The effect of sagittal orientation of the distractor on the biomechanics of mandibular lengthening. J Oral Maxillofac Surg, 1999, 57(10):1214-1222.
    10. Cope JB,Yamasbita J,Healy S,et al. Force level and strain patterns during bilateral mandibular osteodistraction. J Oral Maxillofac Surg,2000,58(2):171-178.
    11. Delloye C, Delefortrie G, Coultelier L, et al. Bone regeneration formation in cortical bone during distraction lengthening. Clin Orthop, 1990;250:34-42.
    12. Aronson J, Good B, Stewart C, et al. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop, 1990; 250:43-49.
    13.李继华,胡静,王大章等.不同牵张速率对下颌骨延长后新骨生成的影响。口腔医学纵横杂志,2001,17(4):262-264。
    14. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues:Ⅱ. The influence of the rate and frequency of distraction. Clin Orthop, 1989;239:263-285.
    15. Karp NS, McCarthy JG, Schreiber JS, et al. Membranous bone lengthening: a serial histological study. Ann Plast Surg, 1992;29(1):2-7.
    16. Karaharju-Suvanto T, Peltonen J,Ranta R,et al. The effect of gradual distraction of the mandible on the sheep temporomandibular joint. Int. J Oral Maxillofac Surg,
    
    1996, 25:152-156.
    17. McCormick SU,McCarthy JG,Grayson BH,et al. Effect of mandibular distraction on the temporomandibular joint: part Ⅰ, canine study. J Craniofac Surg, 1995, 6(5): 358-363.
    18. McCarthy JG. Distraction osteogenesis:The first ten years. AAOMS, 1998,9-10.
    19. Crayson BH,McCormick S,Santiago PE,et al. Vector of device placement and trajectory of mandibular distraction. J Craiofac Surg, 1997,8(60):473-482.
    20. Makarov MR,Harper RP,Cope JB,et al. Evaluation of inferior alveolar nerve function during distraction osteogenesis in the dog. J Oral Maxillofac Surg, 1998, 56: 1417-1423.
    21. Block MS, Daire J, Stover J, et al. Changes in the inferior alveolar nerve following mandibular lengthening in the alveolar nerve following mandibular lengthening in the dog using distraction osteogenesis. J Oral Maxillofac Surg 1993;51:652-660.
    22. Fisher E,Staffenberg DA.McCarthy JG,et al. Histopathologic and biochemical changes in the muscles affected by distraction osteogenesis of the mandible. Plast Reconstr Surg, 1997,99:366-371.
    23. Costantino PD,Shybut G,Friedman CD,et al. Segmental mandibular regeneration by distraction osteogenesis. An experimental study. Arch Otolarygol Head Neck Surg, 1990,116:535-545.
    24. Aronson J. Temporal and spatial increase in blood flow during distraction osteogenesis. Clin Orthop, 1994,(301): 124-131.
    25. Ilizarov GA: The tension-stress effect on the genesis and growth of tissues: part Ⅰ. The influence of stability of fixation and soft-tissue preservation. Clin Orthop 1989; 238:249-281.
    26. Delloye C,Delefortrie G,Coutelier L,et al. Bone regenerate formation in cortical bone during distraction lengthening:an experimental study. Clin Orthop, 1990, 250: 34-42.
    27. Shearer JR, Roach HI, Parsons SW. Histology of a lengthened human tibia; J Bone Jt Surg. 1992; 74(1):39-44.
    28.姚志兰,贲丽媛,姚志娟等。骨延长术后骨痂愈合过程的B超监测。中国超声医学杂志,1997,13(1):45-46。
    29. Cohen SR,Simms C,Burstein FD. Mandibular distraction osteogenesis in the treatment of upper airway obstruction in children with craniofacial diformities. Plast Reconatr Surg, 1998,101 (2):312-318.
    30.唐友盛、高益鸣、沈国芳,等:牵引成骨技术治疗小下颌畸形伴OSAS效果的初步报告。中华口腔医学杂志,2000;35(1):9-11。
    31. Guerrero CA. Br Mandibular widening by intraoral distraction osteogenesis J Oral Maxillofac Surg 1997 Dec;35(6):383-392.
    
    
    32.白丁,王大章。利用牵张成骨矫治严重后牙锁颌畸形的初步报告 华西口腔医学杂志 1998,16(1):47-49。
    33. Costantino PD,Shybut G,Friedman CD,et al. Segmental mandibular regeneration by distraction osteogenesis. An experimental study. Arch Otolarygol Head Neck Surg, 1990,116:535-545.
    34. Kessler P, Schultze-Mosgau S, Neukam FW,et al. Lengthening of the reconstructed mandible using extraoral distraction devices: report of five cases. Plast Reconstr Surg. 2003;111 (4): 1400-1404.
    35. Wang X, Lin Y, Yi B,et al. Mandibular functional reconstruction using internal distraction osteogenesis. Chin Med J (Engl) 2002; 115(12): 1863-1867.
    36. Chin M,Toth BA. Le FortⅢ advancement with gradual distraction using internal device. Plast Reconstr Surg, 1997;100(4):819-832.
    37.冯晔、唐友盛、沈国芳。牵引成骨术治疗青少年上颌骨严重发育不足的初步报告。中华口腔医学杂志,2000;35(6):434-436。
    38.邱蔚六主编。口腔颌面外科理论与实践,人民卫生出版社,1998,883。
    39. Carls ER,Jackson IT,Topf JS. Distraction osteogenesis for lengthening of the hard palate: Part Ⅰ .A possible new treatment concept for velopharyngeal incompetence. Experimental study in dogs. Plast Reconstr Surg, 1997,100:1635-1647.
    40. Figueroa AA,Polly JW,Ko EWC. Maxillary distraction for the management of cleft maxillary hypoplasia with a rigid external distraction system. Semin orthod. 1999, 5(1):46-51.
    41.柳春明,宋儒耀,宋业光。中华整形烧伤外科杂志,1999,15(3):192-195。
    42. Chin M,Toth BA. Distraction osteogenesis in maxillofacial surgery using internal devices:review of five cases. J Oral Maxillofac Surg. 1996;54(1):45-53.
    43. Sawaki Y, Ohkubo H,Yamamoto H,et al. Mandibular lengthening by intraoral distraction using osseointegrated implants. Int J Oral Maxillofac Implants. 1996; 11(2): 186-193.
    44. Liu Z, Luyten FP, Lammens J,et al. Molecular signaling in bone fracture healing and distraction osteogenesis. Histol Histopathol. 1999 ;14(2):587-595.
    45. Zellin G,Beck S,Hardwick R,et al. Opposite effects of recombinant human transforming growth factor-beta 1 on bone regeneration in vivo:effects of exclusion of periosteal cells by microporous membrane. Bone, 1998;22(6):613-620.
    46. Mehrara BJ, Rowe NM, Steinbrech DS,et al. Rat mandibular distraction osteogenesis: Ⅱ. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression. Plast Reconstr Surg 1999 ;103(2):536-47.
    47.胡静,李继华,唐正龙等。华西口腔医学杂志,2002;20(2):141-143。
    48. Rauch F, Lauzier D, Croteau S,et al. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone
    
    2000;27(3):453-459.
    49.陈刚,王大章,刘宝林等,牵张成骨腭裂整复术新骨组织骨形成蛋白的表达分布与X线影像特征。华西口腔医学杂志,2002;20(3):209-212。
    50. Tavakoli K, Yu Y, Shahidi S,et al. Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg 1999;52(6):434-439.
    51. Schumacher B, Albrechtsen J, Keller J,et al. Periosteal insulin-like growth factor Ⅰ and bone formation. Changes during tibial lengthening in rabbits. Acta Orthop Scand 1996 ;67(3):237-241.
    52. Okazaki H, Kurokawa T, Nakamura K,et al. Stimulation of bone formation by recombinant fibroblast growth factor-2 in callotasis bone lengthening of rabbits. Calcif Tissue Int 1999;64(6):542-546.
    53.金伯泉.细胞和分子免疫学[M].第二版.北京:科学出版社,2001:639。
    54. Rodan SB,Rodan GA. Integrin function in osteoclasts. J Endocrinol, 1997;154:47-56.
    55. Hughes DE,Salter DM,Dedhar S,et al. Integrin expression in human bone. J Bone Miner Res 1993;8(5):527-533.
    56. Bosman F. Integrins: cell adhesives and modulators of cell function. Histochem J, 1993 ;25(7):469-477.
    57. Yamate T,Mocharla H,Taguchi Y, et al. Osteopontin expression by osteoclast and osteoblast progenitors in the murine bone marrow:demonstration of its requirement for osteoclastogenesis and its increase after ovariectomy. Endocrinology, 1997; 138(7):3047-3055.
    58. Vaananen HK,Horton M.The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J Cell Sci, 1995;108(Pt 8):2729-2732.
    59. Takeuchi Y,Nakayama K,Matsumoto T.Differentiation and cell surface expression of transforming growth factor-beta receptors are regulated by interaction with matrix collagen in murine osteoblastic cells. J Biol Chem, 1996,271(7):3938-3944.
    60. Ganta DR,Mccarthy M,Gronowicz GA. Ascorbic acid alters collagen integrins in bone culture. Endocrinology, 1997; 138(9):3606-3612.
    61. Chenu C,Colucci S,Grano M,et al. Osteocalcin induces chemotaxis,secretion of matrix proteins,and calcium-mediated intracellular signaling in human osteoclastlike cells. J Cell Biol. 1994;127(4):1149-1158.
    62. Turner CH,Forwood MR. What role does the osteocyte network play in bone adaptation? Bone. 1995;16(3):283-285.
    63. Saito M,Saito S,Ngan PW, et al. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. Am J Orthod Dentofac Orthop. 1991;99(3):226-240.
    64. Rawlinson SC,Mohan S,Baylink DJ,et al. Exogenous prostacycline,but not prostaglandin E2,produces similar response in both G6PD and RNA production as
    
    mechanical loading,and increase IGF-Ⅱ release,in adult cancellous bone. Calcif Tissue Int. 1993;53(5):324-329.
    65. Tang D,Mehta D,Gunst S. J J.Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in trachealsmooth muscle. Am J Physiol. 1999,276(1pt1):c250-c258.
    66. Wang N,Buler JP,Ingber DE. Mechanotransduction across the cell surface and thought the cytoskeleton. Science. 1993, 260(5111): 1124~1127.
    67.张大同译。扫描电子显微技术与X射线显微分析。北京:科学技术出版社,1988,240,253,322-349。
    68. Snyder CC, Levine GA, Swanson HM,et al. Mandibular lengthening by gradual distraction.Preliminary report. Plast Reconstr Surg. 1973; 51 (5):506-508.
    69. Thurmuller P, Troulis MJ, Rosenberg A, Kaban LB. Changes in the condyle and disc in response to distraction osteogenesis of the minipig mandible. J Oral Maxillofac Surg .2002 ;60(11):1327-1333.
    70.袁林天,文玲英,蒋维中等。改良三色法对牙胚矿化过程的观察。实用口腔医学杂志,2001;17(2):124-126。
    71. Karp NS,Thorne CH,McCarthy JG,et al. Bone lengthening in the craniofacial skeleton. Ann Plast Surg. 1990;24(3):231-237.
    72. Postacchini F,Gumina S,Perugia D,et al. Early fracture callus in the diaphysis of human long bones.Histologic and ultrastuctural study. Clin Orthop. 1995; (301): 218-228.
    73.常晓峰,顾晓明。下颌骨牵引延长过程中器械的应用与拆除时机。实用口腔医学杂志,2000,16(4):294-297。
    74.刘发义.电子探针x射线微区分析技术在生物学中的应用.科学出版社,北京1990,25。
    75. Li G,Simpson AH,Kenwright J,et al. Effect of lengthening rate on angiogenesis during distraction osteogenesis. J Orthop Res. 1999;17(3):362-367.
    76.胡静,李继华,王大章等。山羊下颌牵张成骨的超微结构观察及新骨钙磷元素测定。华西口腔医学杂志.2001;19(1):9-10。
    77. Tang D,Mehta D,Gunst SJ. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol, 1999, 276(1pt1) :c250-c258.
    78. Smith EL,Gilligan C. Dose-response relationship between physical loading and mechanical competence of bone. Bone.1996;18(1 suppl):455-505.
    79. Pommerenke H, Schmidt C, Durr F,et al. The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res. 2002; 17(4): 603-611.
    80. Carvalho BS, Scott JE, Yen E. The effects of mechanical stimulation on the
    
    distribution of β1 integrin and expression ofβ1 integrin m RNA in TE- 85human osteosarcoma cells. Archs Oral Biol, 1995, 40 (3) :2 57-61.
    81. Saito T, Albelda SM,Brighton CT.Identification of integrin receptors on cultured human bone cells.J of Orthopaedic Reasearch, 1994,12(3):384-394.
    82. Dencan RL,Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 1995,57(5):344-358.
    83. Miyamoto S, Teramoto H, Coso O, et al. Integrins function: molecular hierarchies of cytoskeletal and signal molecules. J Cell Biol, 1995,131 (3):791-805.
    84. Ingber DE. Tensegrity:the architectural basis of cellular mechanotransduction. Annu Rev Physiol,1997,59:575-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700