纤维素热化学催化液化反应及微生物发酵综合利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是葡萄糖分子以β-1,4糖苷键结合而成的高分子化合物,一般聚合度为3,500-10,000。纤维素是植物细胞壁的主要成分,广泛存在于自然界,是地球上最丰富、最廉价的可再生资源,也是人类未来能源、食品和化工原料的主要来源。随着世界人口的激增,粮食和能源的短缺将日趋严重,可再生纤维素资源的开发利用已引起全世界的普遍关注。
     为了提高纤维类物质的综合利用效率,降低对环境的污染,维护生态平衡。对纤维类废弃物在浓硫酸/苯酚为催化剂、乙二醇为反应介质的热化学催化液化反应中,对其各反应物的用量比例、反应条件进行优化。并且对最优条件下的液化产物进行了初步的组分测定。实验结果表明,纤维类废弃物在浓硫酸/苯酚(浓硫酸占所加物质总量的质量分数为6%)的混合催化体系中,当温度为160℃,时间为70min时的液化效果最好。经凝胶色谱法测定表明,以浓硫酸/苯酚为催化剂、乙二醇为反应介质的反应体系,所得到液化产物的平均相对分子质量最低,M_w为806,M_n为799。经红外光谱(IR)检测结果表明,液化产物的游离羟基明显增多,其它的游离端基也是明显增加,这说明液化反应破坏了纤维素的晶格结构,而且部分水解了糖苷键。
     从堆肥、垃圾填埋场堆腐物和土壤中分离并经初筛、复筛得到分解纤维素能力较强的菌共7株,外加实验室已保藏的菌5株,共计12株菌株。分别对其进行了滤纸分解度、羧甲基纤维素(CMC)酶活和天然纤维素酶活的测定。筛选出对天然纤维素分解能力较强的菌株共5株,酶活力在60.00mg/mL·d以上。通过改变其培养基中天然纤维素的含量,发现随着培养基中纤维素含量的减少,酶活力也随之降低。
     进而利用这些高酶活菌株对液化产物进行利用研究。利用气质联用仪和红外光谱仪对液化产物进行了分析。结果表明,液化产物中出现甲基和亚甲基等基团的振动,并存在麦草纤维素的单体葡萄糖的衍生物,说明液化反应破坏了纤维类废弃物的晶格结构。从而打破了生物利用的禁锢,容易被微生物利用;不同菌株对于液化产物的利用方式不同,利用液化产物进行混合菌株发酵培养,真蛋白含量可达到30.74%;混合菌株利用液化产物的酒精发酵,酒精含量可达到19.0%(V/V)。
     纤维类废弃物的热化学液化反应过程中,产生了一类低沸点的气态混合物。经GC-MS检测,结果显示气态混合物为一类有机酸的混合物和苯酚-硫酸形成的化合物。气态混合物作为一种微生物培养基的添加剂,用来培养球形红假单胞菌(Rhodopseudomonas sphaeroides)和沼泽红假单胞菌(Rhodopseudomonas palustris)。对细胞浓度(OD_(660nm)值)和气态混合物的残留成分测定,结果表明添加了气态混合物的光合细菌浓度明显高于未添加的,而且培养基中的气态混合物经培养一周后明显减少。实验结果表明,气态混合物能够促进光合细菌的生长,菌体蛋白含量明显增加。
Cellulose is macromolecular compound made by more glucose molecules linked through -1,4 indican bond, including 3,500-10,000. It, one of chief components of plant cell wall, lies in the earth abroad. However, cellulose is a most important recycled resources, more abundant and cheaper. With the population increasingly, it is becoming more and more indispensable to energy sources, foodstuff and raw material of industry in future. It's time to be more attention to cellulose.
    In order to enhance the efficiency of usage of lignocellulosic wastes and protect the balance of ecosystem, the liquefaction of lignocellulosic wastes was studied in this paper. Lignocellulosic wastes and other chemicals were put into the reaction container and then liquefied. The effects of catalysts, solvents, reaction time and temperature on the liquefaction were investigated. The molecular weight distributions of liquefaction products were determined by GPC. In most cases, Low residue content cannot be achieved by single catalyst. However the binary catalysts system favors low residue content. It was found that the residue content were remained at a low level with ethylene glycol as the reaction media and 6%(by mass)of sulfuric acid as the catalyst in the presence of phenol. The contents of lipophilic products were investigated. The minimum residue content was found to be 8.8% and the MW and M of liquefaction products were 806 and 799 respectively. As a result, 1 ipophilic products have the highest yield when the reaction time was 70min. The identification of IR spectrometry showed that there are more dissociated hydroxy (HO-) and end-groups in the liquefaction products than in the plant cellulose. As a result, the crystal structure was destroyed in the thermochemical liquefaction.
    There are twelve bacteria, conserved five in our laboratory and screened seven through dunghill, putrid garbage or soil. 1 examined decomposition rate of filter paper, CMC enzyme and crude cellulose enzyme of bacteria. Five bacteria, 60.00mg/mL d upwards, were selected. The results show that enzyme is fading away with cellulose content decreasing in the culture media.
    The liquefaction products were analyzed by applying any analysis instruments including Infrared spectrum (IR) and GC-MS. The results showed that the structure of wheat straw was destroyed in liquefaction, with producing some ramification of glucose Some screened strains can decompose and use the liquefaction products. As a result of destroying crystal of lignocellulosic wastes in the liquefaction, the screened strains can produce pure protein by using liquefaction products, and its yield is 30.74%; the mixed strains can turn the liquefaction products into alcohol, and its highest content is 19.0%(V/V).
    In the liquefaction of lignocellulosic wastes, there produced gaseous substances as a byproduct. By using GC-MS, the result showed that the gaseous substances are the mixture of organic acids and a compound as a byproduct in the reaction of vitriol oil and phenol. We cultured photosynthesis bacteria (PSB), using trfe mixed substances as an additive of culture medium. Through the analysis of residue of the mixed substances in the culture media and OD660nm of cell concentration, it revealed that cell concentration became higher, and residue content of the mixed substances was lower in a week. We can draw a conclusion that the mixture can promote PSB reproduction and protein content.
引文
[1] Douigas C. Elliott, Douglas C. Elliott, Gary F. Schiefelbein. Liquid hydro-carbon fuels from biomass [J]. Amer. Chem. Solo, Div. Fuel Chem. Preprints,1989,34(4):1160-1166.
    [2] Tatsuhiko Yamada, Himkuni Ono. Rapid liquefaction of lignocellulosic waste in the presence of cyclic carbonates for preparing levulinic acid and polyurethane resins [J]. J Appl Polym Sci, 1994, 52(11): 1629-1636.
    [3] 杨艳,卢滇楠,李春,曹竹安.面向21世纪的生物能源[J].化工进展,2002,21(5):299-302.
    [4] 史央,蒋爱芹,藏传超,陆玲.秸秆降解的微生物学机理研究及应用进展[J].微生物学杂志,2002,22(1):47-50.
    [5] 陈坚.环境生物技术[M],高等教育出版社,1999.
    [6] 张继泉,孙玉英,关凤梅等。玉米秸秆稀硫酸预处理条件的初步研究[J].纤维素科学与技术,2002,10(2):32-36
    [7] The proceed of The Ninth Cellulose Conference, J. Appl Polym. Sci.. Appl. Polym. Symposium,1983,37
    [8] R.H. Marchessault, The Tenth Cellulose Conference, Abstracts and Program (Plenary Lecture), May 29-June 2, 1988, p.16
    [9] 1982.
    [10] Das Papier, 1979,P533; 1980,P549; 1981,P545; 1982,P509; 1983, P565; 1984,P569; 1986,P589; 1988, P651.
    [11] 纤维学会志,Celucon,88,Japan(特巢),1988,44(4)
    [12] The Thirty-first International Polymer Conference, Perprints, Microsuymposium Ⅲ-Nature polymers, 前民主德国,1988, p188-246
    [13] T.P. Nevell and S.H. Zeronian, Cellulose Chemistry and Its Application, 1985.
    [14] 潘福池,刘仁庆等,纸加工技术,上册,轻工业出版社,北京,1991,P107-238
    [15] APPELL H R, FUYC, FRIEDMAN S, et al. Converting organic wastes to oil. US Bureau of Mines. Reports of investigation 7560,1971.
    [16] APPELL H R,FU Y C,ILLIG E G,et al.Conversion of cellulosic wastes to oil.US Bureau of Mines. Reports of investigation 80137560,1975.
    [17] MILLER IJ,FELLOWS S K.Liquefaction of biomass as a source of fuels or hemicals[J]. Nature, 1981, 289(5796):398—399
    [18] MILLER IJ,FELLOWS S K.Catalytic effects during cellulose liquefaction [J]. Fuel,1985, 64(9): 1246-1250
    [19] YOSHIOKA M,YAO Y G, SHIRAISHI N.Liquefaction of wood.In:Hon D N-S ed.Chemical Modification of Lignocellulosic Materials.New York:Marcel Dekker, 1996,185—196
    [20] LIN L Z, YOSHIOKA M,YAO Y G,et al.Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properites of the liquefied wood[J]. J Appl Polym Sci, 1994,52(11): 1629—1636
    [21] MALDAS D,SHIRAISHI N. Liquefaction of wood in the presence of phenol using sodium hydroxide
    
    as a catalyst[J].Biomass Bioenergy, 1997,12(4):273—279
    [22] VUORI A,NIEMEL N.Liquefaction of kraft lignin 2.Reaction with a homogeneous lewis acid catalyst under mild temperature conditions[J].Holzforschung,1988,42(5):327—334 "
    [23] BESTUE-LABAZUY N,SOYER N,BRUNEAU C.Wood liquefaction with hydrogen or helium in the presence of iron additives[J].Can J chem Eng, 1985,63:634-638.
    [24] EAGER R L, MATHEWS J F, PEPPER J M.Liquefaction of aspen poplar wood[J].Can J Chem Eng, 1985,60:289—294.
    [25] YAMADA T, ONO H.Rapid liquefaction of lignocellulosic waste by using ethylene carbonate[J].Bioresource Technol 1999,70: 61—67
    [26] YAO Y G, YOSHIOKA M,SHIRAISHI N.Soluble properities of liquefied biomass prepared in organic solvents Ⅰ.The soluble behavior of liquefied biomass in various diluents [J]. Mokuzai Gakkalshi, 1994,40:176—184
    [27] YAMADA T, ONO H,OHARA S,et al.Characterization of the products resulting from direct liquefaction of cellulose Ⅰ. identification of intemediates and relevant mechanism in directphenol liquefacion of cellulose in the presence of water[J]. Mokuzai Gakkaishi, 1996,42:1098—1104
    [28] DEMIRBAS A. Mechanism of liquefaction and pyrolysis reactions of biomass[J]. Energy Conversion Management, 2000,41:633—646
    [29] LIN L Z, YAO Y G,SHIRAISHI N.Liquefaction mechanism of β-o-4 lignin model compound in the presence of phenol under acid catalysts part 1.identification of the reaction products [J]. Holzforschung 2001,55:617—624
    [30] 张惠芬,樊建,束嘉秀等.硫酸—蔑酮分光光度法测定SPS的方法研究[J].昆明理工大学学报,2002,27,(3)74-83.
    [31] 张启先。纤维素和纤维素酶,微生物学通报,1976,3(2):31-34
    [32] P Christian. The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus. Enzyme Microb, Technol.,1993,15(2):90-99
    [33] Cellulase, http://www.worthington-biochem.com/manual/C/CEL.html.)
    [34] John R. Whitaker. Principles of Enzymology for the Food Sciences (Second Edition).Marcel Dekker, Inc. New York. Basel. HongKong, 1994,415-416
    [35] Teeri T. et al., Biotechnology of filamentous fungi, 1992,417-455
    [36] Abuja P.M., I. PiLz, M. Claeyssens, P. Tomme, Biochem. Biophys. Res. Commun, 1998, 156:180-185
    [37] Claeyssens M., P.Tomme, Biochemistry, Genetics, Physiology and Application, C.P.Kubicek, et al., eds, London: The Royal Society of Chemistry, pp:1-11
    [38] Pilz I., et al., Biochem. J., 1990,271:277-280
    [39] Irwin D.C., M. Sezio, L. P. Walker, D.B. Wilson, Biotech. Bioeng., 1993,42:1002-1013
    [40] Claeyssens M., H. Van Tilbeurgh, P. Tomme, T. M. Wood, S. I. Mccrae, Biochem. J., 1989, 261:819—826
    [41] John R. Whitaker. Principles of Enzymology for the Food Sciences (Second Edition).Marcel Dekker, Inc. New York. Basel. HongKong, 1994,415-416
    [42] 张树政主编.酶制剂工业.北京:科学出版社,1998:595
    [43] Claeyssens M., P. Tomme, Biochemistry, Genetics, Physiology and Application, C.P.Kubicek, et al., eds, London: The Royal Society of Chemistry., pp:1-11
    
    
    [44] Wood T, M., S. I. Mccrea, C.A. Wilson, K.M. Bhat, L.A. Gow, in Biochemistry. and Genetics of Cellulase Degradation, J. P. Aubert, P. Beguin, and J. Millet, eds., New york, Academic Press, 1998, pp. 31-52
    [45] Reese, E. T., Siu, R. U. and Levinson, H. S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Microboil, 1950, 59:485-497
    [46] Esterbauer H et al., Bioresources Technology, 1991,36:51
    [47] Stockton B C et al., Biotechnol. Lett., 1991, 13:57
    [48] Grajek W, Enzyme Microb. Technol., 1987, 9:744
    [49] Duffs J B, Cooper D G. and Fuller O M. Enzyme Microb. Technol., 1987, 9:47
    [50] 荒开基夫,日本酿造协会杂志,1988,83(3):177
    [51] Enari T M et al., CRC Critical Reviews in Biotechnology. 1987, 5(1): 67
    [52] Thompson D.N., Chen H.C., Grethlein H., Bioresource Technol., 1992, 39:155-163
    [53] Gharpuray M.M.. Lee Y.H., Fan L.T., Biotech. Bioeng., 1983,25:157-172
    [54] Sinitsyn A.P., Gusakov E.Y., Vlasenko E.Y., Appl. Biochem. Biotech,, 1991, 8:25-29
    [55] Schwald W., Breuil C., Brownell H.H., Chan M., Saddler J.N., Appl. Biochem. Biotech., 1989, 20/21: 29-44
    [56] 袁勤生,赵健,王维育。应用酶学,华南理工大学出版社,1994,141,127
    [57] 颜家松,詹怀宇。造纸用酶活性的影响因素,纸和造纸,2001,11(6):62-64
    [58] 万年升,郭荣富.纤维素酶的作用因素和应用中注意的问题,饲料工业,2002,23(7):41-42
    [59] 陈育如,夏黎明,吴绵斌,芩沛霖。植物纤维素原枓预处理技术的研究进展,化工进展,1999(4):24-26
    [60] 高洁,汤烈贵主编。纤维素科学,北京:科学出版社,1999,pp206
    [61] D. N.-S. Hon, in Cellulose and its Derivatives, J. F. Kennedy, G.O.Phillips. D.J.Wedlock and P.A. Williams(Ed.), Ellis Horwood limited, New York, 1985. P.71-86
    [62] L.F.McBurney, in Cellulose and Cellulose Derivatives, Part 1, E. Ott H.M. Spurlin and M.W. Grafflin (Ed.), Interscience, New York, 1954, p.191-196
    [63] 何源禄,贾眉等。林产化学与厂业,1990,10(4):249-256
    [64] 焦瑞身主编。微生物工程,2003,7(1):246-247
    [65] MILLER I J,FELLOWS S K.Liquefaction of biomass as a source of fuels or chemicals [J]. Nature, 1981,289(5796):398—399
    [66] T.P.Nevel, in Cellulose Chemistry and its Application, T.P. Nevell and S.H. Zeronian (EA.), Ellis Horwood Limited, Chichester, 1985, p.223-242
    [67] Ricardo D.S.,et al., Sci. Food Agric., 1990,53(1):85-92
    [68] Kallithraka S., et al., Colloqinst Natl. Rech. Agron., 1995,69(94):227-228
    [69] Revilla E., et al., Chromatographia, 1992, 31 (9-10):465-468
    [70] Prieur C., R. Jacpues, C. Veronique, et al., Phytochemistry, 1994,36(3):781-784
    [71] Thompson D.N., H.C. Chen and H.E. Grethlein, Bioresource Technol., 1991,39:155-161
    [72] 卢学梅,马登波,高培基。纤维素科学与技术,1994,2(3/4):24-30 2张朝晖等,浙江大学学报,1999,33(2):132-136
    [73] 沈萍,范秀容,李广武.微生物学实验(第三版),北京:高等教育出版社,1999,69-90
    
    
    [74] 郭杰炎,蔡武城.微生物酶.北京:科学出版社,1986
    [75] 许修宏,肖玉珍,陈建平等。高效纤维素分解菌分离筛选的研究。东北农业大学学报。1998,29(4):330-333
    [76] 中国饲料工业办公室.饲料标准资料汇编(1)[S].北京:中国标准出版,1991.262
    [77] 李大鹏.利用麦糟生产单细胞蛋白饲料的研究[J].饲料工业,2002,23(9):34-35.
    [78] 周亚樵,安新跃.用农作物秸秆生产单细胞蛋白的研究[J].中国饲料,2000(8):11-13.
    [79] 林晓艳,尹淑媛.玉米芯混菌两步发酵生产单细胞蛋白及高蛋白饲料[J].中国饲料,1999(18):18-19.
    [80] 代小江,马辉文.利用微生物混合培养物生产沙棘果渣单细胞蛋白[J].微生物学通报,1995,22(5):267-270.
    [81] 王成华,刘祥银.高酶活单细胞蛋白饲喂育肥猪实验效果[J].中国饲料,2000(10):13.
    [82] 何云娟,邱玉富.HTB活性饲料酵母取代鱼粉饲喂肥猪试验[J].饲料博览,1994,6(1):5-7.
    [83] 黄秀梨.微生物学实验指导[M].北京:高等教育出版社,1999,60
    [84] 刘如林,刁虎欣,梁风来,赵大健编著。光合细菌及其应用,1991,12(1):125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700