轴对称偏振光束的生成、特性及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴对称偏振光束是一种偏振态空间变化具有轴对称特性的偏振光束,对称轴为光束的传播轴。因其独特的光学特性,该类型光束在光学成像、光学捕获、材料加工及表面等离子体激发等方面具有巨大的潜在应用价值。论文针对目前的研究现状和不足,对轴对称偏振光束的生成方法、光学特性及潜在应用进行了研究。
     基于亚波长金属光栅的偏振分束特性,提出了利用分块亚波长金属光栅在可见光波段内生成径向偏振光及高偏振级次偏振光束的方法。基于傅里叶模态方法优化设计了亚波长金属光栅的结构,并由清华富士康纳米科技研究中心利用电子束直写技术和反应离子刻蚀技术制作了偏振级次分别为1、2、3和4的偏振光束转换器件。分析了转换光束的相位分布,基于Stokes方法测试了器件转换光束的强度及偏振分布,获得的径向偏振光的偏振纯度达到94.8%,偏振级次P=2、3、4的偏振光束的偏振纯度分别为90.4%、89.3%和84.7%,器件可应用于较宽波段,具有消色差特性。
     基于矢量衍射理论,推导了轴对称偏振光束在自由空间聚焦场的数学表达式,数值分析了不同类型轴对称偏振光束聚焦场的强度、相位及偏振分布。研究表明轴对称偏振光束高数值孔径的聚焦场具有很强的轴向分量,在焦平面附近可产生多个超分辨聚焦光斑,焦斑数量由光束偏振级次P决定,为2×(P 1);聚焦光场依然保持轴对称偏振分布。基于共焦显微镜搭建了光学系统,对径向和切向偏振光的高数值孔径聚焦场进行了初步测试,实验结果与理论分析吻合。
     研究了利用衍射光学元件实现轴对称偏振光束聚焦整形的基本方法,并针对某些特定需要,设计实现了平顶聚焦场、超小光斑及长焦深聚焦场及光链分布聚焦场,同时研究了径向偏振光实现衍射超分辨聚焦的衍射光学元件的优化设计方法。
     初步研究了两种利用轴对称偏振光束进行光学捕获的方法,即利用高数值孔径聚焦的轴对称偏振光束在焦平面附近捕获多个粒子,以及利用高数值孔径聚焦的轴对称偏振光束激发表面等离子体波在金属表面捕获多个粒子。介绍了上述两种方法的基本原理,数值分析了方法的可行性。
Axially Symmetric Polarized Beams (ASPBs) are space variant polarized beams with axial symmetry, whose symmetry axis is the propagation axis of the light beam. Due to their unique optical properties, such beams have many potential applications in imaging, optical trapping, material processing, surface plasmon excitation, and so on. In the dissertation, the generation methods, optical properties and potential applications of ASPBs have been studied on the basis of the analysis of state of the art.
     Based on the polarizing beam splitting properties of subwavelength metallic gratings, the generation method of radially polarized beams and high order polarized beams in the visible range using segmented subwavelength metallic gratings (SSMGs) is proposed. The structure parameters of SSMGs are optimized using Fourier Modal Method (FMM), and the polarization transformed devices of space variant polarized beams with the orders 1, 2, 3, and 4 are fabricated by Tsinghua Foxconn Nanotechnology Research Center. The phase distribution of transmitted beams is analyzed, and the intensity and polarization distribution of transmitted beams are also measured based on Stokes measurement method. The polarization purity of the generated radially polarized beam is 94.8%, and the numbers for transformed P=2, 3, 4 space variant polarized beams are 90.4%, 89.3%, 81.7% respectively. The SSMG devices can operate in a wide wavelength range, and show a broadband achromatic property in visible range.
     The mathematical expressions of focused fields of ASPBs in free space have been derived based on vectorial diffractive theory. The amplitude, intensity, phase and polarization distributions of focused field of different types of ASPBs have been numerically calculated, which show the high NA focusing fields of higher polarization order ASPBs have strong axial components and present multiple superresolution spots near focus. The number of focal spots is related to the polarization order P as 2×(P 1). The focused beams are still axially symmetric, but present polarization singularities and phase singularities in some spatial positions. An optical measurement system is built based on a confocal microscope, and the high NA focused field intensities of radially polarized beam and azimuthally polarized beams are measured, and the measurement results verify the theoretical analysis.
     3D focus shaping using diffractive optical elements (DOEs) is studied, and DOEs for some special field distributions, such as flat top, optical chain and ultra small focal spots with long depth of focus, have been designed. Meanwhile, an optimum design method for diffractive superresolution elements for radially polarized beam is also studied.
     Two methods to implement optical trapping using ASPBs are discussed. Multiple ultra small focusing spots of high NA focused ASPBs formed near the focal plane can trap multiple micro particles simultaneously, and surface plasmon interfering fields excited by tightly focused ASPBs can trap multiple particles near the metal film as well. The basic theories for both methods are presented, and some simulations are carried out to verify the feasibility of the methods.
引文
[1] M Born and E Wof.光学原理(上册),杨葭荪,等译校.北京:科学出版社,1978.
    [2]金国藩,严瑛白,邬敏贤,等.二元光学.北京:国防工业出版社, 1998.
    [3] Q Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv in Opt Photon, 2009, 1: 1 57.
    [4] D G Hall. Vector beam solutions of Maxwell's wave equation. Opt Lett, 1996, 21: 9 11.
    [5] M Stalder, M Schadt. Linearly polarized light with axially symmetry generation by liquid crystal polarization converters. Opt Lett, 1996, 21: 1948 1950.
    [6] J A Davis, D E McNamara, D M Cottrell, et al. Two dimensional polarization encoding with a phase only liquid crystal spatial light modulator. Appl Opt, 2000. 39: 1549 1554.
    [7] A Niv, G Biener, V Kleiner, et al. Formation of linearly polarized light with axial symmetry by use of space variant subwavelength gratings. Opt Lett, 2003, 28: 510 512.
    [8] X Wang, J Ding, W Ni, et al. Generation of arbitrary vector beams with a spatial light modulator and a common interferometric arrangement. Opt Lett, 2007, 32: 3549 3552.
    [9] A V Nesterov, V G Niziev. Laser beams with axially symmetric polarization. J.Phys.D: Appl.Phys, 2006, 33:1 6.
    [10] D Pohl. Operation of a ruby laser in a purely transverse electric mode TE01. Appl Phys Lett, 1972, 20: 266 267.
    [11] Y Mushiake, K Matzumurra, N Nakajima. Generation of a radially polarized optical beam mode by laser oscillation. Proc IEEE, 1972, 60: 1107 1109.
    [12] K Yonezawa, Y Kozawa, S Sato. Geneartion of a radially polarized laser beam by use of the birefringence of a c cut Nd:YVO4 crystal. Opt Lett, 2006, 31: 2151 2153.
    [13] G Machavariani, Y Lumer, I Moshe, et al. Birefringence induced bifocusing for slection of radially or azimuthally polarized laser modes. Appl Opt, 2007, 46: 3304 3310.
    [14] J F Bisson, J Li, K Ueda, et al. Radially polarized ring arc beams of a neodymium laser with an intra cavity axicon. Opt Express, 2006, 14: 3304 3311.
    [15] Y Kozawa, S Sato. Generation of a radially polarized laser beam by use of a conical Brewster prism. Opt Lett, 2005, 30: 3063 3 65.
    [16] M A Ahmed, A Voss, M M Vogel, et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin disk lasers. Opt Lett, 2007, 32: 3272 3274.
    [17] V G Niziev, R S Chang, A V Nesterov. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer. Appl Opt, 2006, 45: 8393 8399.
    [18] S C Tidwell, D H Ford, W D Kimura. Efficient radially polarized laser beam generation with a double interferometer. Appl Opt, 1993, 32: 5222 5229.
    [19] G Machavariani, Y Lumer, I Moshe, et al. Spatially variable retardation plate for efficient generation of radially and azimuthally polarized beams. Opt Commun, 2008, 281: 732 738.
    [20] Z Bomzon, V Kleiner, E Hasman. Formation of radially and azimuthally polarized light using space variant subwavelength metal stripe gratings. Appl Phys Lett, 2001, 79: 1587 1589.
    [21] Z Bomzon, G Bieber, V Kleiner, et al. Radially and azimuthally polarized beams generated by space variant dielectric subwavelength gratings. Opt Lett, 2002, 27: 285 287.
    [22] M R Beversluis, L Novotny, S J Stranick. Programmable vector point spread function engineering. Opt Express, 2006, 14: 2650 2656.
    [23] G Volpe, D Petrov. Generation of cylindrical vector beams with few mode fibers excited by Laguerre Gaussian beams. Opt Commun, 2002, 203: 1 5.
    [24] Q Zhan, J R Leger. Microellipsometer with radial symmetry. Appl Opt, 2002, 41: 4630 4637.
    [25] B C Lim, P B Phua, W J Lai, et al. Fast switchable electro optic radial polarization retarder. Opt Lett, 2008, 33: 950 952.
    [26] A A Tovar. Production and propagation of cylindrically polarized Laguerre Gaussian laser beams. J Opt Soc Am A, 1998, 15: 2705 2711.
    [27] P Paakkonen, J Tervo, P Vahimaa, et al. Geberal vectorial decomposition of electromagnetic fields with application to propagation invariant and rotating fields. Opt Express, 2002, 10: 949 959.
    [28] R Borghi, M Santarsiero. Nonparaxial propagation of spirally polarized optical beams.J Opt Soc Am A, 2004, 21: 2029 2037.
    [29] D Deng, Q Guo and L Wu. Propagation of radially polarized elegant light beams. J Opt Soc Am A, 2007, 24: 636 643.
    [30] D Deng, Q Guo. Analytical vectorial structure of radially polarized light beams.Opt Lett, 2007, 32: 2711 2713.
    [31] S Quabis, R Dorn, M Elberler, et al. Focusing light into a tighter spot. Opt Commun, 2000, 179: 1 7.
    [32] E Wolf. Electromagnetic diffraction in optical systems I. A integral representation of the image field. Proc R Soc London Ser A, 1959, 253: 349 357.
    [33] B Richards, E Wolf. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc R Soc London Ser A, 1959, 253: 358 379.
    [34] K S Youngworth, T G Brown. Focusing of high nemerical aperture cylindrical vector beams. Opt Express, 2000, 7: 7 87.
    [35] S Quabis, R Dorn, m Eberler, et al. The focus of light theoretical calculation and experimental tomographic reconstruction. Appl phys B, 2001, 72: 109 113.
    [36] Q Zhan, J R Leger. Focusing shaping using cylindrical vector beams. Opt Express, 2002, 10: 324 331.
    [37] R Dorn, S Quabis, G Leuchs. Sharper focus for a radially polarized light beam. Phys Rew Lett, 2003, 91: 233901.
    [38] M Rashid, O M Marago, P H Jones. Focusing of high order cylindrical vector beams. J Opt A: Pure Appl Opt, 2009, 11: 065204.
    [39] N Davidson, N Bokor. High numerical aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens. Opt Lett, 2004, 29: 1318 1320.
    [40] V P Kalosha, I Golub. Toward the subdiffraction focusing limit of optical superresolution. Opt Lett, 2007, 32: 3540 3542.
    [41] W Chen, Q Zhan. Three dimensional focus shaping with cylindrical vector beams. Opt Commun, 2006, 265: 411 417.
    [42] H F Wang, L P Shi, B Lukyanchuk, et al. Creation of a needle of longitudinally poliarized light in a vacuum using binary optics. Nature photonics, 2005, 2: 501 505.
    [43] S M Feng, H G Winful. Phycical origin of the Gouy phase shift. Opt Lett, 2001, 26: 485 487.
    [44] Q Zhan. Second order titled wave interpretation of the Gouy phase shift under high nemerical aperture uniform illumination. Opt Commun, 2004, 242: 351 360.
    [45] D W Diehl, R W Schoonover, T D Visser. The structure of focused, radially polarized fields. Opt Express, 2006, 14: 3030 3038.
    [46] Y Luo, B Lv. Phase singularities of high numerical aperture radially and azimuthally polarized beams in the focal region. J Opt A: Pure Appl Opt, 2009, 11:015707.
    [47] D P Biss, T G Brown. Polarization vortex drived second harmonic generation. Opt Lett, 2003, 28: 923 925.
    [48] S Carrasco, B E A Saleh, M C Teich, et al. Seoncd and third harmonic generation with vector Gaussian beams. J Opt Soc Am B, 2006, 23: 2134 2141.
    [49] D P Biss, K S Youngworth, T G Brown. Dark field imaging with cylindrical vector beams. Appl Opt, 2006, 45: 470 479.
    [50] N Bokor, N Davidson. Toward a spherical spot distribution with 4πfocusing of radially polarized light. Opt Lett, 2004, 29: 1968 1970.
    [51] C Sun, C Liu. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation. Opt Lett, 2003, 28: 99 101.
    [52] L Novotny, M R Beversluis, K S Youngworth, et al. Longitudinal field modes probed by single molecules. Phys Rev Lett, 2001, 86: 5251 5254.
    [53] H Raether. Surface plasmons on smooth and rough surfaces and gratings. Berlin: Springer Verlag, 1988.
    [54] H Kano, S Mizuguchi, S Kawata. Excitation of surface plasmon polaritons by a focused laser beam. J Opt Soc Am B, 1998, 15: 1381 1386.
    [55] W Chen, Q Zhan. Realization of an evanescent Bessel beam via surface plasmon interference excited by radially polarized beam. Opt Lett, 2009, 34: 722 724.
    [56] P S Tan, X C Yuan, J Liu, et al. Surface plasmon polaritons generated by optical vortex beams. Appl Phys Lett, 2008, 92: 111108.
    [57] P S Tan, X C Yuan, J Liu, et al. Analysis of surface plasmon interference pattern formed by optical vortex beams. Opt Express, 2008, 16: 18451 18456.
    [58] Z Liu, J M Steele, W Srituravanich, et al. Focusing surface palsmons with a plasmonic lens. Nano Lett, 2005, 5:1726 1729.
    [59] G L Lerman, A Yanai, U Levy. Demonstration of nanofocusing by use of plasmonic lens illuminated with radially polarized light. Nano Lett, 2009, 9: 2139 2143.
    [60] W Chen, D C Abeysinghe, R L Nelson, et al. Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination. Nano Lett, 2009, 9: 4320–4325.
    [61] W Chen, Q Zhan. Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination. Opt Express, 2007, 15: 4106 4111.
    [62] Q Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt Express, 2004, 12: 3377 3382.
    [63] Y Q Zhao, Q Zhan, Y L Zhang, et al. Creation of a three dimensional optical chain for controllable particle delivery. Opt Lett, 2005, 30: 848 850.
    [64] Q Zhan. Radiation forces on a dielectric sphere produced by highly focused cylindrical vector beams. J Opt A: Pure Appl Opt, 2003, 5: 229 232.
    [65] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency. J Chem Phys, 1997, 107: 355 362.
    [66] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Appl Phys A, 2007, 86: 329 334.
    [67] M Xu, H P Urbach, D K G de Boer, et al. Wire grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon. Opt Express, 2005, 13: 2303 2320.
    [68] D Zhang, P Wang, X Jiao, et al. Polarization properties of subwavelength metallic gratings in visible light band. Appl Phys B, 2006, 85: 139 143.
    [69]张亮,李承芳. 150nm亚波长铝光栅的近红外偏振特性.中国激光,2006,33: 467 471.
    [70] Z Zhou, Q Tan, G Jin. Achromatic generation of radially polarized beams in visible range using segmented subwavelength metal wire gratings. Opt Lett, 2009, 34: 3361 3363.
    [71] F Wang, M Xiao, K Sun, et al. Generation of radially and azimuthally polarized light by optical transmission through concentric circular nanoslits in Ag films. Opt Express, 2010, 18: 63 67.
    [72]张娜,褚金奎,赵开春,等.基于严格耦合波理论的亚波长金属光栅偏振器设计.传感技术学报, 2006, 19(5): 1739 1743.
    [73]孟凡涛,褚金奎,韩志涛,等.亚波长金属光栅偏振器设计.纳米技术与精密工程, 2007, 5(4): 269 272.
    [74] H J Zhao, Y J Peng, J Tan, et al. Optimal design of sub wavelength metal rectangular gratings for polarizing beam splitter based on effective medium theory. Chin Phys B, 2009, 18: 5326 5330.
    [75] Lifeng Li. Mathematical reflections on the Fourier modal method in grating theory, in Mathematical modeling in optical science, SIAM (Society for Industrial and Applied Mathematics) Frontiers in Applied Mathematics (SIAM, Philadelphia, 2001), eds. G. Bao, L. Cowsar, and W. Masters, chap.4: 111 139.
    [76] E Palik. Handbook of Optical Constants of Solids I. San Diego: Academic Press, 1985.
    [77]崔铮.微纳米加工技术及其应用(第二版).北京:高等教育出版社, 2009.
    [78] Z Bomzon, V Kleiner, E Hasman. Pancharatnam–Berry phase in space variantpolarization state manipulations with subwavelength gratings. Opt Lett, 2001, 26: 1424 1426.
    [79] Z Bomzon, V Kleiner, E Hasman. Formation of radially and azimuthally polarized light using space variant subwavelength metal stripe gratings. Appl Phys Lett, 2001, 79: 1587 1589.
    [80] G Biener, A Niv, V Kleiner, et al. Formation of helical beams by use of Pancharatnam Berry phase optical elements. Opt Lett, 2002, 27: 1875 1877.
    [81] Q Zhan, J R Leger. Interferometric measurement of the geometric phase in space variant polarization manipulations. Opt Commun, 2002, 213: 241 245.
    [82]新谷隆一(日),范爱英,康昌鹤.偏振光.北京:原子能出版社,1994.
    [83] R W Schoonover, T D Visser. Polarization singularities of focused, radially polarized fields. Opt Express, 2006, 14: 5733 5745.
    [84] Rayleigh L. On the Diffraction of Object Glasses. Mon Not R Astron Soc, 1872, 33: 59 63.
    [85] Francia G, Cimento N. Super gain antennas and optical resolving power. Nuovo Cimento Suppl, 1952, 9: 426 438.
    [86] T R M Sales, G M Morris. Fundamental limits of optical superresolution. Opt Lett, 1997, 22: 582 584.
    [87] H Liu, Y Yan, Q Tan, et al. Theories for the design of diffractive superresolution elements and limits of optical superresolution. J Opt Soc Am A, 2002, 19: 2185–2193.
    [88] C J R Sheppard, A Choudhury. Annular pupils, radial polarization, and superresolution. Appl Opt, 2004, 43: 4322 4327.
    [89] M Yun, L Liu, J Sun, et al. Three dimentional superresolution by three zone complex pupil filters. J Opt Soc Am A, 2005, 22: 272 277.
    [90] Y S Xu, J Singh, C J R Sheppard, et al. Ultra long high resolution beam by multi zone rotationally symmetrical complex pupil filter. Opt Express, 2007, 15: 6409 6413.
    [91] T Jabbour, S M Kubler. Vector diffraction analysis of high numerical aperture focused beams modified by two and three zone annular multi phase plates. Opt Express, 2006, 14: 1033 1043.
    [92] Y Q Zhao, Q Zhan, Y P Li. Design of DOE for beam shaping with highly NA focused cylindrical vector beam. Proc SPIE, 2005, 5636: 56 65.
    [93]程侃.径向偏振光衍射超分辨器件设计[硕士学位论文].北京:清华大学精密仪器与机械学系,2010.
    [94] Q F Tan, K Cheng, Z H Zhou, G F Jin. Diffractive superresolution elements forradially polarized beams. J.Opt.Soc.Am.A, 2010, 27:1355 1360.
    [95]程侃,谭峭峰,周哲海,金国藩.径向偏振光三维超分辨衍射光学元件设计.光学学报, 2010(印刷中).
    [96]刘海涛.实现光学超分辨的衍射器件设计方法研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2004.
    [97] K C Neuman, S M Block. Optical trapping. Rev Sci Instrum, 2004, 75: 2787 2809.
    [98] A Ashkin. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett, 1970, 24: 156–159.
    [99] A Ashkin, J M Dziedzic, J E Bjorkholm, et al. Observation of a single beam gradient force optical trap for dielectric particles. Opt Lett, 1986, 11: 288 290.
    [100] E L Raab, M Prentiss, Steven Chu, et al. Trapping of neutral sodium atoms with radiation pressure. Phys Rev Lett, 1987, 59: 2631–2634.
    [101] M Kerker. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic, 1969.
    [102] Y Harada, T Asakura. Radiation force on a dielectric sphere in the Rayleigh scattering regime. Opt Commun, 1996, 124: 529 541.
    [103] Q Zhan. Radiation force on a dielectric sphere produced by highly focused cylindrical vector beams. J Opt A: Pure App Opt, 2003, 5: 229 232.
    [104] Z H Zhou, Q F Tan, G F Jin. Multiple 3D optical trapping using higher polarization order axially symmetric beams.中国光学与应用光学, 2010, 3: 52 56.
    [105] S A Maier. Plasmonics: Fundamentals and Applications. New York: Springer Science+Business Media LLC, 2007.
    [106] W L Barnes, A Dereux, T W Ebbesen. Surface plasmon subwavelength optics. Nature, 2003, 424: 824 830.
    [107] A Bouhelier, F Ignatovich, A Bruyant, et al. Surface plasmon interference excited by tightly focused laser beams. Opt Lett, 2007, 32: 2535 2537.
    [108] Z H Zhou, Q F Tan, G F Jin. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams. Chin Opt Lett, 2010, in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700