星载GNSS/INS超紧组合技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载自主导航是指航天器在无需外界干预的情况下,完全由星载设备实时确定自己的位置、速度和姿态。其设计要求是在保证安全、可靠的前提下,提高自主导航系统在航天器不同任务阶段的性能,降低系统的体积、重量、功耗和成本。受2007年上海航天技术研究院科研基金的资助(项目编号:YYF08001),完成了星载自主组合导航技术的研究课题。在课题研究内容的基础上,本文的研究目的是将现代惯性导航算法引入星载导航应用,设计可实现的星载GNSS/INS紧组合系统。使用现有精度级别的惯性器件,确定组合系统在航天器在轨运行阶段的性能指标。同时,研究新型超紧组合技术原理、算法和优势,以及应用在星载环境的必要性和可行性,探寻具有高度集成优势、高可靠性和完好性的星载GNSS/INS超紧组合系统,提升航天器性能并增强其生存能力。
     本文深入研究了星载惯性导航技术、星载GPS误差模型和量测仿真器、星载GPS/INS紧组合系统设计、GNSS/INS超紧组合技术及星载一体化超紧组合接收机等内容。主要研究工作和方法体现在五个方面:
     (1)实现了基于现代多速算法的星载捷联解算方案,分析推导了ECI坐标系下的INS误差状态方程。开发出一套惯性量测数据仿真工具包,然后使用蒙特卡洛仿真方法,对比验证了星载多速SINS解算方案和传统方法的性能。
     (2)开发了面向空间导航系统设计的GPS量测仿真器,生成高保真的星载GPS L1C/A码伪距量测和载波量测,作为星载紧组合滤波器的GPS测量输入。
     (3)结合空间自主导航系统的技术需求,设计了基于EKF的星载GPS/INS紧组合导航系统。搭建了星载组合导航系统仿真环境,评估星载紧组合系统在航天器在轨运行阶段的自主导航精度。
     (4)研制了基于FPGA的低成本时间同步系统,消除实现多传感器组合导航系统不同传感器之间未知的时间误差,实现IMU和辅助导航传感器测量数据与GNSS接收机时间的精确同步。
     (5)深入探讨了矢量跟踪环路技术,分析了超紧组合相关和非相关算法的优缺,研究了基于联邦KF结构相关算法的超紧组合系统原理。尝试性提出星载一体化MEMS IMU/GNSS超紧组合接收机的设计方案,并进行了算法探究。
     本论文研究的关键技术和创新点主要体现在以下几个方面:
     (1)实现了基于现代多速算法的星载SINS多速解算方案,给出一系列指导性准则进行算法优化、提升运算效率,发挥多速方案在星载惯导领域的优势。借助蒙特卡洛方法与IMU量测仿真工具包,来证实多速方案的性能提升。
     (2)将LEO电离层误差模型和星载接收机时钟误差的改正模型,用于星载GPS量测数据生成,并考虑了相对距离变化率的影响,提高仿真模型的精度和置信度。设计的星载GPS/INS紧组合EKF,包含了对所有可见GPS卫星用户距离误差的状态估计,实现全视野GPS导航模式与INS的最优组合输出。
     (3)基于GNSS/INS超紧组合技术,提出的星载一体化超紧组合接收机新思想,是星载导航领域有意义的探索和尝试。
     (4)研制的低成本FPGA时间同步系统,实现了多传感器组导系统中INS及辅助传感器与GNSS时间的高精度同步,有效提高组合导航系统性能。
     基于上述研究内容,本论文的研究结论包括:
     (1)星载SINS多速方案不但解算精度高,而且兼具现代多速算法运算高效的特点。多速方案和传统的积分解算具有相同的姿态精度,而多速方案的速度和位置精度提高了3倍。
     (2)由航天器真实参考轨道驱动,高保真星载组合仿真环境对星载自主GPS/INS紧组合系统的验证结果表明:俯仰轴姿态误差约为0.1deg,横滚轴和偏航轴姿态精度优于0.03deg;速度均方根误差小于0.2m/s,位置球概率误差小于3m,能很好满足航天器高精度在轨导航要求。
     (3)对基于FPGA的低成本时间同步系统,进行同步算法在线仿真和地面车载试验。实验结果显示:时间同步系统对IMU和GNSS接收机之间的同步精度为几十~几百μs,同步系统自身引入的时间误差约为几十ns。
Autonomous navigation systems (NavSys) are spaceborne apparatus todetermine the position, velocity and attitude of spacecraft in real time, withoutexternal aids. Technical requirements include, on the premise of keeping security andreliability of spacecraft, promoting the performance of autonomous NavSys forspacecraft’s different mission phases, but with decreased volume, weight, powerconsumption and cost. Preliminary research in this thesis was funded by the ShanghaiAcademy of Spaceflight Technology in2007(Contract NO. YYF08001). On the basisof the preliminary research of the project, the objective of this research is to introducemodern strapdown algorithms to spacecraft INS, and to design realizable space tightlyintegrated GNSS/INS NavSys and characterize its performance in orbit based oncurrent navigation-grade inertial sensors. And this research would also give attentionto the theoretical algorithms and advantages of ultra-tight coupling or deep integration,and make sure whether or the new integration technology is necessary and feasible forspaceflight applications. Furthermore, the thesis would like to explore a highlyintegrated space ultra-tight coupling NavSys with supreme reliability and integrity toimprove spacecraft performance and survivability.
     The thesis penetrates into space SINS technology, GPS measurements errormodels and simulator for spaceflight, the design of space integrated GPS/INS NavSys,ultra-tight coupling GNSS/INS integration and space integral ultra-tightly coupledreceiver, etc. The primary research contributions and technical approaches arepresented here:
     (1) Space-oriented SINS scheme based on modern multispeed strapdownalgorithms is realized, and the INS error dynamic equations in ECI are derived. Asimulation toolbox is built to generate inertial sensor measurements. By virtue ofMonte Carlo (MC) simulation, evaluations of performance of the new scheme andconventional SINS algorithms are carried out.
     (2) For the sake of R&D (research and development) of space NavSys, ahigh-fidelity GPS simulator is provided, which generates GPS L1C/A codepseudorange and carrier phase measurements. The simulated measurements are used as GPS measurement input to update space tightly integrated navigation filter.
     (3) Considering the technical requirements of autonomous spacecraft NavSys,the thesis proposes a tightly integrated GPS/INS NavSys with EKF for spaceflight. Ahigh-credibility simulation platform of space navigation is also constructed, forverifying the autonomous navigation accuracy in orbit.
     (4) A flexible low-cost time synchronizer with FPGA is developed, whichsynchronizes the measurements from IMU and other navigation sensors with GNSSreceiver time, mitigating unknown time errors among different apparatus.
     (5) As coherent and non-coherent algorithms of deep integration are studied, therelated vector tracking loop is discussed in depth firstly. An ultra-tight couplingNavSys with federated Kalman filter architecture in terms of the coherent algorithm istheoretically addressed. Consequently, the research tentatively proposes the schematicdesign of a space integral ultra-tightly coupled MEMS IMU/GNSS receiver. Andmore attentions are paid to its deep integration algorithms.
     The key technologies and innovations in the research focus on the followingpoints:
     (1) As the space-oriented SINS scheme based on modern multispeed algorithmsare proposed, the thesis draws up a series of instructive guidelines, depending onapplications, to promote practical realization of the multispeed scheme, withconsideration on various optimizations and tradeoffs where possible. Performanceimprovement of the multispeed scheme is verified using MC method withmeasurements from the IMU simulation toolbox.
     (2) In the GPS measurements simulator, an ionospheric model for LEO isadopted, and receiver clock model is also fixed for spaceflight usage. Range rate’scontributions to spaceborne GPS receiver measurements are considered. In this waythe accuracy and fidelity of the simulator is promoted. The tightly integrated GPS/INSEKF includes the URE states of all visible GPS satellites at any simulation epoch,which achieves optimal navigation results from INS and all-in-view GPS receiver.
     (3) With investigations on GNSS/INS ultra-tight integration, the new proposedtentative concept on space integral ultra-tightly coupled receiver is meaningfulexploration in the field of spacecraft navigation.
     (4) The flexible time synchronizer synchronizes measurements from IMU andother navigation sensors with GNSS receiver time, in which synchronized time of themeasurements reaches high accuracy, and further effectively improves performance ofintegrated NavSys.
     In accordance with the former research, explicit conclusions are summarized as:
     (1) One clear advantage of the space-oriented multispeed SINS scheme is of highaccuracy. Moreover, high computational efficiency inherited from modern multispeedstrapdown algorithms is a secondary benefit of the new scheme. Attitude errorsobtained from both the multispeed scheme and conventional algorithm stay at theequivalent level. Velocity and position errors of the multispeed scheme are onlyone-fourth of that of the latter.
     (2) Driven by the true reference trajectory of spacecraft, the space integratedGPS/INS NavSys is tested using the high-fidelity simulation platform. Simulationresults show that: the attitude error of pitch axis is about0.1deg; the attitude accuracyof roll and yaw axes is better than0.03deg; the RMS error of velocity is smaller than0.2m/s and the SEP error of position is smaller than3m. The results prove that thespace integrated GPS/INS NavSys can readily satisfy requirements of high-precisespacecraft navigation.
     (3) Onboard simulation experiments and a field van test of the low-cost timesynchronizer are delicately carried out. Experimental results demonstrate that: thesynchronizer can achieve an accuracy of dozens of microseconds between IMU andGNSS receiver. The time synchronization error is below dozens of nanoseconds.
引文
[1] Miller, J. L. Spacecraft Navigation Requirements[R]. AGARD-AG-331; AGARD,1995.
    [2] Hegg, J. Enhanced space integrated GPS/INS (SIGI)[J]. Aerospace and Electronic SystemsMagazine, IEEE,2002,17(4), pp26-33.
    [3] Hablani, H. Autonomous Inertial Relative Navigation with Sight-Line-Stabilized Sensorsfor Spacecraft Rendezvous[J]. Journal of Guidance, Control, and Dynamics,2009,32(1),pp172-183.
    [4] Kuritsky, M. M., Goldstein, M. S., Greenwood, I. A., et al. Inertial Navigation[J].Proceedings of the IEEE,1983,71(10), pp1156-1176.
    [5] Strachan, V. F. Inertial Measurement Technology in the Satellite Navigation Environment[J].Journal of Navigation,2000,53(02), pp247-260.
    [6] Goodman, J. L. A GPS Receiver Upgrade For The Space Shuttle-Rationale AndConsiderations[A], In40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit[C], Fort Lauderdale, Florida,11-14July,2004.
    [7] Goodman, J. L. Application of GPS navigation to space flight[A], In Aerospace,2005IEEEConference[C],2005; pp1837-1852.
    [8] Braden, K., Browning, C., Gelderloos, H. Integrated Inertial Navigation System/GlobalPositioning System (INS/GPS) for automatic space return vehicle[A], In Digital AvionicsSystems Conference,1990. Proceedings., IEEE/AIAA/NASA9th[C],1990; pp409-414.
    [9] Upadhyay, T. N., Cotterill, S., Deaton, A. W. Autonomous GPS/INS navigation experimentfor space transfer vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3), pp772-785.
    [10] Willms, B. Space integrated GPS/INS (SIGI) navigation system for Space Shuttle[A], InDigital Avionics Systems Conference[C],1999; pp7.A.4-1-7.A.4-8.
    [11] Um, J. Relative navigation and attitude determination using a GPS/INS integrated systemnear the International Space Station[D]. Austin: The University of Texas at Austin2001.
    [12] Gaylor, D. E. Integrated GPS/INS Navigation System Design for Autonomous SpacecraftRendezvous[D]. Austin: The University of Texas at Austin2003.
    [13] Gustafson, D., Dowdle, J., Flueckiger, K. A deeply integrated adaptive GPS-basednavigator with extended range code tracking[A], In Dowdle, J., Position Location andNavigation Symposium, IEEE2000[C],2000; pp118-124.
    [14] Abbott, A. S., Lillo, W. E. Global Positioning Systems and Inertial Measuring UnitUltratight Coupling Method[P]. United States:6516021,2442003.
    [15] Groves, P. D., Long, D. C. Combating GNSS Interference with Advanced InertialIntegration[J]. Journal of Navigation,2005,58(03), pp419-432.
    [16]黄凤钊,彭允祥. GPS/SINS伪距(伪距变化率)组合导航系统实验研究[J].中国惯性技术学报,1998,6(2), pp1-9.
    [17] Cox, D. B. Integration of GPS with Inertial Navigation Systems[J]. Navigation: Journal ofThe Institute of Navigation,1978,25(2), pp236-245.
    [18]韩军海,谢玲,陈家斌. INS/GPS组合导航方式及应用前景[J].火力与指挥控制, Oct.,2002,27(4), pp66-68.
    [19] Kaplan, E. D., Hegarty, C. J. Understanding GPS: Principles and Applications, SecondEdition[M]. Washington, DC: Artech House:2006.
    [20] Copps, E. M., Geier, G. J., Fidler, W. C., et al. Optimal Processing of GPS Signals[J].Navigation: Journal of The Institute of Navigation, Fall,1980,27(3), pp171-182.
    [21] Wieser, A., Gebre-Egziabher, D., Lachapelle, G., et al. Weighting GNSS Observations andVariations of GNSS/INS Integration. In Inside GNSS Magazine,2007; Vol.2, pp28-33.
    [22]郑谔.卫星-惯性-星光最优组合导航系统在航天飞机导航中的应用[J].航空学报, Oct.,1988,9(10), pp448-453.
    [23]郑谔,倪世宏. GPS/捷联惯性组合导航系统的性能研究[J].西北工业大学学报,1990,8(1), pp27-34.
    [24]秦永元,俞济祥.惯导速度辅助下GPS接收机码环的噪声响应和动态跟踪性能分析[J].航空学报,1990,11(12), pp564-569.
    [25]俞济祥,张更生. GPS/惯性组合方式讨论与导航精度分析[J].航空学报, May,1991,12(5), pp227-293.
    [26]慕德俊,俞济祥. GPS/惯性导航组合性能和组合方法的研究[J].西北工业大学学报,Oct.,1992,10(4), pp518-525.
    [27]袁信,刘建业.分布式卡尔曼滤波器在GPS/INS组合导航系统中的应用研究[J].南京航空航天大学学报,1989,21(4), pp112-116.
    [28]安东,任思聪,郑谔. GPS的码跟踪误差检测器与伪距测量的预处理[J].西北工业大学学报,Aug.,1994,12(3), pp402-406.
    [29]安东. GPS/INS深组合系统的设计理论与仿真研究[D].西安:西北工业大学自动控制系1992.
    [30]安东,郑谔,任思聪.一种新型深组合GPS/INS系统的设计与性能仿真研究[J].中国惯性技术学报,1995,3(1), pp7-15.
    [31]胡德风.一种提高低动态GPS接收机动态适应能力的方法[J].导弹与航天运载技术,1995,(6), pp17-21.
    [32]陈家斌,袁信.惯性速度辅助下GPS/捷联惯导组合系统性能研究[J].南京航空航天大学学报, Dec.,1994,26(6), pp730-736.
    [33]陈家斌,袁信.伪距解除相关法在GPS/SINS紧组合系统中的应用研究[J].航空学报,Nov.,1995,16(6), pp707-710.
    [34]董绪荣.一种低成本GPS组合导航定位系统[J].装备指挥技术学院学报, Dec.,2000,11(5), pp6-10.
    [35]张贵明,黄顺吉. GPS/SINS全组合系统确定SAR卫星的轨道和姿态[J].系统工程与电子技术,2002,24(5), pp65-59.
    [36]黄铭媛,战兴群,张炎华.星载SINS/GPS自主组合导航系统仿真研究[J].测控技术,2008,27(3), pp79-81,87.
    [37]王艳东,黄继勋,范跃祖. GPS/INS组合导航系统半实物仿真研究[J].北京航空航天大学学报, Jun.,1999,25(3), pp299-301.
    [38]周坤芳,李德武,周湘蓉.干扰环境下GPS/INS组合模式研究[J].中国惯性技术学报,Aug.,2004,12(4), pp24-33.
    [39]周坤芳,孔键,周湘蓉.紧耦合GPS/INS组合导航能力的分析[J].中国惯性技术学报,Dec.,2005,13(6), pp50-53.
    [40]王鹏,张迎春.基于SINS/GPS组合导航的新技术研究[J].战术导弹控制技术,2005,50(3), pp56-59.
    [41]杨艳娟,卞鸿巍,田蔚风, et al.一种新的INS/GPS组合导航技术[J].中国惯性技术学报,Apr.,2004,12(2), pp23-26.
    [42]赵瑞,顾启泰.滤波理论的最新进展及其在导航系统中的应用[J].清华大学学报(自然科学版),2000,40(5), pp24-27.
    [43]赵伟,袁信.基于H∞滤波的GPS/INS全深组合导航系统研究[J].中国空间科学技术,Apr.,2002,(2), pp9-14.
    [44]林敏敏,房建成,高国江. GPS/SINS组合导航系统混合校正卡尔曼滤波方法[J].中国惯性技术学报,2003,11(3), pp29-33.
    [45]江春红,苏惠敏,陈哲.信息融合技术在INS/GPS/TAN/SMN四组合系统中的应用[J].信息与控制,12,2001,30(6), pp537-542.
    [46]衣晓,何友.多传感器组合导航系统评述[J].火力与指挥控制, Aug.,2003,28(4).
    [47] YE, P., ZHAI, C., WU, H., et al. A Low-Cost Integrated Navigation System Based onIMU/Magnetic Compass/Velocity Log/Altimeter[A], In International Symposium onGPS/GNSS2008[C], Odaiba, Tokyo, Japan,11th-14th, November,2008; pp284-290.
    [48] YE, P., DU, G., ZHAI, C., et al. Error Compensation Algorithm and Calibration ExperimentBased on Ellipse Model for Magnetic Compass in Land Navigation System[A], InProceedings of the22th International Technical Meeting of the Satellite Division of theInstitute of Navigation (ION GNSS2009)[C], Savannah, Georgia, September22-25,2009.
    [49]狄旻珉,张尔扬.超紧致GPS/惯性耦合技术及干扰措施[J].航天电子对抗,2006,22(1), pp33-35.
    [50]高翔,刘兴堂.超紧密组合下GPS/INS跟踪回路的结构及性能分析[J].战术导弹技术,Jan.,2007,(1), pp67-70.
    [51]汪锡桢.全球定位系统与惯性导航系统的组合系统[J].系统工程与电子技术,1989,(8), pp24-32.
    [52] Tazartes, D. A., Mark, J. G. Integration of GPS Receivers into Exiting Inertial NavigationSystems[J]. Navigation: Journal of The Institute of Navigation, Spring,1988,35(1), pp105-119.
    [53] Hartman, R. G. An Integrated GPS/IRS Design Approach[J]. Navigation: Journal of TheInstitute of Navigation, Spring,1988,35(1), pp121-134.
    [54] Jr., J. J. S. Fundamentals of Signal Tracking Theory. In Global Positioning System: Theoryand Applications, Parkinson, B. W., Jr., J. J. S., Axelrad, P., et al., Eds. the AmericanInstitute of Aeronautics and Astronautics, Inc.: Washington, DC,1996; Vol.1, pp245-327.
    [55] Sennott, J. W., Senffner, D. Navigation Receiver with Coupled Signal-tracking Channels[P].United States:243Aug30,1994.
    [56] Leimer, D. Receiver phase-noise mitigation[P]. United States:992000.
    [57] Petovello, M. G., Lachapelle, G. Comparison of Vector-Based Software ReceiverImplementations with Application to Ultra-Tight GPS/INS Integration[A], In Proceedingsof the19th International Technical Meeting of the Satellite Division of The Institute ofNavigation (ION GNSS2006)[C], Fort Worth, TX, September26-29,2006; pp1790-1799.
    [58] Gustafson, D. E., Dowdle, J. R., Elwell Jr., J. M. Deeply-integrated adaptive GPS-basednavigator with extended-range code tracking[P]. United States:6331835,2832001
    [59] Gustafson, D. E., Dowdle, J. R., Elwell Jr., J. M. Deeply-integrated adaptive INS/GPSnavigator with extended-range code tracking [P]. United States:66309042842003.
    [60] Kreye, C., Eissfeller, B., Winkel, J. ó. Improvements of GNSS Receiver PerformanceUsing Deeply Coupled INS Measurements[A], In Proceedings of the13th InternationalTechnical Meeting of the Satellite Division of the Institute of Navigation (ION GPS2000)[C], Salt Palace Convention Center, Salt Lake City, Utah, September19-22,2000; pp844-854.
    [61] Jovancevic, A., Brown, A., Ganguly, S., et al. Ultra Tight Coupling Implementation UsingReal Time Software Receiver[A], In Proceedings of the17th International TechnicalMeeting of the Satellite Division of The Institute of Navigation (ION GNSS2004)[C],Long Beach, California, September21-24,2004; pp1575-1586.
    [62] Jovancevic, A., Ganguly, S. Real-Time Implementation of a Deeply Integrated GNSS-INSArchitecture[A], In Proceedings of the18th International Technical Meeting of the SatelliteDivision of The Institute of Navigation (ION GNSS2005)[C], Long Beach, California,September13-16,2005; pp503-511.
    [63] Woessner, W., Noronha, J., Jovancevic, A., et al. A Software Defined Real-timeUltra-tightly Coupled (UTC) GNSS-INS Architecture[A], In Proceedings of the19thInternational Technical Meeting of the Satellite Division of The Institute of Navigation(ION GNSS2006)[C], Fort Worth, TX, September26-29,2006; pp2695-2703.
    [64] Soloviev, A., Gunawardena, S., Graas, F. v. Deeply Integrated GPS/Low-Cost IMU for LowCNR Signal Processing: Flight Test Results and Real Time Implementation[A], InProceedings of the17th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GNSS2004)[C], Long Beach, California, September21-24,2004; pp1598-1608.
    [65] Kim, H.-S., Bu, S.-C., Jee, G.-I., et al. An Ultra-tightly coupled GPS/INS Integration usingFederated Kalman Filter[A], In Proceedings of the16th International Technical Meeting ofthe Satellite Division of The Institute of Navigation (ION GPS/GNSS2003)[C], Portland,Oregon, September9-12,2003; pp2878-2885.
    [66] Li, D., Wang, J. Performance Analysis of the Ultra-Tight GPS/INS Integration Based on anImproved Kalman Filter Design for Tracking Loops[A], In International Global NavigationSatellite Systems Society IGNSS Symposium2006[C], Holiday Inn Surfers Paradise,Australia,17-21July,2006.
    [67] Chiou, T.-Y., Alban, S., Atwater, S., et al. Performance Analysis and ExperimentalValidation of a Doppler-Aided GPS/INS Receiver for JPALS Applications[A], InProceedings of the17th International Technical Meeting of the Satellite Division of theInstitute of Navigation (ION GNSS2004)[C], Long Beach, California, September21-24,2004; pp1609-1618.
    [68] Chiou, T.-Y. GPS Receiver Performance Using Inertial-Aided Carrier Tracking Loop[A], InProceedings of the18th International Technical Meeting of the Satellite Division of theInstitute of Navigation (ION GNSS2005)[C], Long Beach, California September13-16,2005; pp2895-2910.
    [69] Chiou, T.-Y., Gebre-Egziabher, D., Walter, T., et al. Model Analysis on the Performance foran Inertial Aided FLL-Assisted-PLL Carrier-Tracking Loop in the Presence of IonosphericScintillation[A], In Proceedings of the2007National Technical Meeting of the Institute ofNavigation[C], San Diego, California, January22-24,2007; pp1276-1295.
    [70] Alban, S., Akos, D. M., Rock, S. M., et al. Performance Analysis and Architectures forINS-Aided GPS Tracking Loops[A], In Proceedings of the2003National TechnicalMeeting of the Institute of Navigation[C], Anaheim, California, January22-24,2003; pp611-622.
    [71] Gautier, J. D. GPS/INS Generalized Evaluation Tool (GIGET) for the Design and Testing ofIntegrated Navigation Systems[D]. Stanford University2003.
    [72] Yang, Y., El-Sheimy, N. Improving GPS Receiver Tracking Performance of PLL by MEMSIMU Aiding[A], In Proceedings of the19th International Technical Meeting of the SatelliteDivision of The Institute of Navigation (ION GNSS2006)[C], Fort Worth, TX, September26-29,2006; pp2192-2201.
    [73] Silva, P. F., Silva, J. S., Caramagno, A., et al. IADIRA: Inertial Aided Deeply IntegratedReceiver Architecture[A], In Proceedings of the19th International Technical Meeting of theSatellite Division of The Institute of Navigation (ION GNSS2006)[C], Fort Worth, TX,September26-29,2006; pp2686-2694.
    [74] Beser, J., Alexander, S., Crane, R., et al. TRUNAV: A Low-cost Guidance/Navigation UnitIntegrating a Saasm-based GPS and MEMS IMU in a Deeply Coupled Mechanization[A],In Proceedings of the15th International Technical Meeting of the Satellite Division of TheInstitute of Navigation (ION GPS-2002)[C], Portland, Oregon, September24-27,2002; pp545-555.
    [75] Lewis, D. Ultra-Tightly Coupled GPS/INS Tracking Performance[A], In AIAA's3rdAnnual Aviation Technology, Integration, and Operations (ATIO) Forum[C], Denver,Colorado, Nov.17-19,2003.
    [76] Goodman, J. L. Space Shuttle Navigation In The GPS Era[A], In Proceedings of the2001National Technical Meeting of the Institute of Navigation[C], Long Beach, CA, January22-24,2001; pp709-724.
    [77] Leung, S., Montenbruck, O. Real-Time Navigation of Formation-Flying Spacecraft UsingGlobal-Positioning-System Measurements[J]. Journal of Guidance, Control, and Dynamics,2005,28(2), pp226-235.
    [78] GarciRodríguez, A., Martinez, A.-M. B., Mehlen, C., et al. GNSS in Space, Part1:Formation Flying Radio Frequency Missions, Techniques, and Technology. In Inside GNSSMagazine,2008; Vol.3.
    [79]谷志军.星载卫星/惯性深层全组合导航技术研究[D].硕士,长沙:国防科学技术大学2004.
    [80] Quan, W., Fang, J., Xu, F., et al. Hybrid simulation system study of SINS/CNS integratednavigation[J]. Aerospace and Electronic Systems Magazine, IEEE,2008,23(2), pp17-24.
    [81]薛文芳.高动态GPS接收机设计中几个关键问题的研究[D].北京:北京航空航天大学通信与信息系统2002.
    [82]廖炳瑜.星载双频软件GPS接收机研究[D].北京:中国科学院空间科学与应用研究中心空间物理学2005.
    [83]赵军祥.高动态智能GPS卫星信号模拟器软件数学模型研究[D].北京:北京航空航天大学通信与信息系统2003.
    [84]孟繁智.高动态GPS卫星信号模拟源的关键技术研究[D].长沙:国防科学技术大学信息与通信工程2004.
    [85]赵立强,张力余.全球导航星系统在航天测控中的应用[J].遥测遥控,1999,20(6), pp6-14.
    [86] Mooij, E., Chu, Q. P. IMU/GPS integrated navigation system for a winged re-entryvehicle[A], In AIAA Guidance, Navigation, and Control Conference and Exhibit[C],Montreal, Canada, Aug.6-9,2001.
    [87] Ebinuma, T. Precision spacecraft rendezvous using Global Positioning System: Anintegrated hardware approach[D]. Austin: The University of Texas at Austin2001.
    [88]刘凯,刘慧. GPS/INS组合制导技术在现代战争中的应用及趋势研究[J].中国航天,Sep.,2005,(9), pp35-40.
    [89]丁衡高.惯性技术文集[M].北京:国防工业出版社:1994.
    [90]张炎华.陀螺支承系统[M].上海:上海交通大学出版社:1987.
    [91] Titterton, D. H., Weston, J. L. Strapdown Inertial Navigation Technology[M].2nd ed.; IET,London, UK and AIAA, Virginia, USA.:2004; p558.
    [92] King, A. D. Inertial Navigation-Past, Present, and Future[A], In Airborne NavigationSystems Workshop (Digest No.1997/169), IEE Colloquium on[C],1997; pp3/1-3/9.
    [93] King, A. D. Inertial Navigation–Forty Years of Evolution[J]. GEC REVIEW,1998,13(3).
    [94]张炎华,王立端,战兴群, et al.惯性导航技术的新进展及发展趋势[J].中国造船,10月,2008,49(S1), pp134-144.
    [95]张炎华,徐洪亮.现代陀螺仪技术专业领域调研报告. In上海交通大学航空航天学院导航、制导与控制研究所:上海,2006; p15.
    [96] Christian, J., Lightsey, E. G. A Review of Options for Autonomous Cislunar Navigation[A],In AIAA Guidance, Navigation and Control Conference and Exhibit[C], Honolulu, Hawaii,Aug18-21,2008.
    [97] Bar-Itzhack, I. Y. Navigation Computation in Terrestrial Strapdown Inertial NavigationSystems[J]. IEEE Transactions on Aerospace and Electronic Systems,1977,13(6), pp679-689.
    [98] Jordan, J. W. An Accurate Strapdown Direction Cosine Algorithm[R]. NASTN-D-5384;NASA,1969.
    [99] Bortz, J. E. A New Mathematical Formulation for Strapdown Inertial Navigation[J]. IEEETransactions on Aerospace and Electronic Systems,1971,7(1), pp61-66.
    [100] Miller, R. B. A New Strapdown Attitude Algorithm[J]. Journal of Guidance, Control, andDynamics,1983,6(4), pp287-291.
    [101] Ignagni, M. B. Optimal Strapdown Attitude Integration Algorithms[J]. Journal of Guidance,Control, and Dynamics,1990,13(2), pp363-369.
    [102] Jiang, Y. F., Lin, Y. P. Improved Strapdown Coning Algorithms[J]. IEEE Transactions onAerospace and Electronic Systems,1992,28(2), pp484-490.
    [103] Gusinsky, V. Z., Lesyuchevsky, V. M., Litmanovich, Y. A., et al. New Procedure forDeriving Optimized Strapdown Attitude Algorithms[J]. Journal of Guidance, Control, andDynamics,1997,20(4), pp673-680.
    [104] Yuanxin, W., Xiaoping, H., Dewen, H., et al. Strapdown inertial navigation systemalgorithms based on dual quaternions[J]. IEEE Transactions on Aerospace and ElectronicSystems,2005,41(1), pp110-132.
    [105] Ignagni, M. B. Efficient Class of Optimized Coning Compensation Algorithms[J]. Journalof Guidance, Control, and Dynamics,1996,19(2), pp424-429.
    [106] Savage, P. G. Strapdown Inertial Navigation Integration Algorithm Design Part1: AttitudeAlgorithms[J]. Journal of Guidance, Control, and Dynamics,1998,21(1), pp19-28.
    [107] Savage, P. G. Strapdown Inertial Navigation Integration Algorithm Design Part2: Velocityand Position Algorithms[J]. Journal of Guidance, Control, and Dynamics,1998,21(2), pp208-221.
    [108] Ignagni, M. B. Duality of Optimal Strapdown Sculling and Coning CompensationAlgorithms[J]. Navigation: Journal of The Institute of Navigation,1998,45(2), pp85-96.
    [109] Roscoe, K. M. Equivalency Between Strapdown Inertial Navigation Coning and ScullingIntegrals/Algorithms[J]. Journal of Guidance, Control, and Dynamics,2001,24(2), pp201-205.
    [110] Savage, P. G. A Unified Architecture for Strapdown Integration Algorithms[J]. Journal ofGuidance, Control, and Dynamics,2006,29(2), pp237-249.
    [111] Litmanovich, Y. A., Lesyuchevsky, V. M., Gusinsky, V. Z. Two New Classes of StrapdownNavigation Algorithms[J]. Journal of Guidance, Control, and Dynamics,2000,23(1), pp34-44.
    [112] Britting, K. B. Inertial Navigation Systems Analysis[M]. New York: Wiley-Interscience:1971.
    [113] Chatfield, A. B. Fundamentals of High Accuracy Inertial Navigation[M]. AIAA:1997.
    [114]秦永元.惯性导航[M].北京:科学出版社:2006.
    [115] WANG, L., DU, G., WAN, X., et al. Performance Improvement and Analysis ofSpace-oriented Strapdown Inertial Navigation System[J]. Journal of Systems Engineeringand Electronics (SCIE, Reviewed).
    [116] Friedland, B. Analysis Strapdown Navigation Using Quaternions[J]. IEEE Transactions onAerospace and Electronic Systems,1978,14(5), pp764-768.
    [117] Laning, J. H., Jr. The Vector Analysis of Finite Rotations and Angles[R].6398-S-3;Cambridge: Massachusetts Institute of Technology,1949.
    [118] Markley, F. L. Unit Quaternion from Rotation Matrix[J]. Journal of Guidance, Control, andDynamics,2008,31(2), pp440-442.
    [119] Chatterji, G. B., Tahk, M. A Quaternion Approach for Guidance and Control of Space BasedInterceptors[A], In AIAA Guidance, Navigation and Control Conference[C], Boston, MA,Aug14-16,1989; pp1025-1032.
    [120]束蝉方.高精度惯导系统的重力补偿技术研究[D].武汉:武汉大学2005.
    [121]董绪荣,张守信,华仲春. GPS/SINS组合导航定位及其应用[M].长沙:国防科技大学出版社:1998.
    [122] Richeson, J., Pines, D. GPS Denied Inertial Navigation Using Gravity Gradiometry[A], InAIAA Guidance, Navigation and Control Conference and Exhibit[C], Hilton Head, SouthCarolina, Aug.20-23,2007.
    [123] Lawrence, A. Modern Inertial Technology: Navigation, Guidance, and Control[M].2nd ed.;New York: Springer-Verlag:1998.
    [124] Farrell, J. A. Aided Navigation: GPS with High Rate Sensors[M]. McGraw-HillProfessional:2008.
    [125] Farrell, J., Barth, M. The Global Positioning System and Inertial Navigation[M]. New York:McGraw-Hill:1999.
    [126]罗鸣,曹冲,肖雄兵.全球定位系统——信号、测量与性能(第二版)[M].北京:电子工业出版社:2008.
    [127] National Space-Based Positioning, N., and Timing Coordination Office. The GlobalPositioning System: System Information[EB/OL]. U.S. Coast Guard Navigation Center.Mar20,2010; http://www.gps.gov/systems/gps/chinese.html.
    [128]曹冲.全球导航卫星系统(GNSS)及其技术的发展趋势研究[R].上海:中国电子科技集团第二十二研究所,9月3日,2009.
    [129]寇艳红译. GPS原理与应用[M].2ed.;北京:电子工业出版社:2007.
    [130] National Space-Based Positioning, N., and Timing Coordination Office. The GlobalPositioning System[EB/OL]. U.S. Coast Guard Navigation Center. Mar20,2010;http://www.gps.gov/chinese.html.
    [131] National Space-Based Positioning, N., and Timing Coordination Office. The GlobalPositioning System: Applications--Space[EB/OL]. U.S. Coast Guard Navigation Center.Mar20,2010; http://www.gps.gov/applications/space/index.html.
    [132] Yunck, T. P. Spaceborne GPS Science-A Short Overview[R]. Jet Propulsion Laboratory,28November,2001.
    [133] Unwin, M. J., Oldfield, M. K., Purivigraipong, S., et al. Preliminary Orbital Results fromthe SGR Space GPS Receiver[A], In Proceedings of the12th International TechnicalMeeting of the Satellite Division of the Institute of Navigation (ION GPS99)[C], Nashville,Tennesee, September14-17,1999; pp849-856.
    [134] Montenbruck, O., GarciFernandez, M., Williams, J. Performance comparison ofsemicodeless GPS receivers for LEO satellites[J]. GPS Solutions,2006,10(4), pp249-261.
    [135] Gomez, S. F. GPS on the International Space Station and Crew Return Vehicle[J]. GPSWorld,2002,13(6), p12.
    [136] Goodman, J. L. GPS Lessons Learned from the International Space Station, Space Shuttleand X-38[R]. NASA/CR-2005-213693; S-969NASA, November,2005.
    [137] Moreau, M. C., Axelrad, P., Garrison, J. L., et al. GPS Receiver Architecture and ExpectedPerformance for Autonomous Navigation in High Earth Orbits[J]. Navigation: Journal ofthe Institute of Navigation,2000,47(3), pp191-204.
    [138] Hoech, R., Bartholomew, R., Moen, V., et al. Design, capabilities and performance of aminiaturized airborne GPS receiver for space applications[A], In Position Location andNavigation Symposium,1994., IEEE[C],1994; pp1-7.
    [139] Lightsey, E. G. Development and Flight Demonstration of a GPS Receiver for Space[D].Stanford: Stanford University Department of Aeronautics and Astronautics1997.
    [140] Goodman, J. L., Propst, C. A. Operational Use of GPS Navigation for Space ShuttleEntry[A], In Position, Location and Navigation Symposium,2008IEEE/ION[C],2008; pp731-743.
    [141] GarciRodríguez, A., Martinez, A.-M. B., Mehlen, C., et al. GNSS in Space, Part2:Formation Flying Radio Frequency Techniques and Technology. In Inside GNSS Magazine,2009; Vol.4.
    [142] Kachmar, P. M., Wood, L. J. Space Navigation Applications[J]. Navigation: Journal of TheInstitute of Navigation, Spring,1995,42(1, Special Issue), pp187‐234.
    [143] Bauer, F. H., Hartman, K., Lightsey, E. G. Spaceborne GPS Current Status and FutureVisions[A], In AIAA Defense and Civil Space Programs Conference and Exhibit[C],Huntsville, AL, Oct.28-30,1998.
    [144] Smit, G. N. Performance Thresholds for Application of MEMS Inertial Sensors in Space[R].NASA,1995.
    [145] Sicker, R. J. Space Acceleration Measurement System: STS-107SAMS SystemSpecifications: Cleveland, Ohio: Glenn Research Center, NASA,2002.http://exploration.grc.nasa.gov/acceleration/.
    [146] Qu, H., Fang, D., Sadat, A., et al. High-resolution Integrated Micro-gyroscope for SpaceApplications[A], In41th Space Congress[C], Cap Canaveral, Florida, April27-30,2004.
    [147] Liu, D., Xiao, W., Han, Y. Research on two light sources design in fiber optic gyroscope forspace application[A], In Sixth International Symposium on Instrumentation and ControlTechnology: Sensors, Automatic Measurement, Control, and Computer Simulation[C],2006; pp63581Q-4.
    [148] Gaylor, D. E., Lightseyy, E. G. GPS/INS Kalman Filter Design for Spacecraft Operating inthe Proximity of the International Space Station[A], In AIAA Guidance, Navigation, andControl Conference and Exhibit[C], Austin, Texas, August,11-14th,2003.
    [149] Fedora, N., Picone, R., Baumgartner, P. The Integration and Performance of Honeywell'sSIGI Navigator with Orbital's Pegasus Launch Vehicle[A], In Digital Avionics SystemsConference,2004. DASC04. The23rd[C],2004; pp13.E.1-13.1-8Vol.2.
    [150] Seitz, A. C., Braasch, M. S. High Fidelity GPS Receiver Simulation[A], In Proceedings ofthe54th Annual Meeting of the Institute of Navigation[C], The Adams Mark Hotel, Denver,CO, June1-3,1998; pp573-581.
    [151] Herring, T. MATLAB Tools for viewing GPS velocities and time series[J]. GPS Solutions,2003,7(3), pp194-199.
    [152] NAVSYS. GPS Signal Simulation Toolbox: Colorado: NAVSYS Corporation,2003.www.navsys.com.
    [153] Gade, K. NavLab, a Generic Simulation and Post-processing Tool for Navigation[J].EUROPEAN JOURNAL OF NAVIGATION, NOVEMBER2004,2004,2(4), pp1-9.
    [154] Mohino, E., Gende, M., Brunini, C., et al. SiGOG: simulated GPS observation generator[J].GPS Solutions,2005,9(3), pp250-254.
    [155] Gaylor, D. E., Page, R., Bradley, K. Testing of the Java Astrodynamics ToolkitPropagator[A], In AIAA/AAS Astrodynamics Specialist Conference[C], Keystone,Colorado, Aug.21-24,2006.
    [156] Borre, K. The GPS EASY Suite II: A Matlab Companion. In Inside GNSS Magazine,2009;Vol.4.
    [157] L3/IEC. NAVSTAR GPS Satellite Constellation Simulator-Model SCS3500: Anaheim,CA: L3Communications Interstate Electronics Corporation,2005.http://www.l-3com.com/products-services/productservice.aspx?type=ps&id=144.
    [158] NAVSYS. Advanced GPS Hybrid Simulation (AGHS): Colorado Springs, CO: NAVSYSCorporation,2007. http://www.navsys.com/Products/aghs.htm.
    [159] CAST. The CAST-2000High Fidelity GPS Satellite Simulator: Billerica, Massachusetts:2007. www.castnav.com.
    [160] Spirent. Positioning and navigation–space-based GNSS applications[EB/OL]. SpirentCommunications. June19; http://www.spirent.com/Positioning-and-Navigation/Space.aspx.
    [161] Montenbruck, O., Gill, E. Ionospheric Correction for GPS Tracking of LEO Satellites[J].Journal of Navigation,2002,55pp293-304.
    [162] Office, N. G. J. P. NAVSTAR GPS Space Segment/Navigation User Interfaces, TechnicalReport IS-GPS-200. In ARINC Engineering Services, LLC: El Segundo, CA,2004.
    [163] Misra, P., Enge, P. Global Positioning System: Signals, Measurements, and Performance[M].Lincoln, MA: GangJamuna Press:2004.
    [164] Roper, C. E. GPS Status and Modernization[R]. Munich, Germany: the Munich SatelliteNavigation Summit, March9-11,2010.
    [165] Anonymous. GPS+Reference Manual. In NovAtel Inc.: Calgary, AB., Canada,2007; Vol.OM-20000039Rev0I, p84.
    [166] Hoffman-Wellenhof, B., Lichtenegger, H., Collins, J. Global Positioning Systems: Theoryand Practice[M].5thed.; New York, NY: Springer-Verlag Wien:2001.
    [167] Axelrad, P., Brown, R. G. GPS Navigation Algorithms. In Global Positioning System:Theory and Applications, Parkinson, B. W., Jr., J. J. S., Axelrad, P., et al., Eds. the AmericanInstitute of Aeronautics and Astronautics, Inc.: Washington, DC,1996; Vol.1, pp409-433.
    [168] Brown, R. G., Hwang, P. Y. C. Introduction to Random Signals and Applied KalmanFiltering[M].3rd ed.; New York: John Wiley&Sons:1997.
    [169] Gustavsson, P. Development of a MatLab based GPS constellation simulation fornavigation algorithm developments[D]. Lule University of Technology2005.
    [170] Montenbruck, O., GarciFernandez, M. Ionospheric Path Delay Models for SpaceborneGPS[R]. DLR, Nov2.,2005.
    [171] Lear, W. M. GPS Navigation for Low-Earth Orbiting Vehicles[R]. Houston, Texas: JohnsonSpace Center,1987.
    [172] Montenbruck, O. Kinematic GPS positioning of LEO satellites using ionosphere-free singlefrequency measurements[J]. Aerospace Science and Technology,2003,7(5), pp396-405.
    [173] Taylor, J., Barnes, E. GPS Current Signal-in-Space Navigation Performance[A], InProceedings of the ION2005National Technical Meeting[C], San Diego, California,January24-26,2005; pp385-393.
    [174] Gelb, A. Applied Optimal Estimation[M]. Cambridge, MA: The MIT Press:1974.
    [175] Zumberge, J. F., Bertiger, W. I. Ephemeris and Clock Navigation Message Accuracy. InGlobal Positioning System: Theory and Applications, Parkinson, B. W., Jr., J. J. S., Axelrad,P., et al., Eds. the American Institute of Aeronautics and Astronautics, Inc.: Washington, DC,1996; Vol.1, pp585-599.
    [176] Parkinson, B. W. GPS Error Analysis. In Global Positioning System: Theory andApplications, Parkinson, B. W., Jr., J. J. S., Axelrad, P., et al., Eds. the American Institute ofAeronautics and Astronautics, Inc.: Washington, DC,1996; Vol.1, pp469-483.
    [177] Jr., J. J. S. Satellite Constellation and Geometric Dilution of Precision. In GlobalPositioning System: Theory and Applications, Parkinson, B. W., Jr., J. J. S., Axelrad, P., etal., Eds. the American Institute of Aeronautics and Astronautics, Inc.: Washington, DC,1996; Vol.1, pp177-208.
    [178] Bauer, F. H., Moreau, M. C., Dahle-Melsaether, M. E., et al. The GPS Space ServiceVolume[A], In Proceedings of the19th International Technical Meeting of the SatelliteDivision of the Institute of Navigation (ION GNSS2006)[C], Fort Worth, TX, September26-29,2006.
    [179] Wertz, J. R. Autonomous Navigation and Autonomous Orbit Control in Planetary Orbits asa Means of Reducing Operations Cost[A], In5th Annual Syposium on Reducing the Cost ofSpacecraft Ground Systems and Operations[C], Pasadena, California, July8-11,2003.
    [180] Hosken, R. W., Wertz, J. R. Microcosm Autonomous Navigation System On-orbitOperation[A], In the18th Annual AAS Guidance and Control Conference[C], Keystone,CO, Feb.1-5,1995.
    [181]李捷,陈义庆.航天器自主导航技术的新进展[J].航天控制,1997,15(2), pp76-80,F003,11.
    [182] Lightsey, E. G. Going Up: A GPS Receiver Adapts to Space[J]. GPS World,2000,11(9), p30.
    [183] Honeywell. Space Integrated GPS/INS: Clearwater, FL: Honeywell International Inc., Nov,2006.
    [184] Grewal, M. S., Andrews, A. P. Kalman Filtering: Theory and Practice Using MATLAB[M].3rd ed.; Hoboken, New Jersey: John Wiley&Sons, Inc.:2008.
    [185] Maybeck, P. S. Stochastic Models, Estimation, and Control[M]. Florida: Academic Press,Inc.:1979.
    [186] Gleason, S., Gebre-Egziabher, D. GNSS Applications and Methods[M]. Norwood, MA:Artech House:2009.
    [187] LI, Q., WANG, L., ZHAI, C., et al. Time Synchronization Design Based on FPGA inIntegrated GPS/INS System[A], In Proceedings of the2009IEEE International Conferenceon Mechatronics and Automation[C], Changchun, China,9-12Aug.,2009; pp3769-3774.
    [188] Li, B., Rizos, C., Lee, H., et al. A GPS-slaved time synchronization system for hybridnavigation[J]. GPS Solutions,2006,10(3), pp207-217.
    [189] Lee, H. K., Lee, J. G., Jee, G.-I. Calibration of Measurement Delay in Global PositioningSystem/Strapdown Inertial Navigation System[J]. Journal of Guidance, Control, andDynamics,2002,25(2), pp240-247.
    [190] Skog, I., Handel, P. Effects of time synchronization errors in GNSS-aided INS[A], In IEEEPLANS, Position Location and Navigation Symposium[C], Piscataway, NJ08855-1331,United States,2008; pp82-88.
    [191] Niu, X., Han, S. Improving the Performance of Portable Navigation Devices by UsingPartial IMU Based GPS/INS Integration Technology[A], In Proceedings of the21thInternational Technical Meeting of the Satellite Division of the Institute of Navigation (IONGNSS2008)[C], Savannah, GA., September16-19,2008; pp2130-2136.
    [192] NovAtel, I. OEMV Family Installation and Operation--User Manual[EB/OL].http://www.novatel.com/Documents/Manuals/om-20000093.pdf.
    [193] Bhattacharyya, S., Gebre-Egziabher, D. Development and Validation of a Parametric Modelfor Vector Tracking Loops[A], In Proceedings of the22nd International Technical Meetingof the Satellite Division of the Institute of Navigation (ION GNSS2009)[C], Savannah, GA,September22-25,2009; pp186-200.
    [194] Bevly, D., Petovello, M., Lashley, M. What are Vector Tracking Loops, and What are TheirBenefits and Drawbacks? In Inside GNSS Magazine,2009; Vol.4, pp16-21.
    [195] Lashley, M., Bevly, D. M. Vector Delay/Frequency Lock Loop Implementation andAnalysis[A], In Proceedings of the2009International Technical Meeting of the Institute ofNavigation[C], Disney's Paradise Pier Hotel, Anaheim, CA, January26-28,2009; pp1073-1086.
    [196] Groves, P. D., Mather, C. J., Macaula, A. A. Demonstration of Non-coherent Deep INS/GPSIntegration for Optimised Signal-to-noise Performance[A], In Proceedings of the20thInternational Technical Meeting of the Satellite Division of the Institute of Navigation (IONGNSS2007)[C], Fort Worth, TX, September25-28,2007.
    [197] Li, Y., Groves, P., Lachapelle, G., et al. MEMS and Platform Orientation&DeepIntegration of GNSS/Inertial Systems. In Inside GNSS Magazine,2008; Vol.3, pp22-37.
    [198] Gustafson, D., Dowdle, J. Deeply Integrated Code Tracking: Comparative PerformanceAnalysis[A], In Proceedings of the16th International Technical Meeting of the SatelliteDivision of The Institute of Navigation (ION GPS/GNSS2003)[C], Portland, Oregon,September9-12,2003; pp2553-2561.
    [199] Crane, R. N. A Simplified Method for Deep Coupling of GPS and Inertial Data[A], InProceedings of the2007National Technical Meeting of the Institute of Navigation[C], SanDiego, California January22-24,2007; pp311-319.
    [200] Lashley, M., Bevly, D. M., Hung, J. Y. Performance Analysis of Vector Tracking Algorithmsfor Weak GPS Signals in High Dynamics[J]. Selected Topics in Signal Processing, IEEEJournal of,2009,3(4), pp661-673.
    [201] Parkinson, B. W., Jr., J. J. S., Axelrad, P., et al. Global Positioning System: Theory andApplications[M]. Washington, DC: the American Institute of Aeronautics and Astronautics,Inc.:1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700