黑带食蚜蝇Episyrphus balteatus De Geer捕食行为生态学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对捕食性昆虫捕食行为生态学的研究主要集中在瓢虫和草蛉,而有关捕食性食蚜蝇捕食行为生态学的报道几乎没有。黑带食蚜蝇Episyrphus balteatus De Geer幼虫是控制多种蚜虫的主要天敌之一。本文研究了黑带食蚜蝇的捕食行为、搜索行为及激发因子、饥饿耐受性、功能反应、捕食作用及影响因素、不同猎物对黑带食蚜蝇生长发育的影响等。旨在利用行为生态学理论准确评价黑带食蚜蝇的控蚜作用,并为黑带食蚜蝇的人工保护和利用提供理论依据。主要结果如下:
     1.黑带食蚜蝇各龄幼虫对麦长管蚜Macrosiphum avenae(F.)的捕食功能反应用Holling—Ⅱ型和新Holling—Ⅲ型功能反应模型拟合均较好。黑带食蚜蝇1龄、2龄和3龄幼虫对麦长管蚜的日最大捕食量分别为5.13头、26.00头和119.26头。以3龄幼虫的控制能力最大。利用黑带食蚜蝇防治麦长管蚜等害虫,具有很大的开发利用潜力。
     2.量化了黑带食蚜蝇的寻找效应、分摊竞争强度与其自身密度的关系。黑带食蚜蝇3龄幼虫存在着种内干扰,其寻找效应随着自身密度的增加而降低,其分摊竞争强度随着自身密度的增加而增加。黑带食蚜蝇1龄、2龄和3龄幼虫对麦长管蚜的最佳寻找密度分别为6.73头、10.09头、44.03头,这对田间利用黑带食蚜蝇幼虫防治麦长管蚜有一定参考价值。
     3.首次定量研究了环境温度和空间异质性对黑带食蚜蝇捕食作用的影响,明确了在一定范围(18℃—30℃),环境温度对黑带食蚜蝇的捕食量影响不大,超过此范围,温度对其捕食量影响较大;空间异质性对黑带食蚜蝇的捕食量影响较大,空间异质性越复杂,环境阻力越大,捕食作用率越低。
     4.首次通过饥饿试验表明生长发育0h、24h、48h、72h的黑带食蚜蝇幼虫在完全饥饿条件下平均分别可以存活1.53d、2.48d、3.06d、3.75d,耐饥饿能力强,在猎物密度比较低时,可以维持一定的种群数量。幼虫耐饥时间T和发育时间t之间呈正相关关系即:T=38.87+0.7238t;黑带食蚜蝇幼虫的耐饥时间随着个体发育时间的延长而增加。
     5.明确了麦长管蚜、禾谷缢管蚜Rhopalosiphum padi(L)、烟蚜Myzus persicae和绣线菊蚜Aphis citricola对黑带食蚜蝇的生长发育无不良影响,是其较适合的食物;而甘蓝蚜Brevicoryne brassicae饲喂的黑带食蚜蝇幼虫存活率低,常不能正常化蛹,是其不适宜的食物。
     6.黑带食蚜蝇幼虫的捕食行为过程一般是:搜索—捕捉—取食—清洁—休息—搜索。
     7.确定了黑带食蚜蝇幼虫的搜索行为可由取食前的广域型搜索向取食后的地域
    
    集中型搜索转换。黑带食蚜蝇幼虫取食后的搜索速度、直线距离和领域范围搜索面积
    均显著小于取食前。这种搜索行为方式是黑带食蚜蝇幼虫与呈聚集分布的蚜虫长期协
    同进化过程中逐渐形成的,以此提高其搜索效率,增加捕获蚜虫的机会。
     8.明确了和蚜虫接触、完全取食1头蚜虫及和沾有蚜虫体液的琼脂块接触等食物
    刺激均可激发黑带食蚜蝇幼虫搜索行为由广域型转换为地域集中型,而和琼脂块接触
    则不能刺激其搜索行为转换。取食高低龄若蚜及按猎物大小不同顺序取食,其GUT
    值间差异不显著,表明取食时间的长短、取食量和猎物大小都不是决定其地域集中型
    搜索持续时间长短的决定因子。
     9.首次明确了黑带食蚜蝇幼虫的捕食行为属于依猎物密度变化的混合型。黑带食
    蚜蝇幼虫对供试猎物的捕食行为随猎物密度的变化而逐渐转变。在猎物密度低时,搜
    索活动提高,处置时间较高;在猎物密度高时,搜索活动则下降,处置时间较低。这
    种捕食策略是黑带食蚜蝇在长期的协同进化过程中形成的,可以根据外界环境条件的
    变化调节其捕食过程中时间与能量消耗的分配,以获得最大能量,减少生存风险。因
    此,将蝇蚜比调控在一定水平,可更有效地发挥黑带食蚜蝇的控蚜作用。
At present, the mainly studying of foraging behavioural ecology is about ladybird and lacewing, and less about aphidophagous hoverfly. The predaceous syrphid fly, Episyrphus balteatus De Geer is one of the significant predators for the control of aphides. In this paper, predation, starvation endurance ability, foraging behavior of E. balteatus and the effect of different aphides on its growth and development, have been studied. The main results are as follows:
    1. The functional response of the first, second and third instar larvae of E. balteatus preying on Macrosiphum avenae (F.) show the Rolling II type with better fitting. The daily maximum number of M. avenae preyed theoretically by the first, second and third instar larva of E. balteatus are 5.13,26.00 and 119.26 aphids respectively.
    2. There are mutual interference among the third instar larvae of Episyrphus balteatus De Geer , and the searching efficiency decreases and the intensity of scrambling competition increases with increase of its density. The best searching densities of the first, second and third instar larva of E. balteatus are 6.73,10.09 and 44.03 aphids respectively.
    3. The predation ratio of E. balteatus is the lowest at 14 癈 and the predation ratio at 18 C, 22 C, 26 C and 30 C are not different. Space heterogeneity has the great effects on predation of E. balteatus. The more wheat leaves the larvae encounter, which means more interference is met during predation, the lower the predation efficiency is observed.
    4. In the situation of lack of prey, the average survival time of E. balteatus larvae, whose growth stages are 0 h, 24 h, 48 h and 72 h, are 1.53 d, 2.48 d, 3.06 d and 3.75 d respectively. The higher starvation endurance ability is beneficial to the increase of survival opportunities, the increase of opportunities encountering prey as well as the control of aphid.
    5. The E. balteatus larvae fed by Brevicoryne brassicae (Linnaeus) can not complete their individual development. The larvae fed by Macrosiphum avenae (F.), Rhopalosiphum
    
    
    padi (L.), Myzus persicae (Sulzer) and Aphis citricola have not some difference on the larva weight, the pupa weight, growth and development.
    6. The most frequent sequence of the foraging behavior of E. balteatus is: searching ?capture ?consumption - cleansing - break - searching.
    7. The searching behavior of the third instar larva of E. balteatus has been studied. The results show that the total rectilinear distance between stops in 0-15, 15-30, 30-45, 45-60 and 60-75 seconds before feeding is significantly longer than that after feeding respectively. The searching speed in 0-15,15-30, 30-45,45-60 and 60-75 seconds before feeding is 1-4 times quicker than that after feeding, which varies very little before feeding, but the longer the time is after feeding, the quicker the searching speed is. The total rectilinear distance from food to stops is significantly longer and the searching area covered by the larvae is 3-12 times larger before feeding than after feeding. It is believed that the search behavior of the third instar larva of E. balteatus De Geer is extensive search before feeding, and is area-concentrated search after feeding.
    8. Contacting with aphid, eating an aphid and contacting with agar block with aphid body fluid on it can arouse searching behavior of E. balteatus De Geer larva from extensive search to area-concentrated search , and contacting with agar block can not. The GUT has been measured after each of the following 4 feeding stimuli was provided: a) eating a large aphid; b) eating a small aphid; c) at first, eating a small aphid, continuously a large aphid; d) at first, eating a large aphid, continuously eating a small aphid. The deference between the GUT after 4 feeding stimuli are not significant. It is believed that the GUT is not determined by the time, the amount or the size of the prey consumed.
    9. The foraging behavior of E. balteatus De Geer larvae changes gradually at different aphid densities. When the aphid density changed from low to high, the
引文
[1]尚玉昌.动物行为学讲座(1—24).生态学杂志,1984~1990
    [2]邹运鼎,陈高潮.异色瓢虫雄成虫的食饵搜索行为.应用生态学报,1997,8(4):399~402
    [3]戈峰,丁岩钦.龟纹瓢虫对棉蚜的捕食行为.昆虫学报,1995,38(4):436~441
    [4]邹运鼎,王弘法,王勇.龟纹瓢虫成虫的食饵搜索行为.生态学报,1988,8(4):336~341
    [5]王根.捕食性瓢虫的觅食行为.昆虫知识,1991,28(5):316~319
    [6]李超,丁岩钦,马世骏.草间小黑蛛对棉铃虫的捕食作用及模拟模型的研究 I.生态学报,1982,2(3):239~254
    [7]邹运鼎.龟纹瓢虫成虫对棉蚜的捕食作用.生物数学学报,1986,(1):64~69
    [8]邹运鼎.异色瓢虫若虫对麦二叉蚜的捕食作用.应用生态学报,1996,7(2):197~200
    [9]邹运鼎,孟庆雷,陈高潮.干扰作用及空间异质性对七星瓢虫成虫捕食作用的影响.昆虫学报,1999,42(1):52~56
    [10]邹运鼎,李桂亭,周夏芝.饥饿对大草蛉雄成虫捕食作用的影响.应用生态学报,2000,11(6):848~850
    [11]周集中,陈常铭.拟环纹狼蛛对褐飞虱的捕食作用及其模拟模型的研究.生态学报,1986,6(3):238~247
    [12]陈润田.亚非草蛉的生物学及其对柑橘潜叶蛾幼虫的捕食效应研究.生态学报,1987,7(1):57~65
    [13]李超,丁岩钦,马世骏.草间小黑蛛对棉铃虫的捕食作用及模拟模型的研究 Ⅱ.生态学报,1982,2(4):363~374
    [14]丁岩钦,兰仲雄,陈玉平.天敌—害虫系统中寻找效应数学模型的研究.生态学报,1983,3(2):141~148
    [15]周集中,陈常铭.捕食者对猎物选择性的数量测定方法.生态学报,1981,7(1):50~55
    [16]赵鼎新.黑襟毛瓢虫对棉蚜的数值反应.生态学报,1987,7(2):146~153
    [17]兰仲雄,丁岩钦,陈玉平.天敌—害虫系统中两种天敌与一种害虫相互作用形式的几个数学模型.生态学报,1985,5(1):43~53
    [18]杜永均,严福顺.植物挥发性此生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理.昆虫学报,1994,37(4):233~250
    [19]候照远,严福顺.寄生蜂寄主选择行为研究进展,昆虫学报,1997,40:94~107
    [20]韩宝瑜.茶蚜体表漂洗物对天敌的引诱活性及组分分析.昆虫学报,2001.44(4):541~54
    [21]娄永根,程家安.植物的诱导抗虫性.昆虫学报,1997,40:320~331
    [22]韩宝瑜,陈宗懋.蚜茧蜂对不同味源的选择性.茶叶科学,1999,19(1):29~34
    [23]张广学,钟铁森.中国经济昆虫志 第二十五册,同翅目,蚜虫类(一).北京:科学出版社,1983
    [24]韩宝瑜,陈宗懋.七星瓢虫和异色瓢虫四变种成虫对茶蚜蜜露的搜索行为和蜜露的组分分析.生态学报,2000,20(3):495~501
    
    
    [25]杨集昆,成新月,黄春梅冲国蝇类:上册.北京:科学技术出版社,1998
    [26]杨友兰.山西蚜蝇志.中国科技出版社,2002
    [27]王文才,刘书茂.辽宁地区食蚜蝇种类、习性及对蚜虫控制的初步观察.沈阳农学院学报,1982,(2):73~79
    [28]施达三.食蚜蝇幼虫研究Ⅰ.昆虫学研究集刊,1981,(2):269~274
    [29]施达三.食蚜蝇幼虫研究Ⅱ.昆虫学研究集刊,1982(3):283~287
    [30]杨友兰.晋中捕食性食蚜蝇幼虫分类研究.山西农业大学学报(植保专刊),1991,24~28
    [31]李萍,刘绍友.关中地区常见5种食蚜蝇幼虫的识别.陕西农业科学,1996(3):35~36
    [32]郑祥义,原国辉.麦田常见食蚜蝇幼虫的鉴别.昆虫知识,1996,33(4):196~197
    [33]李学燕,罗佑珍.农田常见食蚜蝇幼虫种类鉴定.云南农业科技,2001,(2):28
    [34]孙彩虹.天敌昆虫图册双翅目,食蚜蝇亚科.科学出版社,1978
    [35]刘绍友.陕西农业害虫天敌双翅目,食蚜蝇科.天则出版社,1990
    [36]杨奉才,迮福惠.大灰食蚜蝇的生物学及其对麦蚜控制效应的研究.植物保护.1990,16(4):14~15
    [37]李定旭,田娟,张志勇.黑带食蚜蝇生物学特性及捕食作用的研究.昆虫天敌,1996,18(1):26~28
    [38]何继龙,孙兴全.黑带食蚜蝇生物学的初步研究.上海农学院学报,1992,10(1):35~43
    [39]李兆华,李亚哲.甘肃蚜蝇科图志.北京中国展望出版社,1990
    [40]马仲实.邯郸地区食蚜蝇初步观察.昆虫天敌,1985,7:155~158
    [41]熊汉忠.大灰食蚜蝇幼虫饲养及温室释放试验.生物防治通报,1992,8(1):6~9
    [42]熊汉忠.斜斑鼓额食蚜蝇成虫发生动态、产卵习性及其控制温室蚜虫的作用.生物防治通报,1991,7(2):49~52
    [43]杨友兰,王红武,王全寿.山西菜田捕食性食蚜蝇优势种及其对菜蚜的控制效果.中国生物防治,2002,18(3):124~127
    [44]李学燕,罗佑珍.大灰食蚜蝇3种蚜虫的捕食作用研究.云南农业大学学报,2001,16(2):102~104,110
    [45]罗佑珍,李学燕.黑带食蚜蝇对烟蚜的捕食功能反应.云南农业大学学报,2000,15(2):109~111
    [46]薛宝东,高俊峰.长白山西南坡大豆田食蚜蝇种类及幼虫对大豆蚜的控制作用.吉林农业科学,2000,25(4):33~34
    [47]汪有奎,李晓明.祁连山北坡林区蚜虫及食蚜蝇种类.中国生物防治,1996,12(2):91~92
    [48]高峻峰,姜连峰.四条小食蚜蝇控制蚜虫作用及生物学特性观察.吉林农业科学,1996,(2):60~61
    [49]陆文敏,曲学成月斑鼓额食蚜蝇助迁的研究.林业科技,1995,20(4):27~28
    [50]戴轩.贵州东部地区茶园的食蚜蝇.中国生物防治,1995,11(4):184~184
    [51]孙兴全,陈文龙,利用大灰食蚜蝇和异色瓢虫幼虫共同防治草莓和金盏菊蚜虫的初步研究.上海农学院学报,1995,13(3):232~233
    [52]李清西.中国食蚜蝇亚科分类研究进展.八一农学院学报,1994,17(1):18~26
    [53]陆文敏,罗瑞聪.月斑鼓额食蚜蝇有效积温的研究.林业科技,1994,19(4):25~26
    [54]陆文敏,邵显珍.月斑鼓额食蚜蝇幼虫捕食落叶松球蚜的功能反应.森林病虫通讯,1994,(4):24~25
    
    
    [55]何继龙,储西平.蚜蝇的饲养和利用评价.上海农学院学报,1994,12(2):79~83
    [56]张润生.侧柏大蚜每年交替种群的大小以及食蚜蝇和病害对它的影响.国外林业,1993,23(2):23~28
    [57]杜予州,陈学忠.用不同蚜虫作猎物对大灰食蚜蝇生长发育的影响.生物防治通报,1993,9(3):111~113
    [58]高峻峰,秦永春.长白山区四条小食蚜蝇自然越冬调查与人工保护越冬试验.生物防治通报,1993,9(3):142~143
    [59]戴轩.狭带食蚜蝇的饲养研究初报.昆虫天敌,1993,15(2):68~72
    [60]何断龙,孙兴全.利用食蚜蝇幼虫防治蔬菜及菊花上蚜虫的初步试验.上海农学院学报,1992,10(1):96~98,22
    [61]杨承泽,何运转,李腾武.麦田食蚜蝇种群组成及生物学特性研究.河北农业大学学报,1991,17(增刊):167~172
    [62]张俊霞,朱明生.肖蛸科蜘蛛的捕食行为.蛛形学报,2002,11(1):61~64
    [63]陈亦根,熊锦君.捕虱管蓟马的捕食、交配和产卵行.华东昆虫学报,2002,11(1):63~67
    [64]陈文龙,赵志模.束管食螨瓢虫对桔全爪螨的捕食作用研究.西南农业大学学报,1994,16(1):27~31
    [65]陈文龙,李隆术.束管食螨瓢虫对不均匀分布猎物的捕食行为.上海农学院学报,1993,11(3):209~213
    [66]陈文龙,赵志模.束管食螨瓢虫对桔全爪螨的捕食作用研究.西南农业大学学报,1994,16(1):27~31
    [67]李欣,刘树生.植物挥发物及寄生经历在半闭弯尾姬蜂寄主搜索行为中的作用.浙江大学学报,2002,28(3):293~297
    [68]刘雨芳,古德祥.荔蝽卵平腹小蜂对寄主的搜索行为.中国生物防治,2000,16(1):1~4
    [69]王振营,Hass.,SA.欧洲玉米螟雌蛾鳞片提取液对玉米螟赤眼蜂寄主搜索行为的影响.植物保护学报,1996,23(4):373~374
    [70]张学祖.植物、植食性昆虫及捕食者种间化学信息物质.昆虫知识,1994,3 1(1):52~55
    [71]张俊霞,朱明生.肖蛸科蜘蛛的捕食行为.蛛形学报,2002,11(1):61~64
    [72]靖湘峰,雷朝亮.利它素对中华通草蛉不同龄期幼虫捕食行为的影响.昆虫天敌,2001,23(4):166~169
    [73]赵惠燕,汪世泽.麦蚜天敌自然种群数值反应研究.西北农业大学学报,1991,19(3):32~35
    [74]董应才,汪世泽.七星瓢虫对不同龄级棉蚜的选择性及功能反应.西北农业大学学报,1989,17(增):67-71
    [75]董应才,汪世泽.七星瓢虫幼虫对两种麦蚜的数值反应.生态学报.1994,14(4):387~390
    [76]汪世泽,李平.七星瓢虫捕食棉蚜的功能反应.西北农业大学学报,1986,14(4):13~16
    [77]汪世泽,夏楚贵.Holling圆盘方程的改进.生态学杂志,1987,6(6):17~18
    [78]汪世泽,夏楚贵.Holling-Ⅲ型功能反应新模型.生态学杂志,1988,7(1):1~3
    [79]谢寿安,袁锋.我国昆虫生态学的研究与展望.西北林学院学报,2002,17(1):51~54
    [80]巫厚长,邹运鼎.不同饥饿程度的龟纹瓢虫成虫对烟蚜的捕食作用.应用生态学
    
    报,2000,11(5) :749-752
    [81] Auslander, D. et al. Dynamics of interacting populations. J. Franklin Inst.1974, 297: 345-376
    [82] Banks, C. J.The behaviour of individual coccinellid larvae on plants. Br. J. Anim.Behav.5:12-24
    [83] Bartlett, M. S. On theoretical models for competitive and predatory biological systems. Biometrika, 1957,44:27-42
    [84] Barlow,C.A. On the biology and reproductive capacity of Syrphus corollae Fabr. in the liboratory. Entom. Exp.et Appl. 1961,4:91-100
    [85] Beddington, J. R. Mutual interference berween parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 1975, 44:331-340
    [86] Begon M., J.L. Harper, C.R.Townsend. Ecology: individuals, populations and Communities. Blackwell Scientific Publications, 1986,1990,1996
    [87] Boo K S, Chung I B, Han K S, et al. Responses of the lacezoing Chrysopa cognata to pheromones of its aphid prey. J. Chem. Ecol., 1998,24:631-643
    [88] Bouchard Y and Cloutier C. Honeydew as a source of host-searching kairomones for the aphid parasitoid Aphidius nigripes. Can. J. Zool., 1984,62:1513-1520
    [89] Branquart E., Hemptinne J.L., Bauffe C., Benfekih L. Cannibalism in Episyrphus balteatus (Dipt.: Syrphidae). Entomophaga, 1997,42(1) : 145-152
    [90] Bruin J, Dicke M, Sabelis M W. Plants are better protected against spidermites after exposure to volatiles from in fested conspecifics. Experientia. 48(5) :525-529
    [91] Budenberg W J, Powell W and Clark S J. The influence of aphids and honeydew on the leaving rate of searching aphid parasitoids from wheat plants. Entomol. Exp. Appl., 1992,63:259-264
    [92] Burman,K.Syphid migration in mountair regions :Observation from North Tyrol.Ber.Natur-Med.ver Innsb.l978,65:129-138
    [93] Cater M. C., Dison, A. F. J. Anm. Ecol., 1982, 51:757-767
    [94] Carter M C and Dixon A F G. Honeydew: an arrestant stimulus for cccinellids. Ecol. Entomol., 1984,9:383-387
    [95] Chamov.EL.Optimal foraging,the marginal value theorem.Theorm.Pop.Biol,1976,9:129-136
    [96] Charnov E L. American Naturalist, 1976, 110:141-151
    [97] Cook R R,cockrell B J.Predator ingestion rate and its bearing on feeding time and the theory of optionmaldiets.J.Anim.Ecol.,1978,47:547
    [98] National Academy of Science.Research Briefings 1987. Report of the Research of Briefing Panei on Biological Control in Managed Ecosystem.Washington,D.C.:National Academy Press,1998
    [99] Dawson G W, Griffiths D C, Janes N F, et al. Identification of an aphid sex pheromone. Nature, 1987,325:614-616
    [100] Evenson, P. The relative activity and functional response of Phytoseiulus persimiliim (Acarina:
    
    Phytoseiidae) and Tetranychus urtica (Acarina: Tetranychidae): The effect of tmperature. Can. Ent. 1930,112:17-24
    [101] Formanowicz D R Jr. Foraging tacties of larvae of Dytiscus vertixalis (Coleoteta: Duliscidae): the assessment of prey density. J. Anim. Ecol. 1982,51: 757-767
    [102] Formanovicz D R Jr. Bradley P J. Flunctuations in prey density: effects on the foraging tractics of scolopendtid centipedds. Anim. Behav,1987,35:453-461
    [103] Gabrys B J, Gadomski H J, Klukowski Z, et al. Sex pheromoe of cabbage aphid Brevicoryne brassicae: Identification and field trapping of male aphids and parasitoids.J. Chem. Ecol., 1997, 23:1881-1890
    [104] Greathead,D.J.Bulletin of the Royal Entomological Society,l 994,18(4) :181-199
    [105] Hardie J, Nottingham S F, Powel W et al. Synthetic aphid sex pheromone lures female parasitoids. Entomol. Exp. Appl. ,1991,61:97-99
    [106] Hardie J,Hick A J, Holler C, et al. The responses of Praon spp. Parasitorids in the field. Entomol. Exp. Appl., 1994,71:75-99
    [107] Hassell, M. P. Arthropod predator-prey systems. In " Theoretical Ecology Principles and Applications" .(Ed. By R.M. May),1976
    [108] Hassell, M.P. and G. C. Varley. New inductive population model for insect parasites and its bearing on biological control. Nature, London. 1969, 223:1113-1137
    [109] Hassell, M.P. and H. N. May. Aggtregation of predators and insect parasites and its effect on stability. J. Anim. Ecol. 1974, 43:567-594
    [110] Hodges C. M. American Naturalist, 1981 : 1166-1171
    [111] Holling C. C. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol., 1959,91:293-320
    [112] Holling, C. S. The functional response of invertebrate predators to prey density. Mem. Ent. Soc. Can. 1966, 48
    [113] H.Sadehi, F.Gilbert. Oviposition preferences of aphidophagous hoverflies. Ecological Entomology,2000,25:91-100
    [114] Inove, T. Res. Popul. Ecol., 1983, 25:81-104
    [115] Jaeger R G, et al. Foraging tractics of a terretrial salamander: choice of diet in structurally simple environments .Am. Nat.,1981, 117:639-664
    [116] Kreb,J. R,Ryan, J.C., Charnov, E. L. J. Anim. Behav., 1974,22:953-964
    [117] Leslie, P. H. A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika,1958,45:16-31
    [118] Lima, S. T. Oecologia, 1983,58:232-237
    [119] MacLeod A. Attraction and retention of Episyrphus balteatus De Geer (Diptera: Syrphidae) at an
    
    arable field margin with rich and poor florai resources. Agriculture Ecosystems & Environment. 1999, 18(3) :237-244
    [120] May, R. M. 1973 Stability and Comlexity in Modei Ecosystems. Princeton University press, Princeton, New Jersey, U. S. A. ,1973
    [121] May, R. M. 1978 Host-parasitoid systems in patchy environments: A phannmenlogical model. J. Anim. Ecol. 47:833-843
    [122] Mcardle, B. H. et al. Effects of prey-size and predator-instar on the predation of Daphnia by Notoneta. Ecol. Ent. 1979, 4:267-275
    [123] McNair, J. N. American Naturalist, 1982, 119:511-529
    [124] Nakamuta, K.Swichover in searching behavior of the ladybiitle, Coccinella soptempunctata L. caused by prey consumption. Appl. Ent. Zool. 17:501-506
    [125] National Academy of Science.Research Briefings 1987. Report of the Research of Briefing Panel on Biological Control in Managed Ecosystem.Washington,D.C.:National Academy Press, 1998
    [126] Norberg R A.AN ecological theory on foraging time energetics and choice of optimal foodwearching method.J.Anim.Ecol., 1977,46:511-529
    [127] Pandian, T. J. et al. Influence of temperature and body weight on mosquito predation by the dragonfly nymph Mesogomphus Lineatus. Hydrobiologia. 1979, 62:99-104
    [128] Powell W and Zhang Z-L. The reactions of two cereal aphid parasitoeds, Aphidius uzbeckistomicus and A. ervi to host aphids and their food plants. Physiol. Entomol., 1983,8:439-443
    [129] Pulliam.H R.On the theory of optimal diets.Am.Nat, 1974, 108:59-74
    [130] Rogers, D. J. Random search and insect population models. J. Anim. Ecol. 1949, 41:369-383
    [131] Sadeghi H. Gilbert F. The effect of egg load and host deprivation on oviposition behaviour inaphidophagous hoverflies.Ecological Entomology,2000,25(1) :101-108
    [132] Sih A. Optimal foraging, partial comsumption of prey.Am.Nat., 1980,116;281-290
    [133] Schoener T W. Theory of feeding strategies. A. Rev. Ecol. Syst, 1969,2:3
    [134] Schuster D J and Starks K J. Response of Lysiphlebus testaceipes in an olfactometer to a host and a non-host insect and to plants. Environ. Entomol., 1974,3:1034-1035
    [135] Schuster D J and Starks K J. Preference of Lysiphlebus testaceipes for greenbug resistant and susceptible small grain species. Environ. Entomol., 1975,4:887-888
    [136] Shneider, F., Bionomics and physiology of aphidophagus Syrphidae. Ann.Rer.Ent.1969,14:103-124
    [137] Takabayashi J, Takahashi S, Dicke M, Poshumus M A. Derelopmental stage of herbivore Pseudaletia separata affects production of herbivore-induced synoomone by corn plants. J Chem Ecol, 1995, 21(3) :273-287
    [138] Tawfik,M.F.S.,et al. Studies on the life history and description of the immature forms of the Egyptian aphidophagus syrphids. Bull. Soc. Ent.Egypte. 1974,58:1-16
    
    
    [139] Thompson, D. J. Towards a predator-prey modei incorporating age structure: The effects of predator and prey size on the predation of Diphnia magna by Ischnura elegans. J. Anim. Ecol. 1975,44:907-916
    [140] Turlings TCJ.Tumlinson JH. Systemic release of chemical signals of herbiore-injured corn. Proc. Nat. Acad. Sci., 1992 ,89(17) :8399-8402
    [141] Turlings T C J, Tumlinson J H, Lewis W J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 1990,250:1251-1253
    [142] Wicremasinghe M G V and Van Emden H F. Reactions of adult female parasitoids, particularly Aphidius rhopalosiphi, to volatile cues from the host plants of their aphide prey. Physiol. Entomol., 1992,17:297-304
    [143] Wiegert R G,Petersom C E.Energy transfer in insects. Ann.Rov.Entomol,1983,28:455-486
    [144] Vet L E M and Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol., 1992,37:141-172
    [145] Vison S B, Eizen G W, Williams H J. The influence of volatile plant allelochemicals on the third trophic level (Parasitoids) and their herbivorous hosts. In: Labeyrie, V., Fabres, G., lachsise, D. eds. Insects Plants. 1986, 109-114
    [146] Visser J H. Host odor perception in phytophagous insects. Annu. Rev. Entomol., 1986,31:121-144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700