重金属Pb对芨芨草种子萌发及其幼苗生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染已日益严重,铅是一种污染范围广、稳定不可降解的污染物,在环境中可长期积累。所以,植物在重金属Pb胁迫下的损伤与抗性机制研究已成为研究热点。本研究以禾本科植物芨芨草为试材,采用石蜡制片法、透射电子显微镜、同工酶电泳、蛋白质双向电泳等方法分析影响芨芨草抵抗Pb的重要因子,为选择修复重金属能力强的植物提供科学的依据。
     重金属Pb对芨芨草种子萌发有很大的抑制作用,对幼苗生长发育有不同程度的影响,表现为幼苗低矮、叶片失绿、根长度变短或不生长等特点。研究表明,Pb对芨芨草根皮层细胞有一定的影响,而淀粉粒有明显的积累。超显微结构显示,芨芨草细胞内细胞核、线粒体、叶绿体等细胞器受到伤害,而细胞壁的结合作用和液泡的区域化作用可缓解重金属毒害,从而使芨芨草能够进行正常的生理活动。
     芨芨草叶片的叶绿素、脯氨酸、丙二醛及可溶性总糖含量的测定结果表明:在Pb2+浓度为0mg·L-1-200 mg·L-1范围内,随Pb浓度上升各数值分别有明显的变化,各指标变化不同步。Pb对芨芨草叶绿素含量有极大的抑制作用;而脯氨酸则刚好相反,随Pb处理浓度升高,脯氨酸含量呈上升的趋势;丙二醛、可溶性总糖的含量最初都随浓度增加而逐渐增大,但随着Pb处理时间的延长、浓度的升高含量有所降低,160 mg·g-1是Pb处理芨芨草幼苗丙二醛、可溶性总糖含量升高的极限浓度。同工酶酶谱分析表明,过氧化物酶在Pb浓度为200 mg·L-1时仍能发挥巨大作用;在Pb浓度160 mg·L-1处淀粉酶活性最强; ATP酶抗重金属Pb总体活性也呈上升趋势。各酶抵抗Pb胁迫具有重要的作用。蛋白质双向电泳结果表明,蛋白点总数呈减少的趋势,其中3个蛋白点逐渐减弱至消失,9个蛋白点消失,9个新蛋白点出现,低分子量的蛋白在抵抗重金属Pb胁迫中发挥着重要的作用。
     上述结果均表明,不同浓度Pb处理下芨芨草出现了相应的胁迫生理反应,这种影响与Pb浓度及处理时间有一定的相关性。重金属对植物的毒害是对植物细胞生理活动和生化反应的整体伤害,是多种生理过程的综合反应。
The pollution of heavy metals has now become more and more severe. Pb is a kind of contamination which is fargoing, stable, nondegradation and lasting accumulated.So the possible recovery mechanism of plants and the harm and resistance in the heavy metal Pb has become a recent hot research topic. Achnatherum splendens (Trin.) Nevskia as the main experimental material, the main factor of plant resisting heavy metal Pb was analyzed by using paraffin microtome section,transmission electron microscopy (TEM),gel electrophoresis of isozyme, and two-dimensional gel electrophoresis of total protein, it may offer for choosing plant which has strong capability of restore.
     The results showed that heavy metal Pb seriously inhabited seed germination of Achnatherum splendens (Trin.) Nevskia and affected seedling growth to various certain extents,it was showed that low seedlings, nongreen leaves , shorter root or can’t growing.Research indicates that cortex cell was affected by Pb stress ,starch grain accumulated evidently nevertheless.Ultrastructure showed Pb harmed to some organelles such as cell nucleus, mitochondria ,chloroplast.But combination of cell walls and separating of vacuoles relieved the harm of heavy metal,which made physiological activity of Achnatherum splendens (Trin.) Nevskia in a normal condition.Result of determination of some physiological indexes,such as chlorophyll,dissociated proline, malondialdehyde, soluble total sugar and isoenzyme were showed: all of these indexes changed as the concentration of Pb2+ solution increased evidently when the concentration was in 0mg·L-1-200 mg·L-1,each indexes was not changed at the same time.Pb stress restrain the content of chlorophyll of Achnatherum splendens (Trin.) Nevskia.Whereas,the content of dissociated proline elevated with the increased concentration of Pb2+. Malondialdehyde, soluble total sugar elevated with the concentration of Pb2+ solution increased at first, but the content of malondialdehyde and soluble total sugar reducing when the time going and the concentration elevating,then it reaching a utmost limit of their content when the concentration of Pb being 160 mg·g-1.Isoenzyme zymogram analysis showed POD was put into fullplay when the Pb concentration was in 200 mg·L-1.The activity of amylase was the most strong in 160 mg·L-1. The total anti-heavy metal activity of adenosinetriphosphatase has raised.Each enzyme played a great role for resisting Pb stress.The two-dimensional gel electrophoresis result of protein showed three spots disappearing gradually,nine ones disappearing and nine ones appearing in all of these spots.The protein which has low molecular weight palyed a important role for resisting Pb stress.
     Above results showed the corresponding physiological reacting of Achnatherum splendens (Trin.) Nevskia was appear in the different concentration of Pb2+.The effect and the concentration of Pb and disposal time are interrelated.Virus of plant by heavy metals is harm to the whole cell physiological activity and biochemistry reacting ,also the virus was the synthetized reacting of so many kinds of physiological process.
引文
[1]安卯柱,高娃,王春兰,刘德福,刘桂香,刘艾.芨芨草的自然—经济特性及其利用与培育[J].中国草地,2002,24(5):73-76.
    [2]曹得菊,王光宇,汪琰.安徽铜陵矿区优势植物的重金属富集特性研究[J].农业环境科学学报,2005,24(6):1079-1082.
    [3]程积民,万惠娥,王静,赵艳云.芨芨草在黄土边坡治理中的应用效果[J].中国水土保持科学,2006,2(4):13-18.
    [4]代全林,袁剑刚,方炜,杨中艺.玉米各器官积累 Pb2+能力的品种间差异[J].植物生态学报, 2005,29(6):992-996.
    [5]董丽,路艳红,黄亦工.常绿阔叶植物越冬期间叶片水分及淀粉粒的动态变化[J].北京林 业大学学报,2002,23(5):76-81.
    [6] 董 社 琴 . 芨 芨 草 的 生 物 学 特 性 与 生 态 经 济 效 益 [J]. 科 技 情 报 开 发 与 经济,2004,14(4):190-191.
    [7]付世景,宗良纲,张丽娜,孙静克.镉、铅对板蓝根种子发芽及抗氧化系统的影响[J].种子,2007,26(3):14-17.
    [8]范文波,雷雨,莫亮,郑耀凯,陈兵,刘丽英.芨芨草改善沙漠小气候的研究[J].石河子大学学报(自然科学版),2006,3(2):213-216.
    [9] 范 文 波, 李 小 娟, 刘 丽 英 . 盐碱 地 人 工种 植 芨 芨草 效 益 分 析 [J]. 水 土保 持 研究,2007,14(4):37-38.
    [10]郭笃发.环境中铅和镉的来源及其对人和动物的危害[J].环境科学进展,1994,2(3):71-76.
    [11]韩露,张小平,刘必融.香根草对重金属铅离子的胁迫反应研究[J].应用生态学报,2005,16(11):2178-2181.
    [12]蒋先军.重金属污染土壤的植物修复研究[J].土壤,2000,32(2):71-74.
    [13]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169-174.
    [14]刘明久,李淦,肖万红.Pb2+胁迫对水稻种子萌发及幼苗生长影响的研究[J].种子,2006, 25(12):44-46.
    [15]刘秀梅,聂俊华,王庆仁.Pb 对农作物的生理生态效应[J].农业环境保护,2002,2(3):201-203.
    [16]李荣春.Cd、Pb 及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,24(2):238-242.
    [17]李军超,陈一鹗,康博文.宁夏盐池县草原常见植物同化枝解剖结构观察[J].西北植物学报,1989,1(9):191-196.
    [18]李勤奋,彭少麟,徐信兰,李志安,王峥峰.矿区不同重金属污染梯度下芒草叶绿体及其它超微结构的变化[J].中山大学学报(自然科学版),2006,45(16):79-82.
    [19]李海英,孙国君,王晓兰,杨志平.碱处理对芨芨草叶片纤维性物质在绵羊瘤胃降解率的影响[J].石河子大学学报(自然科学版),2005,3(2):19-21.
    [20]李国民.人工种植芨芨草和建设国家生态工业(造纸)示范园区[J].纸和造纸.2002,4(6):12-13.
    [21]龙健,黄昌勇,腾应.天台铅锌矿区香根草等几种草本植物的重金属耐性[J].应用与环境生物学报,2003,9(3):226-229.
    [22]雷梅,岳庆玲,陈同斌.湖南柿竹园土壤重金属含量及植物吸收特征[J].生态学报,2005,25(5):1146-1151.
    [23]马文丽,金小弟,王转花.铅胁迫对乌麦种子萌发及幼苗生长的影响[J].山西大学学报(自然科学版),2004,27(2):202~204.
    [24]彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(ZeamaysL)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    [25]秦天才,吴玉树,王焕校. Cd、Pb 及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
    [26]孙波,骆永明.超积累植物吸收金属机理的研究进展[J].土壤,1999,31(3):113-119.
    [27]孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    [28]施国新,杜开和.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
    [29]束文圣,叶志鸿,张志权.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003,23(8):1629-1639.
    [30]吴龙华,骆永明.铜污染土壤修复的有机调控研究[J].土壤,2000,32(2):67-70.
    [31]王艳,王金达,刘汝海.土壤铅的浓度与油菜生长相互影响的研究[J].农业环境科学学报,2004,23(1):47-50.
    [32]王慧忠.植物根系内活性氧清除酶对铅胁迫的反应[J].重庆环境科学,2003,25(10):23-24.
    [33]王慧忠,张新全,何翠屏.Pb 对匍匐翦股颖根系超氧化物歧化酶活性的影响[J].农业环境科学学报,2006,25(3):644-647.
    [34]王广林,王立龙,李征.杂草对土壤重金属的富集与含量特征研究[J].生态学杂志,2005, 24(6):639-643.
    [35]王库.芨芨草水土保持功能的初步研究[J].水土保持研究.2001,8(2):157-159.
    [36]王库,徐礼煜,于天富.水土保持植物—芨芨草对土壤养分的影响[J].土壤,2002,3: 170-172.
    [37]王静,程积民,万惠娥,方锋.黄土高原芨芨草土壤水分特征及水分利用效率研究[J].干旱气象.2004,22(4):51-55.
    [38]徐勤松,施国新,杜开和.Hg2+对睡莲幼叶细胞超微结构的损伤[J].南京师大学报(自然科学版),2002,25(1):33-37.
    [39]徐勤松,施国新,杜开和.六价铬污染对水车前叶片生理生化及细胞超微结构的影响[J].广西植物,2002,22(1):92-96.
    [40]严重玲,洪业汤. Cd、Pb 胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报, 1997,17(5):488-492.
    [41]严重玲,钟章成.土壤中 Pb、Hg 及其交互作用对烟草叶片抗氧化酶的影响[J].环境科学学报,1997,17(4):469-473.
    [42]杨居荣,鲍子平,张素芹.镉铅在植物体内的分布及其可溶性结合形态[J].中国环境科学, 1993,13(4):263-268.
    [43]张义贤.重金属对大麦(Hordeum vulgate)毒性的研究[J].环境科学学报,1997,17(2):199-205.
    [44]郑春霞,王文全,骆建敏,赵霞,张红,张小伟.重金属 Pb2+对玉米苗生长的影响[J].光谱学与光谱分析,2005,25(8):1361-1365.
    [45]周娜娜,王刚,林伟.不同浓度的铅污染对黄瓜幼苗生长的影响[J].琼州大学学报,2006,13(5):25-29.
    [46]周青,黄晓华,张一.镉对种子萌发的影响[J].农业环境保护,2000,19(3):156-158.
    [47]周东美,郝秀珍,薛艳.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234- 242.
    [48]朱宇林,曹福亮,汪贵斌,张往祥.Cr、Pb 处理对银杏种子萌发的影响[J].种子,2006,25 (3):35-43.
    [49] 张 岳 , 姚 春 丽 , 张 化 强 , 赵 欣 . 芨 芨 草 制 浆 造 纸 性 能 的 研 究 [J]. 湖 南 造纸,2006,1(3):9-11.
    [50]Aydinalp C,FitzPatrick EA,Cresser MS.Heavy metal pollution in some soil and water resources of Bursa Province,Turkey[J].Communsoil sci plan,2005,36(13):1691-1716.
    [51]Blaylock MJ,Huang JW. Phytoremediation of toxic metals:using plants to cleaning up the environment[J].Phytoextraction of metals,2000,3(2):53-70.
    [52]Barry SAS,Clark SC.Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes.New Phytol,1978,8(1):773-783.
    [53]Chaney RL.Plant uptake of inorganic waste constituents[J]. Treatment of Hazardous Wastes,1983, 8(4):50-76.
    [54]Chaney RL,Malik M,Li YM,et al.Phytoremedition of soil metals[J].Biotechnol, 1997,8(3):279-284.
    [55]Foy CD,White MC.The physiology of metal toxicology in plants[J].Ann Rev Plant Physiol,1978,2(9):511-566.
    [56]Han KS, Xie ZM, Huang CY. Effect of cadmium, lead,and zinc on size of microbial biomass in red soil.Pedosphere,1998,8(1):27-32.
    [57]Jiang LY,Yang XE, Ye ZQ, Shi WY.Uptake,distribution and accumulation of copper in two ecotypes of elsholtzia[J].Pedosphere,2003,13(4):359-366.
    [58]Kumur PBAN,Dushenkov V, Salt DE, Raskin I. Crop brassicas and phytoremediation a novel environment technology[J].Cruciferae Newsletter,1994,1(6):18-19.
    [59]Lane SD,Martin ES,Garrod JF. Lead toxicity effects on imdole acetic acid induced cell elongation[J].Planta,1978,14(4):79-84.
    [60]Macnair MR.1981.Tolerance of higher plants to toxic materials[A].In: Bishop JA, eds.Genetic Consequence of Man MadeCharge[C].Londond & New York:Academic Press,3(5):177-207.
    [61]Monni SM,Salemaa.Copper resistance of calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter in southwest Finland [J].Environmental pollution,2000,10(9):211-219.
    [62]Manaham SE.Environmental Chemistry[M].Fourth edition.Boston,America:Boston Willard Grent Press,1984,3(7):154-155.
    [63]McGrath SP, Dunham SJ Correll RL. Potential for phytoextraction of zinc and cadmium from soils using hyperaccumulator plants.In:Terry N.ed. Phytoremedi- -ation of Contaminated Soil and Water. Boca Raton:Lewis Publishers,2000,5(7): 109-128.
    [64]Patra J,Lenka M,Panda BB. Tolerance and cotolerance of the grass Chloris barlata Sw.to tercury,cadmium and zinc[J].New Phytol,1994,12(8):165-171.
    [65]Prasad DDK,Praqa ARK. Effect of lead and mercury on chlomphylls synthesis in mung bean seedlings[J].Phytochemistry,1987,26(3):881-883.
    [66]Peterson PJ.The distribution of Zine in Agrosis tenuis and A.stoloniera L.tissue[J].J Experi Bot,1969,7(2):863-875.
    [67]Poulter A,Collin HA,Thurman DA,et al.The role of cell wall in the mechanism of lead and zinc tolerance in Anthoxonthu odoratum [J].Plant Sci,1985,4(2):61-66.
    [68]Rauser WE. Phytochelations and related peptides structure,biosynthesis and function[J].Plant Physiol,1995,109(8):1141-1149.
    [69]Reeves RD, Baker AJ. Phytoremediation of toxic metals:using plants to clean up the environment[J]. Metal-accumulating plants.2000,6(16):193-229.
    [70]Reeves RD,Brooks RR. Hyperaccumulation of lead and zinc by two metallophytesfrom a mine area in Central Europe[J].Environmental Pollution,1983,7(31):277 -287.
    [71]Sun SC,WangHX,Li QR. Preliminary studies of physiogical changes and injury mechanism in aquatic vascular plants treated with cadmium[J].Acta Phytophysiol. 1985,2(11):19-23.
    [72]Spalding BP. Effect of divalent metal chlorides on respiration and extractable enzymatic activities of douglas fir needle litter [J] . Environ Quality . 1979 8(4):105.
    [73]Schomger MEV,Oven M,Grill E.Detoxification of arsenic by phytochelatins in plants[J].Plant Physiol,2000,12(2):793-801.
    [74]Schat H.,Sharma S.S ,Vooijs R.Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris[J].Physiology Plant,1997,10(1):477-482.
    [75]Wallance A,Frolich E,Lunt OR. Calcium requirements of higher plants[J].Nature, 1996,29(8):634-638.
    [76]Williams ST, McNeilly T, Wellington EMH .The decomposition of vegetation growing on metal mine wastes[J].Soil Biology and Bichemistry,1977,9(6):271-275.
    [77]Wenzel WW,Jockwer F.Acucumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps[J].Environmental Pollution,1999,10(4):145-155.
    [78]Wozny A,Schneider J,Goozdz EA .The effect of lead and kinetin on green barley leaves [J]. Biology Plant,1995,9(37):541-552.
    [79]Yang XE,Baligar VC,Martens DC .Influx,transport,and accumulation of cadmiumin plant species grown at different Cd2+ activities[J].Environmental Science & Technology,1995,9(30):569-583.
    [80]Ye ZH, Baker AJ,Wong MH .Zinc,lead and cadmium tolerance, uptake and accumulation by Typhalati – folia [J].New Phytol,1997,13(6):469-480.
    [81]Zhang ZJ,Lu F,Fang F.Effects of mercury on the growth and physiological function of wheat seedlings[J] .Environ Sci,1989,10(4):10-13.
    [82]Zhang Hui,Ma Dong sheng,Xie Qing lin.An approach to studying heavy metal pollution caused by modern city development in Nanjing,China[J].Environmental Geology,1999,38(3):223-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700