基于全量理论的金属体积成形有限元模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属体积成形在金属加工制造业中有着不可替代的作用,是涉及到几何、材料和边界条件三重非线性的复杂物理过程。目前基于增量理论的有限元数值模拟技术在体积成形分析研究中被日益广泛的应用。基于增量理论的有限元法,能够准确地追溯成形过程的历史,这一点对于分析具有强非线性的体积成形问题十分重要。但是,这种方法分析模型复杂,计算量大,因此难以快速提供分析结果,也不适合于产品的初期概念设计和加工工艺方案的预分析。
     全量理论是增量理论在简单加载条件下的积分,理论意义上一般不能普遍适用,但是由于该理论比较简单,很多人试图将它应用于各种复杂加载情况。大量实际问题的分析表明,对于许多偏离了比例加载路径的问题,采用全量理论可以得到与增量理论相近的结果。全量理论具有推广应用于偏离比例加载问题的潜力,而且在计算的准确性方面也有自己的特点。全量理论已经成功地应用于板料成形的有限元模拟,运用基于全量理论的冲压成形一步和多步模拟方法可以获得与增量有限元法相近的模拟结果,而且分析模型十分简单、计算时间很短。与板料成形相比,体积成形中材料的变形量更大、变形路径的变化更复杂、工件与模具型面的接触难以确定,将全量理论应用于体积成形问题比前者要困难得多,因此尽管全量理论在板料成形模拟中的应用已经取得了很大的进展,但是其在体积成形中的应用研究尚鲜见报道。
     本文对全量理论在金属体积成形有限元模拟中的应用进行了较为深入的研究,主要研究内容和结果如下:
     提出了一种基于全量理论的金属体积成形有限元方法。在进行大变形情况下应变、应力的度量和全量本构关系描述的基础上,从极值功原理出发,针对刚塑性不可压缩材料,基于约束变分原理在静力平衡条件下使以总塑性功和等效外力功所构成的近似塑性势能取最小化,推导了刚塑性全量有限元的求解列式。
     对金属体积成形全量有限元方法所涉及的若干技术处理方法展开了研究。提出了以虚拟滑动约束处理大步计算边界条件的方法;提出了等效外力功的估算方法;采用构形预测和网格映射相结合的方法,解决了初始解确定问题;提出了适合于具有近似刚性区体积成形问题的局部自由度约束技术,旨在增强全量大步长计算的收敛性。
     构造了一步全量模拟方案,并开发了一步有限元计算程序。一步模拟忽略了变形的中间历史环节,以一个大计算步在成形过程中的初始和终了构形之间进行有限元求解。构造了多步全量模拟方案,并开发了多步有限元计算程序。多步模拟根据整个成形过程中变形路径和接触状态的变化进行计算步的划分,以多个大增量步进行有限元求解。多步模拟基于全量理论追踪变形全路径的变化,通过近似地考虑成形接触历史变化来提高外力功估算的准确度,使全量有限元方法可以解决更具一般性的体积成形问题。
     通过以平面应变、轴对称厚壁筒受内压力成形及平面应变压缩成形过程为算例进行正向一步或多步数值模拟,分析了变形路径、材料硬化和边界条件等因素对全量有限元计算的影响,探讨了全量理论在金属体积成形有限元模拟中的适用性。
     对圆柱体镦粗和平板轧制过程进行了正向一步模拟。针对平板轧制的一步模拟,提出了轧制过程中工件与轧辊之间摩擦边界问题的处理方法。将一步有限元法的计算结果与增量有限元法的计算结果和实验数据进行了对比,验证了前者的正确性。
     对圆棒正挤压和方坯拔长过程进行了正向多步模拟,并对圆棒正挤压进行了相关实验研究。将多步有限元法的计算结果与增量有限元法的计算结果和实验数据进行了对比,验证了前者的可行性和有效性。
Bulk metal forming plays an important role in metal processing and manufacturing, which is a complicated physical process with ternary nonlinearity of geometry, material and boundary condition. At present, finite element (FE) simulation technique based on incremental theory is widely applied in the study of bulk metal forming. The history of deformation process could be traced accurately in the incremental FE approach, which is very important for analysis of bulk forming problems with intensive nonlinearity. However, incremental FE approach, in which analyzed model is complex and computing effort is considerable, couldn’t provide analyzed results rapidly, which couldn’t be suitable for initial concept design of product and predictive analysis of process technic.
     Deformation theory is the integral of incremental theory in the condition of simple loading, which couldn’t be used in general situations theoretically. However, the deformation plasticity solution is preferred for many applications of complex loading problems due to the mathematical simplicity. It is indicated that deformation theory could provide very close results compared with incremental theory for many problems deviating proportional loading path by plentiful analysis of practical problems.
     Deformation theory has the potential of applications for problems deviating proportional loading and has its own characters of computation accuracy. Deformation theory has been applied for sheet metal forming FE simulation successfully, by which one-step and multi-step simulation methods could provide results in close agreement with incremental FE predictions with very simple model and very short computing time. Compared with sheet forming processes, the deformation is larger and the deformation path and the contact history of the deformed part are more complicated in bulk metal forming processes. So it is more difficult to apply the deformation theory to bulk forming simulation. Consequently, despite the remarkable progresses that have been achieved in FE approach based on deformation theory for sheet metal forming, the applications of that in bulk metal forming are seldom. The research on application of deformation theory to bulk metal forming FE simulation is carried out in the dissertation, the main works and innovations are:
     A bulk metal forming FE approach based on deformation theory is put forward. The strain and stress under large deformation condition and deformation constitutive relationship are defined. This approach is implemented to minimize approximated plastic potential derived from the total plastic work and the equivalent external work in static equilibrium for incompressible rigid-plastic materials based on constraint variational principle under the principle of extremum work. The rigid-plastic deformation FE equations are deduced.
     Several key techniques of bulk metal forming deformation FE approach are studied. The fictitious sliding constraint is proposed for dealing with boundary condition of large-step computation. The estimation of equivalent external work is put forward. The initial solution is present by presetting configuration and mapping meshes. The local constraint of freedom is proposed for bulk forming problems with approximate rigid region in order to improve the convergence of deformation large-step computation.
     The one-step simulation scheme based on deformation theory is proposed and one-step FE simulation program is developed. One-step simulation, which neglecting deformation history, is performed by FE calculation in one large step between the initial and final configurations of process. The multi-step simulation scheme based on deformation theory is proposed and multi-step FE simulation program is developed. Multi-step simulation, in which the computing step is divided by considering variation of deformation path and contact situation in whole process, is performed by FE calculation in multiple large steps. In multi-step simulation, it is realized to track the variation of entire deformation path by using deformation theory and consider the variation of contact history to improve the accuracy of external work estimation, which result in application of deformation FE approach to bulk forming problems more generally.
     The one-step and multi-step numerical simulations are performed by taking plain strain and axisymmetric thick-walled cylinder forming under inner pressure and plain strain compression as examples to analyze the effect of deformation path, material’s hardening and boundary condition on deformation FE calculation. The applicability of deformation theory in bulk metal forming FE simulation is discussed.
     The one-step forward simulations of cylindrical upsetting and flat plate rolling are performed. As for one-step simulation of flat plate rolling, the treatment of friction boundary problem between workpiece and roller during process is put forward. The results of one-step simulation are compared with those of incremental simulation and experiment to verify the correctness of the proposed approach.
     The multi-step forward simulations of cylindrical bar forward extrusion and rectangular billet elongation are performed. The experiment of cylindrical bar forward extrusion is carried out. The results of multi-step simulation are compared with those obtained by incremental simulation and experiment to verify the feasibility and validity of the proposed approach.
引文
[1]汪大年,金属塑性成形原理[M],北京:机械工业出版社,1986
    [2]赵军,锥形件成形过程智能化研究[D],哈尔滨工业大学博士学位论文,1997
    [3] R. Hill, The mathematical theory of plasticity[M], London: Oxford university press, 1950
    [4] R.A.C. Slater, Engineering Plasticity-theory and application to metal forming processes[M], The Macmillan press LTD, 1977
    [5] W. Johnson, R. Sowerby, J. B. Haddow, Plane strain slip line fields: theory and bibliography[M], London: Edward Arnold,1970
    [6]王祖唐,关廷栋,肖景容等,金属塑性成形理论[M],北京:机械工业出版社,1989
    [7] J. S. Lee, D.Y. Yang, Y.H. Hahn, A UBET approach for the analysis of profile ring rolling[C], Advanced technology of plasticity-proceedings of the third ICTP, TOKYO, 1990:317-322
    [8] K. H. Na, N. S. Cho, J. H. Kim, Three-dimensional rotational compression of a cylindrical billet by using the UBM[C], Advanced technology of plasticity-proceedings of the fourth ICTP, Beijing, International Acadimic Publishers, 1993: 251-256
    [9]杜忠友,孙胜,关廷栋,上限元模拟技术在塑性加工优化设计中的应用[J],中国机械工程,1993,4(3): 25-28
    [10] L.T. Koch, T. Wanheim,Rotary forming, Proceedings of International conference[C], Beijing: International Academic Publishers, 1989: 165-170
    [11] A. E. M. Pertence, P. R. Cetlin, Analysis of a new model material for the physical simulation of metal forming[J], Journal of materials processing technology, 1998, 84: 261-267
    [12] B. P. P. A. Gouveis, J. M. C. Rodrigues, R. A. F. Martins, N. Bay, Physical nodelling and numerical simulation of the round-to-square forward extrusion[J], Journal of materials processing technology, 2001, 112: 244-251
    [13]中国机械工程学会锻压分会,锻压手册锻造[M],第1卷,第二版,北京:机械工业出版社,2002
    [14]林治平,谢水生,程军,金属塑性变形的实验方法[M],北京:冶金工业出版社,2002
    [15]董湘怀,材料成形计算机模拟[M],北京:机械工业出版社,2002
    [16] C. H. Lee, S. Kobayashi, New solution to rigid plastic deformation problems using a matrix method[J], Trans. ASME, J.Eng.Ind,1973, 95: 865-873
    [17] S. Kobayashi, Thermo-viscoplastic analysis of metal forming problems by the finite element method[C], Numerical Methods in Industrial Forming Processes, Swansea, UK, Pineridge Press, 1982: 17-25
    [18] S. I. Oh, J. J. Pak, S. Kobayashi, T. Altan, Application of FEM modeling to simulate metal flow in forging a titanium alloy engine disk[J], Trans. ASME. J. Eng. Ind. 1983, 105-251
    [19] S. Kobayashi, The role of finite element method in metal forming technology[C]. Adv. Tech. Plasticity-Proc. 1st ICTP, TOKYO, 1984, 2: 1035-1040
    [20] O. C. Zienkiewicz, P. N. Godbole, Flow of plastic and viscoplastic solids with special reference to extrusion and forming process[J], Int. J. Mum. Meth In Eng.,1974, 8: 1-16
    [21] K. Osakada, J. Nakano, K. Mori, Finite element method for rigid plastic analysis of metal forming-formulation for finite deformation[J], Int.J.Mech.Sci.,1982, 24, 8: 459-468
    [22] S. I. Oh. Finite element analysis of metal forming processes with arbitrary shaped dies[J], Int. J. Mech. Sci., 1982, 24: 479-493
    [23] P. Hartley, C. E. N. Sturgess, G. W. Rowe, Friction in finite element analysis of metal forming process[J], Int. J. Mech. Sci., 1979, 21:301-311
    [24] P. Hartley, C. E. N. Sturgess, G. W. Rowe, Influence of friction on the prediction of forces, Pressure distributions and properties in upset forging[J], J. of Mech. Sci., 1980, 22: 743-753
    [25] S. I. Oh, G. D. Lahoti, T. Altan, Application of a Rigid-plastic finite element method to some metal forming operations[J]. J. Mech. Working Technology, 6, 227
    [26] T. Altan, S. I. Oh, Application of FEM to 2-D metal flow simulation: practical example[J], Adv. Tech. of Plasticity, 4: 1779-1788
    [27]林桐,周宝焜,用刚塑性有限元法计算塑性压缩过程金属的流动[J],锻压技术,1981,5:7
    [28]胡忠民,邓立新,陈如欣,轴对称拉拔的刚塑性有限元分析[J],金属成形工艺,1983,3:1-8
    [29]李国基,有限元法在模拟金属塑性加工过程方面的应用[J],锻压技术,1986,4:10-21
    [30] J. J. Park, S. Kobayashi, Three-dimensional finite element analysis of block compression[J], International Journal of Mechinical Sciences, 1984, 26(3):165-176
    [31] J. L. Chenot, F. Bay, L. Fourment, Finite element simulation of metal powder forming[J], International Journal for Numercial Methods in Engineering, 1990, 30: 1649-1674
    [32] G. J. Li, W. T. Wu, 3D finite element analysis of industrial metal forming processes[J], Advanced Plasticity Technology, 1996, 479-484
    [33] Yoon J H, Yang D Y, A three-dimensional rigid-plastic finite element analysis of bevel gear forming by using remeshing techniques[J], International Journal of Mechanical Sciences, 1990, 32(4): 277-291
    [34]赵国群,锻造过程的正反向数值模拟[D],上海交通大学博士论文,1991
    [35]陈军,虚拟模具制造及其金属成形过程三维仿真技术研究[D],上海交通大学博士学位论文,1996
    [36]刘郁丽,叶片精锻成形规律的三维有限元分析[D],西北工业大学博士学位论文,2001
    [37]詹梅,面向带阻尼叶片精锻过程的三维有限元数值模拟研究[D],西北工业大学博士学位论文,2000
    [38]田柱平,郝南海,卢志勇,塑性成形过程三维刚塑性有限元数值模拟技术[J].材料科学与工艺,1999,7:87-90
    [39]蒋浩民,锻造过程的三维数值模拟系统H-FORGE3D的开发与应用[D],哈尔滨工业大学博士学位论文,1998
    [40]左旭,卫原平,陈军等.自由锻成形过程三维有限元仿真[J].模具工业,1998,11: 8-10
    [41]王广春,赵国群,环件摆动碾压变形机理三维刚塑性有限元分析[J],塑性工程学报,1999,6(4): 80-85
    [42] S. I. Oh, J. P. Tang, A. Badawy, Finite element mesh rezoning and applications to metal forming analysis[C], Proc. of 1st ICTP conf., Tokyo, 1051
    [43] F. Cheng, J. W. Jaromezyk, A practical mesh generation algorithm based on the vertex label assignment scheme[J], Int. J. for Num. Meth. in Engr., 1989,28: 1429
    [44] D. Y. Yang, J. H. Yoon, N. K. Lee, A practical method of 3-D remeshing in forging of complicated parts[J], Adv. Tech. Plast., 1990,1:171-178
    [45] Y. C. Shiau, S. Kobayashi, Three-dimensional finite element analysis of open die forging[J], Int. J. Num. Meth. Engng., 1988,25: 67-86
    [46] J. H. Yoon, D. Y. Yang, Rigid plastic finite element analysis of three dimensional forging by considering friction on continuous curved dies with initial guess generation[J], Int. J. Meth. Sci., 1988, 30(12): 887-898
    [47] H. Hencky, Z. Angew, Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannngen[J], Math. Mech., 1924, 4: 323-334
    [48] Il’yushin A A, Plasticity[M], Moscow: Gostekhizdat Publishing, 1948
    [49]兰箭,板料成形的有限元逆算法研究[D],华中科技大学博士学位论文,2001
    [50] B. Budiansky, A reassessment of deformation theories of plasticity[J], J. Appl. Mech., 1959, 26: 259-264
    [51] J. B. Martin, A. R. S. Ponter, On dual energy theorems for a class of elastic/plastic problems due to G. Maier[J], J. Mech. Phys. Sol., 1972, 20: 301
    [52] A. R. S. Ponter, J. B. Martin, Some extremal properties and energy theorems for inelastic materials and their relationship to the deformation theory of plasticity[J], J. Mech. Phys. Sol., 1972, 20: 281-300
    [53] J.W. Hutchinson, Plastic buckling[J], Adv. Appl. Mech. 1974, 14: 67-144
    [54] S. Storen, J.R. Rice, Localized Necking in Thin Sheets[J], J. Mech. Phys. Solids, 1975, 23: 421-441
    [55] P.C.T. Chen, A Comparison of Flow and Deformation Theories in a Radially Stressed Annular Plate[J], J. Appl. Mech., 1973, 40: 283-287
    [56] H. Jahed, S.B. Lambert, R.N. Dubey, Total deformation theory for non-proportional loading[J], Int. J. Pres. Ves. Pip., 1998, 75: 633-642
    [57] M. J. Sewell, A Plastic Flow Rule at a Yield Vertex[J], J. Mech. Phys. Solids, 1974, 22: 469-490
    [58]王仁,熊祝华,黄文彬,塑性力学基础[M],北京:科学出版社,1982
    [59] Il’yushin A A, II MM.[M],1961,25:503-507
    [60] S. C. Tang, Elasto-plastic and large deformation analysis of thin shells by the deformation theory of plasticity[J], Computers and Structures, 1976, 6(4-5): 297-303
    [61] Peter C. T. Chen, Large plastic deformation in a deep drawing process[J], Developments in Mechanics, 1979, 10: 43-45
    [62] J. L. Bassani, J. W. Hutchinson, K. W. Neale, On the prediction of necking in anisotropics sheets[M], NASA Conference Publication, Springer Verlag, 1979:1-13
    [63] Wang N. M., A rigid-plastic rate-sensitive finite element method for modeling sheet metal forming processes[C], Numerical Analysis of Forming Processes, New York, Wiley, 1984
    [64] Gavriushin S. S., Zienkiewicz O. C., Simple algorithm for the analysis of axisymmetric thin shell metal forming[J], International Journal for Numerical Methods in Engineering, 1986, 23(6): 1179-1194
    [65] Sitaraman S. K., Kinzel G. L., Altan T. Finite defference method for rigid-plastic analysis of sheet metal stretching[C], ASME Production Engineering Div, New York, 1988, 32: 167-183
    [66] Yoshihiro Tomita, Akio Shindo, Rigid-plastic finite element method using rate-type constitutive equation[J], JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1989, 32(1): 107-112
    [67] Gao Xinlin, Finite deformation elasto-plastic solution for the pure bending problem of a wide plate of elastic linear-hardening material[J], International Journal of Solids and Structures, 1994, 31(10): 1357-1376
    [68] Fusahito Yoshida, Masaki Urabe, Computer-aided process design for the tension leveling of metallic strips[J], Journal of Materials Processing Technology, 1999, 89: 218-223
    [69]李国琛,用形变理论分析结构塑性屈曲时的一类广义变分原理[J],力学学报,1984,16(5):512-520
    [70]叶裕恭,基于偏析线的圆棒颈缩分析[J],力学学报,1986,18(1):46-56
    [71]董克敬,陆大坪,J-积分的数值计算研究[J],山东建材学院学报,1988,2(1):1-11
    [72]丁宽,沈祖炎,薄壁杆弹塑性弯扭失稳的有限单元解法[J],同济大学学报,1986,14(4):417-426
    [73]张柔雷,塑性全量理论中的控制变量变分原理[J],上海力学,1989,10(4):45-53
    [74]张柔雷,分段线性强化问题的全量无迭代解[J],应用力学学报,1991,8(2):45-57
    [75]郭小明,佘颖禾,塑性全量理论的变分不等式模式及其无迭代解[J],应用数学和力学,1993,14,1105-1113
    [76]胡平,连建设,李运兴,弹塑性有限变形的拟流动理论[J],力学学报,1994,26(3):275-283
    [77] Levy S., Shin C. F., Wilkinson J. P. D., Stine P., McWilson R. C., Analysis of Sheet Metal Forming to Axisymmetric Shapes, Formability Topics-Metallic Materials[M], ASTM, Philadelphia, ASTM STP, 1978, 647: 238-260
    [78]鲍益东,汽车车身部件一步逆成形有限元法与碰撞仿真研究[D],吉林大学博士学位论文,2004
    [79] Batoz J. L., Duroux P., Guo, Y. Q., Detraux J. M., An efficient algorithm to estimate the large strains in deep drawing[C], NUMIFORM’89 , 1989: 383-388
    [80] Guo Y. Q., Batoz J. L., Detraux J. M., Duroux P., Finite element procedures for strain estimations of sheet metal forming parts[J], Int. J. Num. Meth. Eng., 1990, 30: 1385-1401
    [81] Guo, Y. Q., Batoz, J. L., Naceur, H., Bouabdallah, S., Recent developments on the analysis and optimum design of sheet metal forming parts using the simplified inverse approach[J]. Computers and Structures 2000, 78:133-148
    [82] Guo, Y.Q., Naceur, H., Debray, K., Bogard, F., Initial solution estimation to speed up inverse approach in stamping modeling[J], Engineering Computations 2003, 20(7):810-834
    [83] Huh H., Kim S. H., Kim S. H., Multi-stage inverse analysis of elliptic cup drawing with the large aspect ratio[C], Proceedings of the Metal Forming’2000, 2000, 107-116
    [84] S. H. Kim, Huh H., Finite element inverse analysis for the design intermediate dies in multi-stage deep drawing processes with large aspect ratio[J], Journal of materials processing technology, 2001, 113: 779-785
    [85] Kim S. H., Huh H., Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis[J], Journal of materials processing technology 2002, 130: 482-489
    [86] D. Y. Yang, Y. J. Kim, A rigid plastic finited element formulation for the analysis of general deformation of planar anisotropic sheet metals and its application[J], Int.J.Mech.Sci., 1986, 28(12):825-840
    [87] Hoon Huh, Y. J. Kim, Optimum process design in sheet metal forming with finite element analysis[C], Proceeding of the ASME, Manufcturing Engineering Division-2000, Orlando, Florida, 2000, 5-10: 555-561
    [88] Gerdeen J. C., Chen P., Geometric mapping method of computer modeling of sheet metal forming[C], NUMIFORM’89, 1989, 437-444
    [89] Sowerby R., Determination of large strains in metal forming[J], J Strain Anal 1982, 7: 95
    [90] Chung K., Lee D., Computer-aided analysis of sheet material forming processes[C], First International Conference on Technology of Plasticity 1984, 1, 660-665
    [91] Sklad M. P., Yungblud B. A., Analysis of multi-operation sheet forming processes[C], NUMIFORM’92, 1992, 543-547
    [92] E I Mouatassim, M. Thomas, B. Jameux, J. P. Pasquale, An industrial finite element code for one step simulation of sheet metal forming[C], NUMIFORM’95, 1995, 9: 761-766
    [93] Liu S. D., Kolodziejski J., Assempoor A., Aboutour T., Cheng W., Development of a fast design and trouble-shooting FEM in sheet metal forming[C]. 19th IDDRG Biennal Congress, 1996, 265-276
    [94] Liu S. D., Assempoor A., Development of FAST3D a design-oriented one step FEM in sheet metal forming[M], COMPLAS IV, Part II, 1995, 1515-1526
    [95] Chung K., Richmond O., Sheet forming process design on ideal forming theory[C], NUMIFORM’92, 1992, 455-460
    [96] K. Chung, F. Barlat, J. C. Brem, D. J. Lege, O. Richmond, Blank shape design for a planar anisotropic sheet based on ideal forming design theory and FEM analysis[J], Int. J. Mech. Sci., 1997, 39(1): 105-120
    [97]刘来英,马泽恩等.基于理想变形理论的板料成形过程的设计与分析[J],塑性工程学报,1999,6(1):6-11
    [98]沈启彧,卫原平,王玉国,阮雪榆,基于形变理论的金属板料成形有限元分析[J],模具技术,1999,5: 3-6
    [99]沈启彧,卫原平,王玉国,赵春林,阮雪榆,金属板料成形的快速有限元分析[J],计算力学学报,2000,17(2): 242-245
    [100]沈启彧,卫原平,王玉国,阮雪榆,金属板料成形的一步有限元腄夥椒╗J],上海交通大学学报,2000,34(10): 1404-1405
    [101]徐国艳,施法中,有限元反向法计算筒形件毛料形状[J],塑性工程学报,2002,9(2): 42-45
    [102]唐炳涛,板料成形反向模拟法及其在拼焊板零件分析中的研究[D],上海交通大学博士学位论文,2006
    [103] Richmond O., Morrison H.L., Streamlined wire drawing dies of minimum length[J]. J. Mech. Phys. Solids, 1967, 15, 195-203
    [104] O. Richmonda, S. Alexandrov, Nonsteady planar ideal plastic flow: general and special analytical solutions[J], Journal of the Mechanics and Physics of Solids, 2000,48: 1735-1759
    [105] Kwansoo Chung , Wonoh Lee, Owen Richmond , Sergei Alexandrov, Non-steady plane-strain ideal plastic flow[J], International Journal of Plasticity 2005, 21: 1322–1345
    [106] Kwansoo Chung , Sergei Alexandrov, Ideal flow in plasticity[J], Transactions of the ASME, 2007, 60, 316-334
    [107] SIMO J. C., ORTIZ M., A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[J], Computer Methods in Applied Mechanics and Engineering, 1985, 49: 221-245
    [108] M. Brunig, Nonlinear finite element analysis based on a large strain deformation theory of plasticity[J], Computers and structures, 1998, 69: 117-128
    [109] P. Ladeveze, Sur une famille d’algorithmes enmecanique des structures[M]. C.r. Acad. Sci. Paris, serieII, 1985, 300: 41-44
    [110] Ph. Boisse, P. Bussy, P. Ladeveze, A new approach in nonlinear mechanics: the large time increment method[J], Int. J. numer. Meth. Engng, 1990, 29, 632-647
    [111] P. Bussy, P. Rougte, P. Vauchez, The large time increment method for numerical simulation of metal forming processes[J], Proc. numer. Meth. Engng, 1990: 102-109
    [112] P. A. Boucard, P. Ladeveze, M. Poss, P. Rougee,A nonincremental approach for large displacement problems[J], Computers & Structures, 1997, 64(14): 499-508
    [113] A. Abdali, K. Benkrid, P. Bussy,Simulation of sheet cutting by the large time increment method[J],Journal of Materials Processing Technology, 1996, 60: 255-260
    [114] F. Jourdan , P. Bussy,Large time increment method in dynamic regularization: sheet cutting simulations[J],Comput. Methods Appl. Mech. Engrg., 2000, 190: 1245-1259
    [115]磨季云,全量理论的刚塑性边界元法及其应用[J],武汉冶金科技大学学报,1997,20(2):258-261
    [116]张永伟,杨庆雄,钉孔挤压强化弹塑性计算中形变理论适用性探讨[J],航空学报,1992,13(3):227-231
    [117]柳葆生,刘渝,非增量算法张量时空表达及在成形模拟中的应用[J],自然科学进展,1998,8(2):167-174
    [118]柳葆生,刘渝,成形模拟非增量算法的张量时间函数预求法[J],塑性工程学报,1999,6(2):17-25
    [1] O. Richmond, H. L. Morrison, Stream lined dies for wire drawing[J], J Mech Phys Solids, 1967, 15: 195-203
    [2] R Hill, Stablility of rigid-plastic solids[J], J Mech Phys Solids, 1957, 6:1-8
    [3] A. Nadai Theory of flow and fracture of solids[M], New York: McGraw-Hill, 1963, 76-106
    [4] R. Hill, Extremal paths of plastic work and deformation[J], J. Mech. Phys. Solids, 1986, 34(5): 511-523
    [5] Kwansoo Chung, Owen Richmond, A deformation theory of plasticity based on minimum work paths[J], International Journal of Plasticity, 1993, 9: 907-920
    [6]兰箭,板料成形的有限元逆算法研究[D],华中科技大学博士学位论文,2001
    [7]匡震邦,非线性连续介质力学[M],上海:上海交通大学出版社,2002
    [8]肖景容,李尚健,塑性成形模拟理论[M],武汉:华中理工大学出版社,1994
    [9]李尚健,董湘怀,孙胜等,金属塑性成形过程模拟[M],北京:机械工业出版社,1999
    [10]王勖成,邵敏,有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997
    [11]徐秉业,陈森灿,塑性理论简明教程[M],北京:清华大学出版社,1981
    [12] Il’yushin A. A., Plasticity[M], Moscow: Gostekhizdat Publishing, 1948
    [13] Shiro Kobayashi, Soo-ik Oh, Taylan Altan, Metal forming and the finite-element method[M], New York: Oxford University Press, 1989
    [14]彭颖红,金属塑性成形仿真技术[M],上海:上海交通大学出版社,1999
    [1] C. H. Lee, H. Huh, Three dimensional multi-step inverse analysis for the optimum blank design in sheet metal forming processes[J], Journal of Materials Processing Technology, 1998, 80-81: 76-82
    [2] Seung Ho Kim, Se Ho Kim, Hoon Huh, Finite element inverse analysis for the design of intermediate dies in multi-step deep-drawing processes with large aspect ratio[J], Journal of Materials Processing Technology, 2001, 113: 779-785
    [3] Ying Huang, Yi-Ping Chen, Ru-Xu Du, A new approach to solve key issues in multi-step inverse finite-element method in sheet metal stamping[J], International Journal of Mechanical Sciences, 2006,48: 591-600
    [4] Shiro Kobayashi, Soo-ik Oh, Taylan Altan, Metal forming and the finite-element method[M], NewYork: Oxford University Press, 1989
    [5]李尚健,董湘怀,孙胜等,金属塑性成形过程模拟[M],北京:机械工业出版社,1999
    [6]彭颖红,金属塑性成形仿真技术[M],上海:上海交通大学出版社,1999
    [7]王勖成,邵敏,有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997
    [8] Shiyong Yang, Kikuo Nezu, Application of an inverse FE approach in the concurrent desigh of sheet stamping[J], Journal of Materials Processing Technology, 1998, 79: 86-93
    [9] S.H. Kim, H. Huh, Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis[J], J. Mater. Process Technol., 2002, 130-131: 482-489
    [10]兰箭,板料成形的有限元逆算法研究[D],华中科技大学博士学位论文,2001
    [11]唐炳涛,板料成形反向模拟法及其在拼焊板零件分析中的研究[D],上海交通大学博士学位论文,2006
    [12]徐志强,郑昌勋,张丕辛,基于几何造型的有限元前处理技术[J],计算机辅助设计与图形学学报,1991,2:46-51
    [13] J. Suhara, J. Fukuda, Automated mesh generation for finite element analysis[J], Advances in computational methods in structural mechanics and design, 1972
    [14]汪大年,金属塑性成形原理[M],北京:机械工业出版社,1986
    [15]封建湖,车刚明,聂玉峰,数值分析原理[M],北京:科学出版社,2001
    [16] R. Hill, Extremal paths of plastic work and deformation[J], J. Mech. Phys. Solids, 1986, 34(5): 511-523
    [17] Kwansoo Chung, Owen Richmond, A deformation theory of plasticity based on minimum work paths[J], International Journal of Plasticity, 1993, 9: 907-920
    [18] Kwansoo Chung, Sergel Alexandrov, Ideal flow in plasticity[J], Applied Mechanics Reviews-Transactions of the ASME, 2007, 60(11): 316-335
    [19] Il’yushin A. A., Plasticity[M], Moscow: Gostekhizdat Publishing, 1948
    [20]匡震邦,非线性连续介质力学[M],上海:上海交通大学出版社,2002
    [1]汪大年主编.金属塑性成形原理[M].北京:机械工业出版社,1986
    [2]徐秉业、陈森灿编著.塑性理论简明教程[M].北京:清华大学出版社,1981
    [3]王仁、熊祝华、黄文彬著.塑性力学基础[M].北京:科学出版社,1998
    [4] B. Budiansky, A reassessment of deformation theories of plasticity[J], J. Appl. Mech., 1959, 26:259-264
    [5] P.C.T. Chen, A Comparison of Flow and Deformation Theories in a Radially Stressed Annular Plate[J], J. Appl. Mech., 1973, 40: 283-287
    [6] H. Jahed, S.B. Lambert, R.N. Dubey, Total deformation theory for non-proportional loading[J], Int. J. Pres. Ves. Pip., 1998, 75: 633-642
    [7] J.W. Hutchinson, Plastic buckling[J], Adv. Appl. Mech. 1974, 14: 67-144
    [8] S. Storen, J.R. Rice, Localized Necking in Thin Sheets[J], J. Mech. Phys. Solids, 1975, 23: 421-441
    [9] M. J. Sewell, A Plastic Flow Rule at a Yield Vertex[J], J. Mech. Phys. Solids, 1974, 22: 469-490
    [10] Levy S., Shin C. F., Wilkinson J. P. D., Stine P., McWilson R. C., Analysis of Sheet Metal Forming to Axisymmetric Shapes[J], Formability Topics-Metallic Materials, ASTM, Philadelphia, ASTM STP, 1978, 647: 238-260
    [11] Guo Y. Q., Batoz J. L., Detraux J. M., Duroux P., Finite element procedures for strain estimations of sheet metal forming parts[J], Int. J. Num. Meth. Eng., 1990, 30: 1385–1401
    [12]刘来英,马泽恩等.基于理想变形理论的板料成形过程的设计与分析[J],塑性工程学报,1999,6(1):6-11
    [13]徐国艳,施法中,有限元反向法计算筒形件毛料形状[J],塑性工程学报,2002,9(2): 42-45
    [14]唐炳涛,板料成形反向模拟法及其在拼焊板零件分析中的研究[D],上海交通大学博士学位论文,2006
    [15] Richmond O., Morrison H.L., Streamlined wire drawing dies of minimum length[J]. J. Mech. Phys. Solids, 1967, 15, 195-203
    [16] O. Richmonda, S. Alexandrov, Nonsteady planar ideal plastic flow: general and special analytical solutions[J], Journal of the Mechanics and Physics of Solids, 2000,48: 1735-1759
    [17] M. Brunig, Nonlinear finite element analysis based on a large strain deformation theory of plasticity[J], Computers and structures, 1998, 69: 117-128
    [18] Kwansoo Chung , Wonoh Lee, Owen Richmond , Sergei Alexandrov, Non-steady plane-strain ideal plastic flow[J], International Journal of Plasticity 2005, 21: 1322–1345
    [19] Kwansoo Chung , Sergei Alexandrov, Ideal flow in plasticity[J], Transactions of the ASME, 2007, 60, 316-334
    [20] Ph. Boisse, P. Bussy, P. Ladeveze, A new approach in nonlinear mechanics: the large time increment method[J], Int. J. numer. Meth. Engng, 1990, 29, 632-647
    [21] P. A. Boucard, P. Ladeveze, M. Poss, P. Rougee,A nonincremental approach for large displacement problems[J], Computers & Structures, 1997, 64(14): 499-508
    [22]磨季云,全量理论的刚塑性边界元法及其应用[J],武汉冶金科技大学学报,1997,20(2):258-261
    [23]柳葆生,刘渝,非增量算法张量时空表达及在成形模拟中的应用[J],自然科学进展,1998,8(2):167-174
    [1] Shangwu Xiong, Wing Kam Liu, Jian Cao, C. S. Li, J. M. C. Rodrigues, P. A. F. Martins, Simulation of bulk metal forming processes using the reproducing kernel particle method[J], Computers and Structures, 2005, 83: 574-587
    [2]汪大年,金属塑性成形原理[M].北京:机械工业出版社,1986
    [3]刘相华,刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994
    [4]宋叔尼,刘相华,王国栋,刚塑性可压缩材料热轧问题总能耗率泛函极值的存在与唯一性[J],科学通报,1999,44(17):1898-1904
    [5] Guoji Li et al, Spread analysis in rolling by the rigid plastic finite element method[M], Numerical methods in industrial forming processes, Swansea, Pineridge Press, 1982
    [6]姚泽坤,锻造工艺学与模具设计[M],西安:西北工业大学出版社,1998
    [7]李尚健,金属塑性成形过程模拟[M],北京:机械工业出版社,1999
    [8]吕立华,轧制理论基础[M],重庆:重庆大学出版社,1991
    [1] Huang Y., Chen Y.P., Du R.X., A new approach to solve key issues in multi-step inversefinite-element method in sheet metal stamping[J]. Int J Mech Sci, 2006, 48: 591-600
    [2] Kim S.H., Huh H., Construction of sliding constraint surfaces and initial guess shapes for intermediate steps in multi-step finite element inverse analysis[J], J Mater Process Technol, 2002, 130-131: 482-489
    [3] Kim S.H., Huh H., Finite element inverse analysis for the design intermediate dies in multi-stage deep drawing processes with large aspect ratio[J], Journal of materials processing technology, 2001, 113: 779-785
    [4]汪大年,金属塑性成形原理[M],北京:机械工业出版社,1986
    [5]上海交通大学《冷挤压技术》编写组.冷挤压技术[M],上海:上海人民出版社,1976
    [6]吴诗惇,挤压理论[M],北京:国防工业出版社,1994
    [7]赵震,陈军,吴公明,冷温热挤压技术[M],北京:电子工业出版社,2008
    [8]中国机械工程学会锻压分会,锻压手册锻造[M],第1卷,第二版,北京:机械工业出版社,2002
    [9]林治平,谢水生,程军,金属塑性变形的实验方法[M],北京:冶金工业出版社,2002
    [10] Xiong S. W., Li C. S., Rodrigues J. M. C., Martins P. A. F., Steady and non-steady state analysis of bulk forming processes by the reproducing kernel particle method[J], Finite Elem Anal Des, 2005, 41: 599-614
    [11]姚泽坤,锻造工艺学与模具设计[M],西安:西北工业大学出版社,1998
    [12] Shiro Kobayashi, Soo-ik Oh, Taylan Altan, Metal forming and the finite-element method[M], New York: Oxford University Press, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700