旱地春玉米高产高效栽培体系构建、评价及区域模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国旱地总国土面积70%以上,干旱半干旱耕地占总耕地面积的43%,旱地作物生产是保障我国粮食安全的重要部分。然而,旱地作物的实际产量不到产量潜力的50%。随着人口的持续增加耕地面积的不断减少,粮食生产越来越倚重于作物单产的提高。与此同时,气候变暖和降雨持续下降将是21世纪旱地作物增产最严峻的挑战。因此,充分理解旱地作物高产的机理,不断优化旱地雨养农业水分管理措施,构建和完善旱地作物高产和资源高效利用的生产体系是保障粮食安全和生态环境可持续发展的关键。
     本研究以我国西北黄土高原典型旱作农业区的春玉米生产为研究对象,通过两年田间试验,验证Hybrid-Maize模型覆膜模块的适用性;以验证后的覆膜Hybrid-Maize模型为指导,量化并成功构建了耦合大气-作物-土壤的旱地春玉米高产高效栽培体系,并进行田间验证,明确旱地玉米增产的生理机制。同时利用历史气象资料和作物模型模拟探索黄土高原春玉米对气候变化的响应规律和适应措施。主要研究进展如下:
     (1)本文将具有覆膜模块的新版Hybrid-Maize模型应用于黄土高原旱地玉米的生产模拟。田间验证结果表明,该模型在灌溉、雨养和覆膜条件下对生物量和籽粒干物质积累过程的模拟值与田间实测值基本吻合,对总生物量和籽粒产量表现出较高的模拟精度。
     (2)利用校验后Hybrid-Maize模型对近50年长武地区的旱作春玉米产量潜力估算表明,在无水分限制条件下,当地春玉米产量潜力为14.1t ha~(-1),在水分限制条件下为12.7t ha~(-1),覆膜条件下的产量潜力为15t ha~(-1)。同时,基于气候资料和模型对当地春玉米品种、播种日期、种植密度、水分养分管理措施进行优化,构建了耦合土壤-作物-大气综合管理的旱地春玉米高产高效栽培体系。经过3年田间验证表明,该体系能够实现产量潜力,平均氮肥利用效率61kg kg~(-1),平均水分利用效率为35kg ha~(-1)mm~(-1)。
     (3)砂砾和地膜覆盖能够显著提高土壤温度和水分含量,较大的叶面积指数增加了光能的捕获和利用,加快玉米营养生长期植株冠层的生长发育速度。因此,覆盖有效促进了干物质积累,从而获得较高的生物量、产量和资源利用效率。与传统的砂砾覆盖措施相比,地膜覆盖能够更有效的改善玉米苗期土壤水热状况,更适用于促进干旱半干旱地区春玉米增产。
     (4)覆盖处理显著加快了玉米植株的生长和发育进程。花期强壮的植株冠层和适宜的生长环境促进了粒数的增加;花期的提前直接导致籽粒灌浆周期的延长,促进了光热资源的捕获和利用,显著提高了籽粒干物质的同化和转移量,从而显著提高了粒重。因此,花期的提前是覆盖促进旱地春玉米增产的重要机制。
     (5)吐丝后揭膜能够缓解生殖生长期植株衰老,提高灌浆期冠层光合速率和干物质同化量,从而进一步增加了玉米总生物量、收获指数和籽粒产量。揭膜导致籽粒干物质的显著增加归因于吐丝后“源”(叶面积指数和光合速率)和“库”(穗粒数和粒体积)的协同增加。与玉米全生育期覆膜相比,吐丝后揭膜处理能够进一步提高玉米产量,更适用于玉米花后降雨充足的半干旱地区。
     (6)利用Hybrid-Maize模型对整个黄土高原春玉米生产的模拟研究显示,自1980年,黄土高原气温升高、辐射和降雨下降,导致春玉米产量潜力显著下降,并加剧当地雨养生产的水分亏缺。气温升高是玉米产量潜力下降的首要原因,(占产量潜力下降总量的68.7%),特别是玉米生殖生长期(7-9月)的升温显著缩短籽粒生长周期,直接导致减产;其中最低气温升高是降低产量潜力的主导因素,最高气温的升高是降低水分满足率,是加剧水分亏缺的主要原因。辐射下降是造成玉米产量潜力下降的次要原因(占产量潜力下降总量的24.6%)。年季间的降雨波动加剧了水分亏缺,是造成雨养生产水分亏缺的另一因素。
     (7)区域模拟显示,若不更新品种,近30年黄土高原地区春玉米生长季(4-9月)有效积温(>10°C)的持续升高将导致玉米生育周期显著缩短,其产量潜力和水分利用效率将持续下降。依据各区各年代4-9月的积温升高幅度确定的适应性品种(晚熟品种)能够充分适应升温环境,生育周期延长,产量潜力和水分利用效率持续提高,是应对黄土高原气候变暖的有效措施。此外,持续发展旱作农业保水措施(如地膜覆盖)有利于缓解未来降雨的下降,从而保障旱区的粮食安全和可持续发展。
In China, arid regions account for>70%of total land area, taking up43%of the totalagricultural area, and are essential for its agricultural production. However, yield gaps, i.e.,the differences between potential and actual yields, are greater than50%in drylands regions.Continuous growth of the human population and the decline cultivated farmland will call for asignificant increase in crop yields per unit area. In addition, increasing temperatures anddeclining precipitation in semi-arid regions are likely to reduce yields of maize, wheat, rice,and other primary crops within the next two decades, and will be a huge challenge to China’sdrylands farm in the21st century. Hence, it is imperative for food security over the next fewdecades that we improve our understanding of the physiological mechanism of crop yieldrising, and continuing to improve rain-fed drylands agriculture with optimised watermanagement is a key priority to guarantee food security and eco-development sustainability.
     This study focused on the Loess Plateau, a typical semi-arid monsoon climate region, inwhich dryland farming is dominated by monoculture cropping systems. The applicability ofthe Hybrid-Maize model was tested using data from a twoe-year field experiment; and usedthe crop model to establish the high yield and high resource use efficiency (double-high)cultivation system of drylands maize production; and to determine the physiologicalmechanism contributing to yield improvement; as well as to assess tmaize productivityresponse to climate change and propose adaptive crop management strategies. This researchcould be helpful for water management strategies in maize production in semi-arid regions.The main results were showed as follow:
     (1) In this study, a new module for plastic film mulching in Hybrid-Maize model wasdeveloped to simulate maize growth development and grain yield of drylands farm. Theperformance of this modified Hybrid-Maize model was reasonably good in terms of biomassand grain dry matter. The Hybrid-Maize model can be used to simulate the yield potential ofmaize well under optimum irrigation, rainfed, and plastic film mulching conditions.
     (2) After modification the Hybrid-Maize model was used to simulate the yield potentialof maize in Changwu region over the last50years. The yields potential were14.1t ha~(-1)under no water limited condition,12.7t ha~(-1)under water limited conditions,15t ha~(-1)under plasticfilm mulching conditions, respectively. We use the Hybrid-Maize model to guide the optimizestructure of drylands maize cultivation systems: to adjust variety, sowing date, plantspopulation, and the management for water and nutrition of soil; and established the high yieldand high resource use efficiency cultivation system that integrated atmospheric resource–crop community–soil environment system management.3-years field tests indicated that,maize yield of the cultivation system have reached100%of yield potential, the nitrogen useefficiency was reached61kg kg~(-1), the water use efficiency was reached35kg ha~(-1)mm~(-1).
     (3) The mulch practices could significantly improve cumulative topsoil temperature andsoil moisture, thereby synchronising larger leaf area index (LAI) and greater radiationinterception with earlier development and rapid plant growth during the early VS stage.Consequently, these mulching practices are effective at improving the amounts ofaccumulated dry matter, leading to significantly greater final biomass, grain yield, and wateruse efficiency (WUE). Compared to conventional gravel mulching, plastic film mulchingcould be more effective to increase the topsoil temperatures and the conservation of availablesoil water in spring. Additionally, this technique represents a more effective approach toimproving spring-sown maize yield in semi-arid regions.
     (4) Mulching treatments markedly accelerated plant growth and flowering, whichdirectly resulted in a longer grain-filling period. The robust plants and better growthenvironment during flowering increased the number of kernels. The prolonged growth periodsallowed greater resource interception and use efficiency of both heat and solar radiation,thereby inducing greater assimilation and translocation for grain growth and resulting inhigher final kernel weight. We concluded that the mulching treatments improved grain yieldsas a direct consequence of earlier flowering.
     (5) The mulching removed (RM) compared to the plastic film mulching (FM) treatmentincreased maize biomass, harvest index, and grain yields values with delayed crop senescenceresulted in greater photosynthetic assimilation during the grain filling period. Either greatersource capacity from the significantly higher LAI and photosynthetic rate, or stronger sinkcapacity due to more kernel numbers and larger kernel volume expansion contributed togreater dry matter accumulation to the grain. In comparison to the FM treatment, the RMpractice can increase grain yields further, thus should be considered in the semiarid monsoonclimate region where rain is sufficient during the reproductive stage of maize.
     (6) Climatic warming has increased significantly since the1980s on the Loess Plateau,meanwhile the solar radiation and precipitation declined. These climate trends may lead to thereduction in yield potential and induced the serious water deficits. The warming trends have significant reduced the crop growth duration, induced68.7%of the total yield potentialdeclined, was the most important factor in the reduction in yield potential. Notably, the risingminimum temperature was mainly reason for climate warms and the most important factor inthe reduction in yield potential, while the rising maximum temperature may be the mainlyreason for the serious water deficits. In addition, the declining solar radiation decreasedavailable energy of assimilates for plant growth, induced24.6%of the total yield potentialdeclined, was the secondary factor in the reduction in yield potential. The annual fluctuationsand decline trends of precipitation will aggravate the water deficits across the Loess Plateau.
     (7) The magnitude of warming, since the1980s, may lead to a reduction in growthduration, yield potential and water use efficiency (WUE) if maize varieties remainedunchanged. We suggest the adapted later maturing cultivars, based on the increases incumulative temperatures for the period April–September in each of the decades in all studyregions. The adapted varieties allowed the longer growth duration, increasing yields potential,and higher WUE, and will be an effective way to fit within the warming environment. Inaddition, continuing to develop water harvesting techniques (e.g., plastic film mulching) willhelp to offset decreasing rainfall, and to guarantee food security and sustainability in aridregions.
     In a word, our results have confirmed the feasibility that used the Hybrid-Maize model toguide the optimizing of maize production system, improved our understanding of thephysiological mechanism of crop yield rising, assessed the potential impacts of climatechange, and proposed the adaptation strategies to mitigate the negative impacts. This researchcould be helpful for improve crop production in semi-arid regions.
引文
Abbate P E, Andrade F H, Culot J F.1995. The effects of radiation and nitrogen on number of grains inwheat. J. Agric. Sci,124:351~360.
    Ainsworth E A, Ort D R.2010. How Do We Improve Crop Production in a Warming World? Plant Physiol,154:526~530.
    Amthor J S.2000. The McCree-de Wet-Penning de Vries-Thornley respiration paradigms:30years later.Ann. Bot. London,86:1~20.
    Andrade F H, Ferreiro M A.1996. Reproductive growth of maize, sunflower and soybean at differentsource levels during grain filling. Field Crops Res,48:155~165.
    Andrade F H, Echarte L, Rizzalli R, Della Maggiora A, Casanovas M.2002. Kernel number prediction inmaize under nitrogen or water stress. Crop Sci,42:1173~1179.
    Andrade F H, Vega C R C, Uhart S, Cirilo A, Cantarero M, Valentinuz O.1999. Kernel numberdetermination in maize. Crop Sci,39:453~459.
    Arnold C Y.1974. Predicting stages of sweet corn (Zea mays L.) development. J. Am. Soc. Hortic. Sci,99:501~505.
    Asseng S, Foster I, Turner N C.2011. The impact of temperature variability on wheat yields. GlobalChange Biol,17:997~1012.
    Azam-Ali S N, Crout N M J, Bradley R G.1994. Perspectives in modeling resource capture by crops. In:Monteith J L, Scott R K, Unsworth M H.(Eds.), Resource Capture by Crops. Nottingham UniversityPress, Nottingham, pp.125~148.
    Bennett J M, Mutti L S, Rao P S C, Jones J W.1989. Interactive effects of nitrogen and water stresses onbiomass accumulation, nitrogen uptake, and seed yield of maize. Field Crops Res,19:297~311.
    Boote K J, Loomis R S.1991. the prediction of canopy assimilation. In: Boote K J, Loomis R S, eds.Modeling crop photosynthesis-from biochemistry to canopy. Madison: Crop Science Society ofAmerica,109~140.
    Borrás L, Otegui M E.2001. Maize kernel weight response to postflowering source–sink ratio. Crop Sci,41:1816~1822.
    Borrás L, Slafer G A, Otegui M E.2004. Seed dry weight response to source-sink manipulations in wheat,maize and soybean: a quantitative reappraisal. Field Crops Res,86:131~146.
    Borrás L, Westgate M E.2006. Predicting maize kernel sink capacity early in development. Field CropsRes,95:223~233.
    Brown M E, Funk C C.2008. Food Security Under Climate Change. Science,319:580~581.
    Bu L D, Liu J L, Zhu L, Luo S S, Chen X P, Li S Q, Hill R L, Zhao Y.2013. The effects of mulching onmaize growth, yield and water use in a semi-arid region. Agric. Water Manage,123:71~78.
    Burney J, Woltering L, Burke M, Naylora R, Pasternakb D.2010. Solar-powered drip irrigation enhancesfood security in the Sudano–Sahel. Proc. Natl. Acad. Sci. USA,107:1848~1853.
    Cassman K G, Dobermann A, Walters D T, Yang H S.2003. Meeting cereal demand while protectingnatural resources and improving environmental quality. Annu. Rev. Environ. Resour,28:315~356.
    Cassman K G.1999. Ecological intensification of cereal production systems: yield potential, soil quality,and precision agriculture. Proc. Natl Acad. Sci. USA,96:5952~5959.
    Castleberry R M, Crum C W, Krull C F.1983. Genetic yield improvement of U.S. maize cultivars undervarying fertility and climatic environments. Crop Sci,24:33~36.
    Caviglia O P, Sadras V O.2001. Effect of nitrogen supply on crop conductance, water-and radiation-useefficiency of wheat. Field Crops Res,69:259~266.
    Chakraborty D, Nagarajan S, Aggarwal P, Gupta V K, Tomar R K, Garg R N, Sahoo R N, Sarkar A, ChopraU K, Sundara Sarma K S, Kalra N.2008. Effect of mulching on soil and plant water status, and thegrowth and yield of wheat (Triticum awstivum L.) in a Semiarid environment. Agric. Water Manage,95:1323~1334.
    Che H Z, Shi G Y, Zhang X Y, Arimoto R, Zhao J Q, Xu L, Wang B, Chen Z H.2005. Analysis of40yearsof solar radiation data from China,1961–2000. Geophys. Res. Lett,32:1~5.
    Chen C Q, Qian C R, Deng A X, Zhang W J.2012. Progressive and active adaptations of cropping systemto climate change in Northeast China. Europ. J. Agronomy,38:94~103.
    Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H.2013. Modern maizehybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverseclimate change. Global Change Biol.19:923~936.
    Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S, Meng Q F, Hou P, Yue S C,R mheld V, Zhang F S.2011. Integrated soil–crop system management for food security. Proc. Natl.Acad. Sci. USA,108:6399~6404.
    Cheng W, Johnson D W, Fu S L.2003. Rhizosphere effects on decomposition: controls of plant species,phenology, and fertilization. Soil Science Society of America Journal,67:1418~1427.
    Cirilo A G, Andrade F H.1994a. Sowing date and maize productivity: I. Crop growth and dry matterpartitioning. Crop Sci,34:1039~1043.
    Cirilo A G, Andrade F H.1994b. Sowing Date and Maize Productivity: II. Kernel Number Determination.Crop Sci,34:1044~1046.
    Cirilo A G, Andrade F H.1996. Sowing date and kernel weight in maize. Crop Sci,36:325~331.
    Cox M C, Qualset C O, Rains D W.1985. Genetic variation for nitrogen assimilation and translocation inwheat. I. Dry matter and nitrogen accumulation. Crop Sci,25:430~435.
    Cutforth H W, Shaykewich C F.1989. Relationship of development rates of corn from planting to silking toair and soil temperature and to accumulated thermal units in a prairie environment. Can. J. Plant Sci,69:121~132.
    Ding YH, Ren GY, Shi GY, Gong, P., Zheng, X.H., Zhai, P.M., Zhang, D.E., et al.2007. China’s NationalAssessment Report on climate change (I): climate change in China and the future trend. Advances inClimate Change Research,3:1~5(Suppl.).
    Dong H Z, Li W J, Tang W, Zhang D M.2009. Early plastic mulching increases stand establishment andlint yield of cotton in saline fields. Field Crops Res,111:269~275.
    Doolittle W E.1998. Innovation and diffusion of sand and gravel-mulch agriculture in the AmericanSouthwest: a product of the eruption of Sunset Crater. Quaternaire,9:61~69.
    Dordas C.2009. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization asaffected by N and P fertilization and source–sink relations. European Journal of Agronomy,30:129~139.
    Duvick D N, Cassman K G.1999. Post-green revolution trends in yield potential of temperate maize in theNorth-Central United States. Crop Sci,39:1622~1630.
    Easson D L, Fearnehough W.2000. Effects of plastic mulch,sowing date and cultivar on the yield andmaturity of forage maize grown under marginal climatic conditions in Northern Ireland. Grass ForageSci,55:221~231.
    Easterling D R, Horton B, Jones P D.1997. Maximum and Minimum Temperature Trends for the Globe.Science,277:364~366.
    Echarte L, Andrade F H, Sadras V O, Abbate P.2006. Kernel weight and its response to sourcemanipulations during grain filling in Argentinean maize hybrids released in different decades. FieldCrops Res,96:307~312.
    Estrella N, Sparks T H, Menzel A.2007. Trends and temperature response in the phenology of crops inGermany. Global Change Biol,13:1737~1747.
    Evans L T.1993. Crop Evolution, Adaptation, and Yield (Cambridge Univ. Press, Cambridge, U.K.).
    Fairbourn M L.1973. Effect of Gravel Mulch on Crop Yield. Agron. J,65:925~928.
    FAO2011. FAOSTAT–Agriculture Database. Available at http://faostat.fao.org/. FAO, Rome.
    Flénet F, Kiniry J R, Board J E, Westgate M E, Reicosky D C.1996. Row spacing effects on lightextinction coefficients of corn, sorghum, soybean, and sunflower. Agronomy Journal,88:185~190.
    Gale W J, McColl R W, Fang X.1993. Sandy fields traditional farming water conservation in China. J. soilwater conserve,48:474~477.
    Gambín B L, Borrás L.2007. Plasticity of sorghum kernel weight to increased assimilate availability. FieldCrops Research,100:272~284.
    Gambín B L, Borrás L.2010. Resource distribution and the trade-off between seed number and weight: acomparison across crop species. Ann. Appl. Biol,156:91~102.
    George E, Marschner H, Jakobsen I.1995. Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorusand Nitrogen From Soil. Crit. Rev. Biotechnol,15:257~270.
    Grassini P, Thorburn J, Burr C, Cassman K G.2011a. High-yield irrigated maize in the Western U.S. CornBelt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Res,120:142~150.
    Grassini P, Yang H S, Cassman K G.2009. Limits to maize productivity in Western Corn-Belt: A simulationanalysis for fully irrigated and rainfed conditions. Agr. Forest Meteorol,149:1254~1265.
    Grassini P, Yang H S, Irmak S, Thorburn J, Burr C, Cassman K G.2011b. High-yield irrigated maize in theWestern U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Res,120:133~141.
    Heilig G K,1999. China food: Can China feed itself? CD-ROM Vers.1.1Laxenburg, Austria: Int. Inst.Appl. Syst. Anal.
    Hodges T.1991. Predicting Crop Phenology. Boca raton: CRC Press.
    Hou P, Gao Q, Xie R Z, Li S K, Meng Q F, Kirkby E A, R held V, Müller T, Zhang F S, Cui Z L, Chen X P.2012. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maizegrown in China. Field Crops Res,129:1~6.
    Howden S M, Soussana J F, Tubiello F N, Chhetri N, Dunlop M, Meinke H.2007. Adapting agriculture toclimate change. Proc. Natl. Acad. Sci. USA,104:19691~19696
    IPCC2007. Summary for Policymakers of the Synthesis Report of the IPCC Fourth Assessment Report.Cambridge, UK: University Press.
    Jia Y, Li F M, Wang X L, Yang S M.2006. Soil water and alfalfa yields as affected by alternating ridgesand furrows in rainfall harvest in a semiarid environment. Field Crops Res,97:167~175.
    Jones C A, Kiniry J R, Dyke P T.1986. CERES-Maize: Simulation Model of Maize Growth andDevelopment. College Station: Texas A&M University Press.
    Jones C A, Kiniry J R.1986. CERES-Maize:A Simulation Model of Maize Growth and Development.Texas A&M University Press, College Station, TX.
    Jones R J, Schreiber B M N, Roessler J A.1996. Kernel sink capacity in maize: genotypic and maternalregulation. Crop Sci,36:301~306.
    Jongschaap R E E, Booij R.2004. Spectral measurements at different spatial scales in potato: relating leaf,plant and canopy nitrogen status. Int. J. Appl. Earth Obs,5:205~218.
    Ju X T, Xing G X, Chen X P, Zhang S L, Zhang L J, Liu X J, Cui Z L, Yin B, Christie P, Zhu Z L, Zhang FS.2009: Reducing environmental risk by improving N management in intensive Chinese agriculturalsystems. Proc. Natl Acad. Sci. USA,106:3041~3046.
    Kiniry J R, Bean B, Xie Y, Chen P.2004. Maize yield potential: critical processes and simulation modelingin a high-yielding environment. Agricultural Systems,82:45~56.
    Kiniry J R, Landivar J A, Witt M, Gerikd T J, Caveroe J, Wadef L J.1998. Radiation-use efficiencyresponse to vapor pressure deficit for maize and sorghum. Field Crops Research,56:265~270.
    Kiniry J R.1988. Kernel weight increase in response to decreased kernel number in sorghum. Agron. J,80:221~226.
    Kiniry J R, Tischler C R, Rosenthal W D, Gerik T J.1992. Nonstructural carbohydrate utilization bysorghum and maize shaded during grain growth. Crop Sci,32:131~137.
    Kropff M J, van Laar H H.1993. Modelling Crop–Weed Interactions[M]. UK: CABI.
    Kropff M J, Williams R L, Horie T, Angus J F, Singh U, Centeno H G, Cassman K G.1994. Temperate Rice:Achievements and Potential (New South Wales Agriculture, Yanco, Australia), pp.657~663.
    Li F M, Guo A H, W H.1999. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res,63:79~86.
    Li S X, Wang Z H, Malhi S S. Li S Q, Gao Y J, Tian X H.2009.Nutrient and Water Management Effects onCrop Production, and Nutrient and Water Use Efficiency in Dryland Areas of China. In Sparks, editor:Advances in Agronomy. Burlington: Academic Press,102:223~265.
    Li X Y, Gong J D, Wei X H.2000. In-situ rain water harvesting and gravel mulch combination for cornproduction in the dry semi-arid region of China. J. Arid Environ,46:371~382
    Li X Y.2003. Gravel–sand mulch for soil and water conservation in the semiarid loess region of northwestChina. Catena,52:105~127.
    Li F M, Guo A H, Wei H.1999. Effects of clear plastic film mulch on yield of spring wheat. Field CropsRes,63:79~86.
    Li F M, Wang P, Wang J, Xu J Z.2004. Effects of irrigation before sowing and plastic film mulching onyield and water uptake of spring wheat in semiarid Loess Plateau of China. Agric. Water Manage,67:77~88.
    Li S X, Xiao L.1992. Distribution and management of drylands in the People’s Republic of China. Adv.Soil Sci,18:148~293.
    Li X Y.2003. Gravel–sand mulch for soil and water conservation in the semiarid loess region of northwestChina. Catena,52:105~127.
    Li X Y, Gong J D, Wei X H.2000. In-situ rain water harvesting and gravel mulch combination for cornproduction in the dry semi-arid region of China. J. Arid Environ,46:371~382.
    Li X Y, Gong J D, Gao Q Z, Li F R.2001. Incorporation of ridge and furrow method of rainfall harvestingwith mulching for crop production under semiarid conditions. Agric. Water Manage,50:173~183.
    Li Y S, Wu L H, Zhao L M, Lu X H, Fan Q L, Zhang F S.2007. Influence of continuous plastic filmmulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition.Soil Tillage Res,93:370~378.
    Lightfoot D R.1994. Morphology and ecology of lithic-mulch agriculture. Geographical Review,84:172~185.
    Lindquist J L, Arkebauer T J, Walters D T, Cassman K G, Dobermann A.2005. Maize radiation useefficiency under optimal growth conditions. Agron. J,97:72~78.
    Liu C A, Jin S L, Zhou L M, Jia Y, Li F M, Xiong Y C, Li X G.2009. Effects of plastic film mulch andtillage on maize productivity and soil parameters. Eur. J. Agron,31:241~249.
    Liu Y, Li S Q, Chen F, Yang S J, Chen X P.2010b. Soil water dynamics and water use efficiency in springmaize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau,China. Agricultural Water Management,97:769~775.
    Liu Y, Yang S J, Li, S Q, Chen X P, Chen F.2010a. Growth and development of maize (Zea mays L) inresponse to different field water management practices: resource capture and use efficiency.Agricultural and Forest Meteorology,150:606~613.
    Liu J, Liu H, Huang S M, Yang X Y, Wang B R, Li X Y, Ma Y B.2010c. Nitrogen efficiency in long-termwheat–maize cropping systems under diverse field sites in China. Field Crops Res,118:145~151.
    Liu Y, Wang E L, Yang X G, Wang J.2010d. Contributions of climatic and crop varietal changes to cropproduction in the North China Plain, since1980s. Global Change Biol,16:2287~2299.
    Lobell D B, Burke M B, Tebaldi C, Mastrandrea M D, Falcon W P, Naylor R L.2008. Prioritizing ClimateChange Adaptation Needs for Food Security in2030. Science,319:607~610.
    Lobell D B, Asner G P.2003. Climate and Management Contributions to Recent Trends in U.S.Agricultural Yields. Science,299:1032.
    Lobell D B, Burke M B.2010. On the use of statistical models to predict crop yield responses to climatechange. Agric. For. Meteorol,150:1443~1452..
    Lobell D B, Field C B.2007. Global scale climate–crop yield relationships and the impacts of recentwarming. Environ. Res. Lett.2,014002(7pp).
    Lobell D B, Schlenker W, Costa-Roberts J.2011. Climate Trends and Global Crop Production Since1980.Science,333:616~620.
    Loomis R S, Connor D J.1992. Crop Ecology. Productivity and Management in Agricultural Systems.Cambridge University Press, Cambridge.
    Luo Q Y, Bellotti W, Williams M, Wang E L.2009. Adaptation to climate change of wheat growing inSouth Australia: Analysis of management and breeding strategies. Agr. Ecosyst. Enmiron,129:261~267.
    Maddonni G A, Otegui M E, Bonhomme R.1998. Grain yield components in maize II. Postsilking growthand kernel weight. Field Crops Res,56:257~264.
    Martínez-Carrasco M, Cervantes E, Perez P, Morcuende R, Martín del Molino I M.1993. Effect of sinksize on photosynthesis and carbohydrate content of leaves of three spring wheat varieties. Physiol.Plantarum,89:453~459.
    McKee G W.1964. A coefficient for computing leaf area in hybrid corn. Agron. J,56:240~241.
    McMaster G S, Wilhelm W W.1997. Growing degree-days: one equation, two interpretations. Agric. For.Meteorol,87:291~300.
    Miedema P.1982. The effects of low temperature on Zea mays L. Adv. Agron,35:93~129.
    Modaihsh S A, Horton R, Kirkham D.1985. Soil water evaporation suppression by sand mulches. Soil Sci,139:357~361.
    Mohapatra B K, Lenka D, Naik D.1998. Effect of plastic mulching on yield and water use efficiency inmaize. Annals Agric. Res,19:210~211.
    Monteith J L.1965. Light distribution and photosynthesis in field crops. Annals of Botany,29:17~37.
    Monteith J.L.1969. Light interception and radiative exchange in crop stands. In: Eastin, J.D.(Ed.),Physiological Aspects of Crop Yield. ASA, Madison, WI, pp.89~111.
    Monteith J L.1981. Evaporation and surface temperature. Quart. J. Roy. Meteor. Soc,107:1~27.
    Montieth J L.1996.The quest for balance in modeling. Agron. J,88:695~697.
    Morton J F.2007. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl.Acad. Sci. USA,104:19680~19685.
    Muchow R C, Sinclair T R, Bennett J M.1990. Temperature and solar radiation effects on potential maizeyields across locations. Agron. J,82:338~342.
    Muchow R C.1990. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res,23:145~158.
    Mueller N D, Gerber J S, Johnston M, Ray D K, Ramankutty N, Foley J A.2012. Closing yield gapsthrough nutrient and water Management. Nature,490:254~257.
    Mwale S S, Azam-Ali S N, Massawe F J.2007a. Growth and development of bambara groundnut (Vignasubterranea) in response to soil moisture:1. Dry matter and yield. Eur. J. Agron,26:345~353.
    Mwale S S, Azam-Ali S N, Massawe F J.2007b. Growth and development of bambara groundnut (Vignasubterranea) in response to soil moisture:2. Resource capture and conversion. Eur. J. Agron,26:354~362.
    Nachtergaele J, Poesen J W, Van Wesemael B.1998. Gravel mulching in vineyards of southern Switzerland.Soil Tillage Res,46:51~59.
    Niu J Y, Gan Y T, Zhang J W, Yang Q F.1998. Postanthesis dry matter accumulation and redistribution inspring wheat mulched with plastic film. Crop Sci,38:1562~1568.
    Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, et al.2004. Riceyields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA,101:9971~9975.
    Penning de Vries F W T, Jansen D M, ten Berge H F M, Bakema A.1989. Simulation of ecophysiologicalprocesses of growth in several annual crops. Simulation Monographs29. PUDOC, Wageningen.
    Peterson T A, Blackmer T M, Francis D D, Schepers J S.1993. Using a Chlorophyll Meter to Improve NInstitute of Agriculture and Natural Resources, University, Nebraska, Lincoln, USA.
    Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, et al.2010. The impacts of climatechange on water resources and agriculture in China. Nature,467:43~51.
    Quezada M R, Munguia J P, Linares C.1995. Plastic mulching and availability of soil nutrients in cumubercrop. TER-RA (Mexico),13:136~147.
    Ravi V, Lourduraj A C.1996. Comparative performance of plastic mulching on soil moisture content,soiltemperature and yield of rain fed cotton. Madras Agric. J,83:709~711.
    Reich P B, Grigal D F, Aber J D, Gower S T.1997. Nitrogen mineralization and productivity in50hardwood and conifer stands on diverse soils. Ecology,78:335~347.
    Ritchie S W, Hanway J J, Benson G O.1992. How a corn plant develops. Spec. Rep.48. Iowa State Univ.Coop. Ext. Serv., Ames. http://maize.agron.iastate.edu/corngrows.html
    Rockstr m J, Lannerstad M, Falkenmark M.2007. Assessing the water challenge of a new green revolutionin developing countries. Proc. Natl. Acad. Sci. USA,104:6253~6260.
    Rosegrant M W, Cline S A.2003. Global Food Security: Challenges and Policies. Science,302:1917~1919.
    Sadras V O.2007. Evolutionary aspects of the trade-off between seed size and number in crops. FieldCrops Res,100:125~138.
    Sala R G, Westgate M E, Andrade F H.2007. Source/sink ratio and the relationship between maximumwater content, maximum volume, and final dry weight of maize kernels. Field Crops Res,101:19~25.
    Schimel D S.2010. Drylands in the Earth System. Science,327:418~419.
    Schlesinger W H.1997. Biogeochemistry: An Analysis of Global Change (2nd edition). San Diego:Academic Press.
    Schmidhuber J, Tubiello F N.2007. Global food security under climate change. Proc. Natl. Acad. Sci. USA,104:19703~19708.
    Sepaskhah A R, Saghar Fahandezh-Saadi S, Zand-Parsa S.2011. Logistic model application for predictionof maize yield under water and nitrogen management. Agric. Water Manag,99:51~57.
    Setiyono T D, Walters D T, Cassman K G, Witt C, Dobermann A.2010. Estimating maize nutrient uptakerequirements. Field Crops Res,118:158~168.
    Setter T L, Parra R.2010. Relationship of Carbohydrate and Abscisic Acid Levels to Kernel Set in Maizeunder Postpollination Water Deficit. Crop Sci,50:980~988.
    Shanahana J F, Kitchen N R, Raun W R, Schepers J S.2008. Responsive in-season nitrogen managementfor cereals. Comput. Electron. Agr,61:51~62.
    Sinclair T R. Seligman N G.1996.Crop modeling: from infancy to maturity. Agron. J,88:698~704.
    Sincliar T R, Muchow R C.1999. Radiation use efficiency. Adv. Agron,65:215~265.
    Singh B R, Singh D P.1995. Agronomic and physiological responses of sorghum, maize and pearl millet toirrigation. Field Crops Res,42:57~67.
    Stanhill G, Moreshet S.1992. Global Radiation Climate Changes in Israel. Clim. Change,22:121~138.
    Stanhill G, Moreshet S.1994. Global Radiation Climate Change and Surface Sources of Pollution. Clim.Change,26:89~103.
    Steiner J L.1989. Tillage and surface residue effects on evaporation from soils. Soil Sci. Soc. Am. J,53:911~916.
    Stone P J, Sorensen I B, Jamieson P D.1999Effect of soil temperature on phenology, canopy development,biomass and yield of maize in a cool-temperate climate. Field Crops Res,63:169~178.
    Tao F L, Zhang Z.2010. Adaptation of maize production to climate change in North China Plain: Quantifythe relative contributions of adaptation options. Eur. J. Agron,33:103~116.
    Tilman D, Cassman K G., Matson P A, Naylor R, Polasky S.2002. Agricultural sustainability and intensiveproduction practices. Nature,418:671~677.
    Timsina J, Jat M L, Majumdar K.2010. Rice-maize systems of South Asia: Current status, future prospectsand research priorities for nutrient management. Plant Soil,335:65~82.
    Uhart S A, Andrade F H.1995. Nitrogen and carbon accumulation and remobilization during grain filling inmaize under different source/sink ratios. Crop Sci,35:183~190.
    Uhart S A, Andrade F H.1991. Source–sink relationship in maize grown in a cool area. Agronomie,11:863~875.
    Unger P W.1975. Role of mulches in dry land agriculture. In: Gupta, U.S. ed. Crop Physiology. Oxford andIBH, New Delhi,237~260.
    Unger P W.1978. Straw-mulch rate effect on soil water storage and sorghum yield. Soil Sci. Soc. Am. J,42:486~491.
    Van Diepen C A, Wolf J, van Keulen H, Rappoldt C.1989. WOFOST: a simulation model of cropproduction. Soil Use Manage,5:16~24.
    van Ittersum M K, Leffelaar P A, van Keulen H, Kropff M J, Bastiaans L, Goudriaan J.2003. Onapproaches an applications of the Wageningen crop models. Eur. J. Agron,18:201~234.
    Van Ittersum M K, Rabbinge R.1997. Concepts in production ecology for analysis and quantification ofagricultural input–output combinations. Field Crops Res,52:197~208.
    Varinderpal-Singh, Yadvinder-Singh, Bijay-Singh, Thind H S, Kumar A, Vashistha M.2011. Calibrating theleaf colour chart for need based fertilizer nitrogen management in different maize (Zea mays L.)genotypes. Field Crops Res,120:276~282.
    Walther G R, Post E, Convey P, Menzel A, Parmesank C, Beebee T J C, Fromentin J M, et al.2002.Ecological responses to recent climate change. Nature,416:388~395.
    Wang Y J, Xie Z K, Malhi S S, Vera C L, Zhang Y B, Guo Z H.2011. Effects of gravel–sand mulch, plasticmulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soiltemperature and watermelon yield in a semi-arid Loess Plateau of northwestern China. Agric. WaterManage,101:88~92.
    Wang Y J, Xie Z K, Malhi S S, Vera C L, Zhang Y B, Wang J N.2009. Effects of rainfall harvesting andmulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China.Agric. Water Manage,96:374~382.
    Wang X L, Li F M, Jia Y, Shi W Q.2005. Increasing potato yields with additional water and increased soiltemperature. Agric. Water Manage,78:181~194.
    Warrington I J, Kanemasu E T.1983. Corn growth response to temperature and photoperiod. II. Leafinitiation and leaf appearance rates. Agron. J,75:755~761.
    Wu S H, Yin Y H, Zheng D,Yang Q.2005. Aridity/humidity status of land surface in China during the lastthree decades. Science in China Ser. D Earth Sciences,48:1510~1518.
    Xie Z K, Wang Y J, Li F M.2005. Effect of plastic mulching on soil water use and spring wheat yield inarid region of northwest China. Agric. Water Manage,75:71~83.
    Xie Z K, Wang Y J, Cheng G D, Malhi S S, Vera C L, Guo Z H, Zhang Y B.2010. Particle-size effects onsoil temperature, evaporation, water use efficiency and watermelon yield in fields mulched with graveland sand in semi-arid Loess Plateau of northwest China. Agric. Water Manage,97:917~923.
    Xie Z K, Wang Y J, Jiang W L, Wei X H.2006. Evaporation and evapotranspiration in a watermelon fieldmulched with gravel of different sizes in northwest, China. Agric. Water Manage,81:173~184.
    Yanagawa H, Watanabe K, Nakamura M.1989. Application of thefeeding redients for live stock toanartificial diet by usingpolyphagous strain of the silk worm. J. Seric. Sc. i. Jpn,58:401~406.
    Yang H S, Dobermann A, Cassman K G, Walters D T.2006. Features, Applications, and Limitations of theHybrid-Maize Simulation Model. Agron. J,98:737~748.
    Yang H S, Dobermann A, Lindquist J L, Walters D T, Arkebauer T J, Cassman K G.2004. Hybrid-maize—amaize simulation model that combines two crop modeling approaches. Field Crops Res,87:131~154.
    Yang Y H, Zhao N, Hao X H, Li C Q.2009. Decreasing trend of sunshine hours and related driving forcesin North China. Theor. Appl. Climatol,97:91~98.
    Zebarth B J, Younie M, Paul J W, Bittman S.2002. Evaluation of leaf chlorophyⅡindex for makingfertilizer nitrogen recommendations for silage maize in a high fertility environment. Commun. Soil Sci.Plant Anal,33:665~684.
    Zhai P M, Sun A J, Ren F M, Liu X N, Gao B, Zhang Q.1999. Changes of climate extremes in China.Climatic Change,42:203~218.
    Zhang S L, L vdahl L, Grip H, Tong Y A, Yang X Y, Wang Q J.2009. Effects of mulching and catchcropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil TillageRes,102:78~86.
    Zhang X P, Zhang L, McVicar T R, Niel G V, Li L T, Li R, Yang Q K, Wei L.2008. Modelling the impactof afforestation on average annual streamflow in the Loess Plateau, China. Hydrology Processes,22:1996~2004.
    Zhang X D, Cai H J, Fu Y J, Wang J.2006. Study on leaf area index of summer maize in loess areas. Agric.Res. Arid Area.24:225~29.
    Zhang Y L, Qin B Q, Chen W M.2004. Analysis of40year records of solar radiation data in Shanghai,Nanjing and Hangzhou in Eastern China. Theor. Appl. Climatol,78:217~227.
    Zhang G S, Chan K Y, Li G D, Huang G B.2008. Effect of straw and plastic film management undercontrasting tillage practices on the physical properties of an erodible loess soil. Soil Tillage Res,98:113~119.
    Zhang S L, Li P R, Yang X Y, Wang Z H, Chen X P.2011. Effects of tillage and plastic mulch on soil water,growth and yield of spring-sown maize. Soil Tillage Res,112:92~97.
    Zhang S L, L vdahl L, Grip H, Tong Y A, Yang X Y, Wang Q J.2009. Effects of mulching and catchcropping on soil temperature, soil moisture and wheat yield on the Loess Plateau of China. Soil TillageRes.102:78~86.
    Zhou L M, Jin S L, Liu C A, Xiong Y C, Si J T, Li X G, Gan Y T, Li F M.2012. Ridge-furrow andplastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiaridagroecosystem. Field Crops Res,126:181~188.
    Zhou L M, Li F M, Jin S L, Song Y J.2009. How two ridges and the furrow mulched with plastic filmaffect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. FieldCrops Res,113:41~47.
    白金顺.2010.应用Hybrid-Maize模型评价与挖掘玉米产量潜力.[博士学位论文].北京:中国农业大学.
    卜玉山,邵海林,王建程,苗果园.2010.秸秆与地膜覆盖春玉米和春小麦耕层土壤碳氮动态.中国生态农业学报,18:322~326.
    陈国平,赵久然,张经武,王玉林,朱士明,孙宝,卢志云,段成民.1995.春玉米创最高产记录栽培技术的研究.玉米科学,3:26~30.
    陈锡时,郭树凡,汪景宽,张键.1998.地膜覆盖栽培对土壤微生物种群和生物活性的影响.应用生态学报,9:435~439.
    陈小莉,李世清,王瑞军,任小龙,李生秀.2007.半干旱区施氮和灌溉条件下覆膜对春玉米产量及氮素平衡的影响.植物营养与肥料学报,13:652~658.
    陈雨海,余松烈,于振文.2003.小麦生长后期群体光截获量及其分布与产量的关系.作物学报,29:730~734.
    程俊珊.2006.渭源地区旱地玉米覆膜种植增温效应及高产增效研究初报.干旱地区农业研究,24:39~42
    杜社妮,白岗栓.2007.玉米地膜覆盖的土壤环境效应.干旱地区农业研究,25:56~59.
    方彦杰,黄高宝,李玲玲,汪佳.2010.旱地全膜双垄沟播玉米生长发育动态及产量形成规律研究.干旱地区农业研究,28:128~134.
    龚子同,张甘霖,陈志诚.2007.土壤发生与系统分类.北京:科学出版社.
    谷杰,高华,方日尧.1998.施肥和秸秆覆盖对旱地作物水分利用效率的影响.农业工程学报,14:160~164.
    郭庆成.2004.中国玉米栽培学.上海:上海科学技术出版社.
    国家统计局.2011.中国农业统计年鉴.
    贺润喜,王玉国,赵金鱼.1999.不同生育期揭膜对旱地地膜覆盖玉米生理性状和产量的影响.山西农业大学学报,19:16~18,28,89~90.
    黄明斌,党廷辉,李玉山.2002.黄土区旱塬农田生产力提高对土壤水分循环的影响.农业工程学报,8(6):50~54.
    金胜利,周丽敏,李凤民,张光全.2010.黄土高原地区玉米双垄全膜覆盖沟播栽培技术土壤水温条件及其产量效应.干旱地区农业研究,28:28~33.
    景东田.2007a.甘肃旱作区膜侧沟播优质高产栽培技术.作物杂志,4:92~94.
    景东田.2007b.全膜覆盖双垄面集雨沟播栽培技术及应用前景分析.作物杂志,6:70~71.
    景蕊莲.1999.作物抗旱研究的现状与思考.干旱地区农业研究,17:79~85.
    巨晓堂,李生秀.1998.土壤氮素矿化的温度水分效应.植物营养与肥料学报,4:37~42.
    梁剑琴.2003.农业水资源保护对策研究.水资源、水环境与水法制建设问题研究——2003年中国环境资源法学研讨会(年会)(2003.7.24-29·青岛)论文集, pp398~401.
    李军,邵明安,张兴昌.2004.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究.自然资源学报,19:52~55.
    李锐,杨文治,李壁成.2008.中国黄土高原研究与展望.北京:科学出版社:570~575.
    李登海.2000.从事紧凑型玉米育种的回顾与展望.作物杂志,5:1~5.
    李改香,刘永忠,李万星,李齐霞,孙万荣,王随保.2001.旱地玉米整秆加秋盖地膜保全苗壮苗技术研究.干旱地区农业研究,19:22~25.
    李洪勋,吴伯志.2003.地膜覆盖对玉米生理效应研究.耕作与栽培,6:46~48.
    李建奇.2006.覆膜对春玉米土壤温度、水分的影响机理研究.耕作与栽培,5:47~49.
    李军,邵明安,张兴昌,李世清.2007.黄上高原旱源区高产玉米田上壤干燥化与产量波动趋势模拟研究.中国生态农业学报,15:54~58.
    李军,王立祥,邵明安,樊廷录.2002.黄土高原地区玉米生产潜力模拟研究.作物学报,28:555~560.
    李军.1997.作物生长模型ALMANAC的验证与应用初探.干旱地区农业研究,15:99~104.
    李三爱,居辉,池宝亮.2005.作物生产潜力研究进展.中国农业气象,26:106~111.
    李少昆,王崇桃.2010.玉米高产潜力,途径.北京:科学出版社.
    李世清,李凤民,宋秋华,王俊.2001.半干旱地区不同地膜覆盖时期对土壤氮素有效性的影响[J].生态学报,21:1519~1526.
    李运朝,王元东,崔彦宏,赵久然,郭景伦,段民孝.2004.玉米抗旱性鉴定研究进展.玉米科学,120:63~68.
    廖显辉.2002.话说“节水农业”.农业考古,1:44~47.
    刘广才,杨祁峰,李来祥,樊廷录,赵小文,朱永永.2008.旱地玉米全膜双垄沟播技术土壤水分效应研究.干旱地区农业研究,26:18~28.
    刘毅,李世清,陈新平,白金顺.2008.黄土旱塬Hybrid-Maize模型适应性及春玉米生产潜力估算.中国农业工程学报,24:302~308.
    刘毅.2009.应用Hybrid-Maize模型优化旱区玉米管理策略.[博士学位论文].杨凌:中国科学院水土保持研究所.
    路海东,薛吉全,赵明,马国胜.2006.玉米高产栽培群体密度与性状指标研究.玉米科学,14:81~83.
    罗耀群.1982.谈谈地膜覆盖栽培.中国农垦,3:19~20.
    梅方权.1995.粮食的供需形势,中国粮食供需前景.中国农村经济.
    彭珂珊,邓西平.2000.黄土高原粮食生产潜势与高产技术研究.云南地理环境研究,12:30~37.
    彭珂珊.2000.黄土旱塬粮食高产记录及其启示.中国农业资源与区划,21:19~21.
    邱福林,张伟平.2000.水分胁迫对水稻生长影响的研究进展.垦殖与稻作,2:7~13.
    山仑,苏佩.2000.不同类型作物对干湿交替环境的反应.西北植物学报,20:164~170.
    上官周平,彭彬.1999.黄土高原地区粮食生产发展前景及其开发技术.国土开发与政治,9:33~37.
    盛海君,周春霖,沈其荣,徐阳春,封克.2004.秸秆覆盖下旱作水稻的生长发育特征研究.中国水稻科学,18:53~58.
    孙燕,林振山,刘会玉.2006.中国耕地数量变化的突变特征及驱动机制.资源科学,28:57~61.
    谭军利,王林权,李生秀.2008.地面覆盖的保水增产效应及其机理研究.干旱地区农业研究,26:50~54.
    田福海,翟广谦,陈永欣.1991.地膜覆盖玉米封垄期揭膜试验.山西农业科学,5:8~9.
    佟屏亚.2000.中国玉米科技史.北京:中国农业科技出版社.
    汪景宽,刘顺国,李双异.2006.长期地膜覆盖及不同施肥处理对棕壤无机氮和氮素矿化率的影响.水土保持学报,20:107~110.
    王俊,李风民,李世清,宋秋华.2003.地膜覆盖和地墒灌溉对春小麦产量形成的影响.西北植物学报,23,735~738.
    王立春.2004.吉林省玉米超高产研究进展与产量潜力分析.中国农业科技导报,6:33~35.
    王绍美,金胜利,王刚.2010.半干旱区全覆膜双垄沟播技术对玉米产量和水分利用效率的影响.甘肃农业大学学报,45:100~106.
    王树安.1995.作物栽培学各论.北京:中国农业出版社. p142~143.
    王树森,邓根云.1991.地膜覆盖增温机制研究.中国农业科学,3:74~78.
    王顺霞,王占军,左忠,郭永忠.2004.不同覆盖方式对旱地玉米田土壤环境及玉米产量的影响.干旱区环境与资源,18:134~137.
    王晓琴,袁继超,熊庆娥.2002.玉米抗旱性研究的现状及展望.玉米科学,10:57~60.
    王泽立.1998.玉米抗旱性遗传与育种.玉米科学,3:9~13.
    王宗明,梁银丽.2002a.黄土塬区主要粮食作物增产潜力分析.干旱区资源与环境,16:33~37.
    王宗明,梁银丽.2002b.应用EPIC模型计算黄土塬区作物生产潜力的初步尝试.自然资源学报,17:481~487.
    王宗明,梁银丽.2002c.黄土塬区作物生产潜力分析—以长武试区为例.水土保持通报,21:30~33.
    文启凯,肖明,毛鸿才,石书兵,赵丽华,王文全,孙春玲.1995.地膜条件下土壤生态因子与玉米产量的关系.应用生态学报,6:53~56(增刊).
    夏自强,蒋洪庚,李琼芳,赵胜领.1997.地膜覆盖对土壤温度、水分的影响及节水效益.河海大学学报,25:39~45.
    徐国昌.1997.中国干旱半干旱区气候变化.北京:气象出版社. p16~18;85~101.
    薛吉全,张仁和,李凤艳,张兴华.2008.陕西玉米育种现状、问题与对策.玉米科学,16:139~141.
    杨祁峰,岳云,熊春蓉,孙多鑫.2008.不同覆膜方式对陇东旱塬玉米田土壤温度的影响.干旱地区农业研究,26:29~33.
    张德奇,廖允成,贾志宽.2005.旱区地膜覆盖技术的研究进展及发展前景.干旱地区农业研究,23:208~213.
    张雷,牛建彪,张成荣,许维诚,张继祖.2007.旱地玉米双垄全膜覆盖“一膜用两年”免耕栽培模式研究.干旱地区农业研究,25:8~11.
    张雷,牛建彪,赵凡.2006.旱作玉米提高降水利用率的覆膜模式研究.干旱地区农业研究,24:8~17.
    张仁陟,李小刚,胡恒觉.1999.施肥对提高旱地农田水分利用效率的机理.植物营养与肥料学报,5:221~226.
    张树兰, Lovdah L,同延安.2005.渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率.农业工程学报,21:20~24.
    张旭东,蔡焕杰,付玉娟,王健.2006.黄土区夏玉米叶面积指数变化规律的研究.干旱地区农业研究,24:25~29.
    赵聚宝,梅旭荣,薛军红.1996.秸秆覆盖对旱地作物水分利用效率的影响.中国农业科学,29:59~66.
    郑险峰,周建斌,王春阳,拓秀丽,高亚军,李生秀.2009.覆盖措施对夏玉米生长和养分吸收的影响.干旱地区农业研究,27:80~83.
    朱琳,刘毅,徐洪敏,陈新平,李世清.2009.黄土旱塬不同水分管理模式对旱作春玉米土壤温度的影响.中国农业科学,42:4396~4402.
    朱兆良.1979.土壤中氮素的转化和移动的研究近况.土壤学进展,2:1~6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700