湖泊不同利用方式对底栖动物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1998年4月~1999年7月对长江中下游四个浅水湖泊即东汤孙湖、牛山湖、龙感湖和黄湖的底栖动物分别进行了四次采集,研究各个湖泊底栖动物在种类组成、现存量、功能摄食类群、生产显和渔产潜力上的差异;结合各个湖泊理化生物因子综合分析了湖泊不同利用方式对底栖动物群落的影响。主要结果如下:
     东汤孙湖、牛山湖、龙感湖、黄湖四个湖泊底栖动物的种类数分别为36、24、33、18,各类群的种类数以及生物多样性指数相差很大。
     在密度方面,寡毛类以龙感湖最高,牛山湖最低,且两湖差异显著(p≤0.05);牛山湖螺类明显比其它三个湖湖泊高(p≤0.05);双壳类以东汤孙湖最高,牛山湖和龙感湖最低;水生昆虫以东汤孙湖最高,黄湖最低,且东汤孙湖与龙感湖和黄湖差界显著(p≤0.05);底栖动物总密度以东汤孙湖最高,黄湖最低,且两湖差异显著(p≤0.05)。四个湖泊底栖动物及其各类群生物量差异较大,但在统计学上未达显著界限。
     底栖动物功能摄食类群的研究在我困较少见,文中详细地报道了长江中下游四个湖泊底栖动物各个功能摄食类群的种类数(包括其百分比)和现存量。结果表明各个湖泊中功能摄食类群各有其特点,撕食者的比例以龙感湖最高,收集者的比例以黄湖最高,刮食者的比例以牛山湖最高,捕食者的比例以东汤孙湖最高。
     四个湖泊中底柄动物的生产量(单位:kg/hm~2/yr)按大小顺序排列为牛山湖(1082)>龙感湖(767.3)>东汤孙湖(564.5)>黄湖(329.5),而渔产潜力(单位:kg/hm~2/yr)按大小顺序为东汤孙湖(16)>龙感湖(15.75)>黄湖(14.4)>牛山湖(10.4)。
     环境分析表明底栖动物总的现存量与水草生物量、总磷总氮含量均正相关,与水深、透明度均负相关。底栖动物各个类群的现存量与水草生物量、水深、透明度、总磷和总氮的关系均较密切。
     综上所述,湖泊不同利用方式对底栖动物的影响很大。东汤孙湖的旅游业和饮食业对湖泊的影响主要是有机污染。可以预计,如果不采取严格
    
    的污水处理措施,随着旅游、饮食业的发展,东汤孙湖将向藻型富营养湖
    泊发展。牛山湖中鱼类的放养使水草出现衰退,该湖底栖动物虽然仍以螺
    类等刮食者为上,但生物见只有洪湖等典型草型湖泊的 1/5。草食性鱼类
    对底栖动物的影响主要是通过减少水草这一间接途径。尤感湖代表天然捕
    捞湖泊,可以认为天然捕捞对底栖动物的影响不大。黄湖多年来一直以河
    蟹养殖为主。该湖中底栖动物极其医乏。在鞍苗放养强度约Ikg/hYTI的条
    件下,底栖动物密度和生产显减少60%以上。河吸对底栖动物的影响一是
    直接觅食,二是通过破坏水草间接影响。现在该湖沉水植物消失,菱等浮
    叶植物却泛滥成灾。解决问题的唯一途径是合理放养,休养生息,以达到
    持续利用资源、长期保持高效益的目的。面积小的湖泊或湖汉宜采用河蟹
    和滤食性鱼类隔年交替放养的模式,而积较大的湖泊可以采取分室对策,
    即部分区域养殖河蟹,部分区域养殖非草食性鱼类,并逐年轮换。
To examine the effects of different lake uses on lacustrine zoobenthic community, zoobenthos were sampled in 1998-1999 from four shallow lakes of middle and lower basins of Changjiang River, viz. fish stocking and touring lake, East Tangsun Lake; fish-stocking-lake, Niushan Lake; natural-fishing-lake, Longgan Lake and crab-overstocking-lake, Huang Lake. Species composition, standing crops, functional feeding groups of benthic animals in every lake were studied. The differences of species number, mean
    
    
    
    size, standing crop, production and fishery capacity of zoobenthos in four lakes were compared. In combination to physico-chemical and other biological factors, the effect of different lake uses on zoobenthic community was analyzed.
    The species number of zoobenthos in East Tangsun Lake, Niushan Lake, Longgan Lake and Huang Lake were 36, 24, 33, and 18, respectively. The differences in species richness and species diversity in the four lakes were obvious.
    In the four lakes, oligochaete density in Longgan Lake was maximal while that in Niushan Lake was minimal and the difference in two lakes was distinct (p 0.05). Gastropod density was substantially higher in Niushan Lake than other three lakes (p 0.05). Bivalve density in East Tangsun Lake was maximal while that in Niushan Lake and Longgan Lake were minimal. Insect density in East Tangsun Lake was maximal but that in Huang Lake was minimal, and the differences of them among three lakes were distinct (p 0.05). Zoobenthic density in East Tangsun Lake was maximal but that in Huang Lake was minimal, and the difference in two lakes was distinct (p<0.05). The biomass of zoobenthos in four lakes existed differences but the differences were not distinct statistically (p>0.05).
    There were few reports about zoobenthic functional feeding groups in China so far, a detailed study of functional feeding groups species numbers, species percentages and standing crops in four lakes was done. Results showed that functional feeding groups in the four lakes had their own characteristics. Shredder percentage was highest in Longgan Lake than other three lakes. Collector percentage in Huang Lake was highest. Scraper percentage in Niushan Lake was highest. Predator percentage was highest in East Tangsun Lake.
    Production (kg/hm2/yr) of zoobenthos in four lakes ranging from high to low was Niushan Lake (1082.1), Longgan Lake (767.4), East Tangsun Lake (564.2) and Huang Lake (329.6), while fishery capacity (kg/hm2/yr) of
    
    zoobenthos was East Tangsun Lake (16), Longgan Lake (15.8), Huang Lake (14.3) and Niushan Lake (10.4).
    For the relationships between zoobenthos and environmental factors, results showed that zoobenthic standing crops were positively correlated with submersed aquatic macrophytes, total phosphorus and total nitrogen contents but were negatively correlated with depths and Secchi disk transparencies. Taxonomic groups of zoobenthos were significantly correlated with biomass of submersed aquatic macrophytes, depths, Secchi disk transparencies, total phosphorus and total nitrogen contents.
    The effect of different lake uses ways on zoobenthic community is great in general. The effect of touring and food supplying in East Tangsun Lake caused organic pollution and algal eutrophic lake. Fish stocking in Niushan Lake eliminated submersed macrophytes and gave indirect effect on biomass in Niushan Lake to an extent that gastropod was only 1/5 as much of a typical macrophytic lakes such as Hong Lake. Longgan Lake represents natural fishing lake, having little effect on zoobenthos. Mitten crabs (Eriocheir sinensis Edwards) have been cultured since many years ago in Huang Lake, where zoobenthos were very sparse. Under stocking density of about 1 kg/hm of crab larvae or juveniles, zoobenthic density and production were reduced by more than 60%. Zoobenthos were affected by mitten crabs in two ways: direct feeding on benthos and indirect effect through damage of submerged macrophytes. At present the submersed macrophytes in the lake are almost absent but floating plant
引文
[1] Eggers DM, Barton NW, Richard NA, el al. The Lake Washington ecosystem: the perspective from the fish community production and forage base. J Fish Res Board Can, 1978, 35: 1553~1571
    [2] Jonasson PM. Zoobenthos of lakes. Verb Iht Ver Limnol, 1978, 20:13~27
    [3] 阎云君.浅水湖泊大型底栖动物生态能量学及生产量的研究。[博士学位论文]。武汉,中国科学院水生生物研究所,1998
    [4] 任淑智.北京地区河流中大型底栖无脊椎动物与水质关系的研究。环境科学学报,1991,11(7):31~46
    [5] 蓝宗辉.韩江下游底栖动物的分布及其对水质的评价。生态学杂志,1997,16(4):24~28
    [6] 吴天惠,梁彦龄,陈其羽,城郊湖塘的底栖动物及其渔业利用的初步评价。湖泊水库渔业增产科技资料绘编;1976,222~224
    [7] 谢翠娴,利用底栖动物监测严家湖农药污染。水生生物学报,1985,9(1):40~50
    [8] 杨潼,胡德良.利用底栖大型无脊椎动物对湘江干流污染的生物学评价。生态学报,1986,6(3):262~274
    [9] 王土达,刘保元,杨潼.湘江的水生生物与水质污染。环境科学,1981,2(6):49~51
    [10] 任久长,许崇任,蔡晓明等.浮洗剂污染河段大型无脊椎动物的群落特征及其对水质的评价。环境科学学报,1992,12(2):150~156
    [11] 邵国生.底栖动物在南洞庭湖岸边污染带水质评价中的应用。环境科学,1989,10(1):77~82
    [12] 刘保元,王士达,王永明等.利用底栖动物评价图门江污染的研究。环境科学学报,1981,1(4):337~348
    [13] 刘保元,王士达,胡德良.以底栖动物评价湘江污染。水生生物学集刊,1984,8(2):225~236
    [14] 颜京松,游贤文,苑省三.以底栖动物评价甘肃境内黄河干流枯水期的
    
    水质。环境科学,1980,(4):12~20
    [15] Winner RW. Insect community structure as an index of heavy metal pollution in Iotic ecosystems. Can J Fish Aquat Sci, 1980, 37(4): 647~655
    [16] Nehring RD. Aquatic insecta as biological monitors of heavy metal pollution. Bull Environ Contarn Toxicol, 1976, 15(2): 147~155
    [17] Godfrey PJ. Diversity as a measure of benthic macroinvertebrate community response to water pollution. Hydrobiologia,1978, 57(2):111~115
    [18] Goodnight CJ. The use of aquatic macroinvertebrates as indicators of stream pollution. Trans Am Microsco Soc, 1973, 92(1): 1~3
    [19] 章宗涉,陈德辉,陈坚等,第五章 中国湖泊水生生物群落 第六节 中国湖泊的底栖动物。见:金相灿,刘树坤,章宗涉等著,中国湖泊环境(一),海洋出版社,1995。208~218
    [20] 陈其羽.花马湖软休动物的调杏.海洋与湖沼,1979,10(1):46~66
    [21] 陈其羽,梁彦龄,宋贵保等.武昌东湖软体动物的生态分布及种群密度。水生生物学集刊,1975,5(3):371~379
    [22] 陈其羽,梁彦龄,吴天惠.武汉东湖底栖动物群落结构和动态的研究。水生生物集刊,1980,7(1):41~55
    [23] 谢志才,梁彦龄,吴天惠.长江中下游湖泊底栖动物多样性的研究。水生生物学报,1996,20(增刊):103~113
    [24] 吴天惠.新疆福海底栖动物的研究。水生生物学报,1991,15(4):303~313
    [25] 吴天惠,陈其羽.长江下游南京至江阴江段底栖动物的种群密度与分布状况。水生生物学报,1986,10(1):73~85
    [26] 陈其羽,谢翠娴,梁彦龄等.望天湖底栖动物种群密反与季节变动的初步研究。海洋与湖沼,1982,13(1):78~86
    [27] 吴天惠.保安湖底栖动物资源及季节动态的研究。湖泊科学,1989,1(1):71~78
    [28] 梁彦龄,吴天惠,谢志才.西凉湖底栖动物及其渔产潜力估算的初步研究。见:梁彦龄、刘伙泉(主编),草型湖泊资源、环境与渔业生态学管
    
    理(一)。北京:科学出版社,1995。194~203
    [29] 梁彦龄,又天惠,谢志才.保安湖底柄动物现状及渔业评价。见:梁彦龄、刘伙泉(主编),草型湖泊资源、环境与渔业生态学管理(一)。北京:科学出版社,1995。178~193
    [30] Savage AA. Density dependent and density independent relationships during a twenty-seven year study of the population dynamics of the benthic macroinvertebrate community of a chemically unstable lake. Hydrobiologia,1996, 335:115~131
    [31] Diehl S. Foraging efficiency of three freshwater fish: effects of structural complexity and light. Oikos,1988,53:207~214
    [32] Diehl S. Fish predation and benthic community structure: The role of omninvory and habitat complexity. Ecology, 1992, 73(5): 1646~1661
    [33] Gerking SD. Production and food utilization in a population of bluegill sunfish. Ecol Monogr, 1962, 32:31~78
    [34] Crowder LB, Cooper WE. Habitat structural complexity and their interaction between bluegills and their prey. Ecology, 1982, 63:1802~1813
    [35] Dvorac J, Best EPH. Maeroinvertebrate communities associated with the macropHytes of Lake Vechten: structural and functional relationships.Hydrobiologia, 1982, 95:115~126
    [36] Gilisky E.The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology, 1984, 65:455~468
    [37] Rabe FW, Gibson F. The effect of macropHyte removal on the distribution of selected invertebrates in a littoral environment. J Freshw Ecol, 1984, 2:359~371
    [38] Gregg WW, Rose FL.Influences of aquatic macropHytes on invertebrate community structure, guild structure and mierodistrbution in stream.Hydrobiologia, 1985, 128:45~56
    [39] Herskey AE. Effects of predatory sculpin on the chironomid communities in an arctic lake. Ecology, 1985, 66:1131~1138
    
    
    [40] Rasmussen JB. The effect of thermal effluent before and after macropHyte harvesting, on standing crop and species composition of benthic macroinvertebrate communities in Lake Wabamun Alberta. Can J Zool 1982,12:3196~3205
    [41] Davies BR. Studies on the zoobenthos of some southern cape costal lakes.Spatial and temporal changes in the benthos of Swartvlei, South Africa, in relation to changes in the submerged littoral macropHyte community. J Limnol Soc South Afr, 1982, 8:33~45
    [42] Berg MS, Coops H, Noordhuis R, et al. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes.Hydrobiologia, 1997,342/343:143~150
    [43] 刘保元,梁小民.太平湖水库的底栖动物。湖泊科学,1997, 9(3): 238~243
    [44] Hayes FR. On the variation in bottom fauna and fish yield in relation to tropHic level and lake dimensions. J Fish Res Board Can, 1957, 14:1~32
    [45] Rawson DS. MorpHometry as a dominant factors in the productivity of large lakes. Verh Int Ver Limnol,1955,12:164~175
    [46] Rawson DS. A limnological comparison of twelve large lakes in northern Saskatchewan. Limnol Oceanog, 1960, 5:195~211
    [47] Cummins KW. Macroinvertebrates. In: Whitton BA ed., River ecology. Blackwell Scientific Publication, Oxford,1975.170~198
    [48] Mozley SC, Alley WP. Distribution of benthic invertebrates in the south end of Lake Michigan. Proc. 15th conf. Great lakes res. 1972, 87~96
    [49] Nalepa TF. Thomas NA. Distribution of macrobenthic species in Lake Ontario in relation to sources of pollution and sediment parameters, J Great Lakes Res, 1976, 2:150~163
    [50] Cole RA, Weigmann DL. Relationships among zoobenthos, sediments, and organic matter in littoral zones of western ake Erie and Saginaw Bay. J Great Lake., Res,1983, 9:568~581
    
    
    [51] Whitehouse J w. Some aspects of the biology of Lake Trawsfyndd: a power station cooling pond. Hydrobiologia, 1971, 38:253~288
    [52] Wiederholm T. Bottom fauna and cooling water discharges in a basin of lake Malaren. Inst Freshw Res Drottninghohn, 1971, 51: 197~214
    [53] Cole RA, Kelly JE. The distribution of zoobentbos in the vicinity of a thermal discharge.,J Water Pollut Control Fed, 1978, 50:2509~2521
    [54] Death RG, Winterbourn MJ. Diversity patterns in stream benthic invertebrate communities: The influence of habitat stability. Ecology, 1995,76(5): 1446~1460
    [55] H(?)kanson L. The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vanern, Sweden. Can J Earth Sci, 1977, 14: 397~412
    [56] Duarte C, Kalff J. Littoral slope as a predictor of maximum biomass of submerged macropHyte communities. Limnol Oceanogr,1986, 31:1072~1080
    [57] Miyadi D. Bottom fauna of the lakes of Kunasiri-sima of the south kurile islands. Iht Rev Hydrobiol, 1938, 39:125~159
    [58] Brylinsky M. Estimating the productivity of lakes and reservoirs. In LeCren ED, Lowe-McConnell R Heds., The functioning of freshwater ecosystems.Cambridge, Cambridge University Press, 1980.411~453
    [59] Bradt PT. Limestone to Mitigate Lake acidification: macrozoobenthos response in treated and referent lakes. Hydrobiologia, 1996, 317:115~126
    [60] Nalepa TF. Status and trends of the Lake Ontario macrobenthos. Can J Fish Aquat. Sci, 1991,48:1558~1567
    [61] Rasmussen JB, Kalff J. Empirical Models for Zoobenthie Biomass in Lakes.Can J Fis. Aquat Sci, 1987, 44:990~1001
    [62] Rasmussen JB. Littoral zoobenthic biomass in lakes, and its relationship to physical, chemical, and tropHic factors. Can J Fish Aquat Sci, 1988,45:1436~1447
    
    
    [63] Liang YL, Melack JM, Wang J. Primary production and fish yields in Chinese ponds and lakes. Trans Am Fish Soc, 1981, 110:346~350
    [64] Morin PJ. The impact of fish exclusion on the abundance and species composition of larval odonates: results of short-term experiments in a North Carolina farm pond. Ecology, 1984, 65:53-60
    [65] Millelbach GG. Competition among refuging sunfishes and effects of fish density on littoral zone invertebrates. Ecology, 1988, 62:1370~1386
    [66] Gilliam JF, Fraser DF, Sabat AM. Strong effects of foraging minnows on a stream benthic community. Ecology, 1989, 70:445~452
    [67] Power ME. Effects of fish in river food webs. Science,1990, 250:811~814
    [68] Macan TT. The influence of predation on the fauna of a moorland fishpond.Archly fur. Hydrobiologia, 1966, 61:432~452
    [69] McPeek MA. Determination of species composition in the EnaIlagma damselfly assemblages of permanent lakes. Ecology, 1990, 71:1714~1726
    [70] Thorp JH, Bergey EA. Field experiments on responses of a freshwater benthic macroinvertebrate community to vertebrate predators. Ecology,1981, 62:365~375
    [71] Allan JD. The effects of reductionin trout density on the invertebrate community ora mountain stream. Ecology,1982, 63:1444~1455
    [72] Reice SR. Predation and substratum:factors in lotic community structure. In Bartell S, Fontaine T eds., Dynamics of lotic ecosystems. Ann Arbor Science. Ann Arbor, michigan, USA, 1983.325~345
    [73] Flecker AS, Allan JD. The importance of predation substrate spatial refugia in determining lotic insect distributions. Oecologia (Bertin), 1984, 64:306~313
    [74] Butler MJIV. Community responses to variable predation: field studies with sunfish and freshwater macroinvertebrates. Ecol Monogr,1989,59(3):311~328
    [75] Cummins KW. TropHic relations of aquatic insects. Ann Rev Entomol, 1973,
    
    18, 183~206
    [76] Dudgeon D. The influence of riparian vegetation on macroinvertebrate community structure and functional organization in six New Guinea streams. Hydrobiologia, 1994, 29:65~85
    [77] Heiny JS. The ordination of benthic invertebrate communities in the South Platte River Basin in relation to environmental factors. Freshw Biol, 1995,33:439~454
    [78] Wohl DL. Benthic macroinvertebrate community structure,function and production with respect to habitat type, reach and drainage basin in the southern Appalachians (U.S.A.). Freshw Biol,1995, 34:447~464
    [79] Brown AV, Aguila Y, Brown KB, et al. Response of benthic macroinvertebrates in small intermittent streams to silvicultural practices.Hydrobiologia,1997, 347:119~125
    [80] Liang YL. Annual production of Branchiura sowerbyi (Oligochaeta:Tubificidae)in East Lake, Wuhan, China. Chin J Oceanol Limnol, 1984,108~124
    [81] 陈其羽.武汉东湖铜锈环棱螺种群变动和生产量的初步观察。水生生物学报,1987,11(2):117~129
    [82] 阎云君,梁彦龄,王洪铸.扁担塘螺类生产力的研究Ⅰ.铜锈环棱螺的周年生产量。水生生物学报,1999,23(4):346~351
    [83] 阎云君,梁彦龄,王洪铸.扁担塘螺类生产力的研究Ⅱ.纹沼螺的周年生产量。水生生物学报,2001,25(1):36~41
    [84] Tavares AF, Williams DD. Life histories, diet and niche overlap of three sympatric species of Elimidae (Coleoptera) in a temperate stream. Can Eh,1990, 122:563~577
    [85] Yoshioka, T, Wada, E, Iiayashi, Ⅱ. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology, 1994, 75(3): 835~846
    [86] Benke AC, Wallace JB. TropHic basis of production among riverine caddisflies: implictions for food web analysis. Ecology,1997,78(4):1132~1145
    
    
    [87] 梁彦龄、钱德金、蔡庆华.武陵山地区大型无脊椎动物的现存量和资源评价(一)寡毛类。见:宋大祥主编,西南武陵山地区动物资源和评价,科学出版社,1994。62~69
    [88] 黄玉瑶,腾德兴,赵忠宪.应用大型无脊椎动物群落结构特征及其多样性指数监测蓟运河污染。动物学集刊,1982,(2):133~146
    [89] Wihm JL. Dorris TC. Biological parameters of water quality. Bioscience,1968, 18:447~481
    [90] 梁彦龄,王洪铸.第十章底栖动物。见:刘建康(主编),高级水生生物学(研究生教材)。北京:科学出版社,1999。241~259
    [91] Morse JC, Yang LF, Tian LX. Aquatic insects of China useful for monitoring water quality. Nanjing: Hohai University Press 1994.1~570
    [92] Wang HZ, Xie ZC, Wu XP, et al. A preliminary study of zoobenthos in the Poyang Lake, the largest freshwater lake of China, and its adjoining reaches of Changjiang River. Acta Hydrobiologica Sinica, 1999, 24(supplement):132~138
    [93] 何志辉.淡水生物学(上册)。农业出版社,1978。186~191,342~344
    [94] 堵南山.甲壳动物学(下册)。北京:科学出版社,1993,p744
    [95] 温周瑞,刘慧集,吴琅虎等.河蟹对几种水草的选择性与摄食量的研究。水利渔业,2000,20(1):16~17,53
    [96] 王士达.底栖动物。见:陈宜瑜,许蕴玕等著,洪湖水生生物及其资源开发。北京:科学出版社,1995。92~105
    [97] 陈炳良,堵南山,叶鸿发.河蟹的食性分析。水产科技情报,1989,16(1):2~5
    [98] 王俊才,方志刚,鞠复华等.摇蚊幼虫分布及其与水质的关系。生态学杂志,2000,19(4):27~37
    [99] Drake P, Arias AM. Tile effect of epibenthic predators and macroalgal cover on the benthic macroinvertebrate community of a shallow lagoon in Bay of C(?)diz (SW Spain). Hydrobiologia, 1996, 333:165~180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700