大型锻件白点萌生机理及预控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型锻件作为大型成套设备的核心零部件,一般有几十吨到数百吨重,成材率较低,属于国家未来科技发展规划纲要所提出的迫切需要解决的前沿技术。大型锻件在高温成形及其降温过程中,由于氢析出并偏聚于锻件内部的微缺陷中,所产生的内高压和微裂纹极易导致零件突然断裂,称之为氢脆(又称白点),被视为大锻件的“癌症”,是大锻件质量控制中最为危险和棘手的问题。为揭示氢脆缺陷的产生机理,本文以大型Cr5支承辊锻件为对象,基于氢压原理和白点的宏微观特征,综合研究了氢和残余应力对白点萌生和扩展的影响,建立了白点萌生扩展的力学模型,为预控大型锻件白点的产生提供了依据。
     为揭示大型锻件微孔隙内氢压和残余应力对白点萌生的作用机制,在氢压原理的基础上,对锻件内微孔隙在氢压作用下的应力场以及多孔隙应力场的耦合作用进行了系统研究。通过对大型Cr5支承辊锻件的热处理组织转变过程的数值模拟,研究了锻件内残余应力分布及其对微孔隙周围的氢聚集的影响,结合残余应力下微孔隙的力学特征,从总体上把握了微孔隙氢压和残余应力对白点萌生扩展的重要影响。
     针对氢压强度对大锻件内微孔隙损伤致裂的重要影响,在气体Sieverts定律和微孔隙内氢压与钢中溶解氢化学势平衡的理论基础上,通过对比分析已有微孔隙氢压强度和氢浓度计算模型,考虑到微孔隙中氢原子转变为氢分子时体积的膨胀,自主建立了钢内微孔隙氢压强度和氢浓度的综合计算模型,解决了氢浓度、孔隙率和温度综合作用下微孔隙内氢压强度和氢浓度的精确计算问题。
     根据微孔隙氢压强度和氢浓度综合计算模型,钢中孔隙率的大小,即锻件的压实效果直接影响到微孔隙中氢压强度的高低。为研究大型锻件成形过程中微孔隙氢压强度的变化,通过二次开发将钢内微孔隙氢压强度和氢浓度综合计算模型导入到有限元软件DEFORM中,以多孔可压缩材料的塑性理论为基础,模拟研究了不同压下量下,采用KD锻造工艺时锻件内部微孔隙氢压强度和氢浓度的变化规律。基于粉末冶金的基本原理,制备了多孔隙试样,其镦粗压实效果与有限元分析结果基本一致,验证了采用多孔可压缩模型来分析孔隙压实效果的可行性。最后,以降低微孔隙中氢压强度为出发点,通过模拟研究,提出了大锻件生产中白点的预控方法。
     白点的产生原因不仅仅是微孔隙内高强氢压和残余应力的作用,还必须考虑氢致脆化对金属力学性能的影响。在综合考虑了微孔隙氢压强度、总氢浓度、氢致脆化、氢聚集和残余应力的基础上,基于内聚力模型建立了计算锻件内部白点萌生扩展的综合计算模型,模拟研究了不同残余应力和氢浓度条件下锻件内部白点的萌生扩展特性,并在此基础上建立了锻件内部白点萌生快速预报的BP神经网络模型,为实际生产中白点的快速预报提供了新的方法。
As the core components of large complete sets of equipment, heavy forgings aregenerally dozens of tons to hundreds of tons and the succeed product rate is lower, whichbelonging to the State Science and Technology Development Plan proposed urgent need toaddress cutting-edge technology. When heavy forgings in high-temperature forming andcooling process, the hydrogen will be separated out and aggregated in forgings internalmicro defects and lead to cracks initiation because of high hydrogen pressure, whichcalled hydrogen embrittlement (also called flakes) that are the most knotty and dangerousdefects like ‘cancer’ in heavy forgings. Based on the hydrogen pressure theory andmacroscopic and microcosmic knowledge of flakes, this paper comprehensive studied theinfluence of hydrogen and residual stress on flakes’ initiation and propagation in Cr5backup roll heavy forgings, and the mechanical model of flakes’ initiation and propagationwas established. The analysis results and mechanical model of flakes provide a basis forflakes’ pre-control in heavy forgings.
     To reveal the mechanism of micropores’ hydrogen pressure and residual stress onflakes in heavy forgings, based on the hydrogen pressure theory, this papercomprehensively researched the micropores’ hydrogen pressure stress field and couplingeffect between them. Through simulating, the microstructure transformation and residualstress in Cr5heavy forgings varied with time in heat treatment were researched. Then, themicropores’ mechanical characteristics and hydrogen aggregation around microporesunder known heat treatment residual stress were studied. The analysis results gave thegeneral information of micropores’ hydrogen pressure and heat treatment residual stressimpact on the flakes’ initiation and propagation in heavy forgings.
     For hydrogen pressure magnitude has the important influence on micropores’ fractureand damage, based on the gas Sieverts Law and chemical potential balance betweendissolved hydrogen atoms in lattice and hydrogen molecules pressure in micropores withinsteel, all the original micropores’ hydrogen pressure magnitude and concentrationcalculation models were studied and compared. With considering the volume expansionwhen the hydrogen atoms react into molecules, a new comprehensive calculation model for micropores’ hydrogen pressure magnitude and concentration was deduced, which solvethe accurate calculation problem of micropores’ hydrogen pressure magnitude andconcentration with considering the influence of total hydrogen concentration, porosity andtemperature in heavy forgings.
     According to the micropores’ hydrogen pressure magnitude and concentrationcomprehensive calculation model, the forgings’ porosity which depends on the forgingcompaction effect was directly affect the micropores’ hydrogen pressure magnitude. Tostudy the variation of micropores’ hydrogen pressure magnitude in compaction process ofheavy forgings, the micropores’ hydrogen pressure and concentration comprehensivecalculation model was imported into the finite element software DEFORM through secondtimes development. Based on the plastic theory of porosity material, the micropores’hydrogen pressure and concentration under different forging reduction with KD methodwere researched. Based on the principle of powder metallurgy, the porous body sampleswere prepared, and their compaction results by upsetting were agreed with finite elementanalysis results very well, so the effectiveness of using porosity material to analysis theporous compaction effect was verified. From the view of reducing micropores’ hydrogenpressure magnitude, with simulation several flakes’ pre-control method in heavy forgingswere proposed.
     The reason of flakes’ initiation is not only micropores’ hydrogen pressure andresidual stress, but also the influence of hydrogen-induced embrittlement on themechanical properties of metals. With comprehensive considering the micropores’hydrogen pressure, total hydrogen concentration, hydrogen-induced embrittlement,hydrogen aggregation and residual stress, a calculation model for flakes’ initiation andpropagation in heavy forgings was established with cohesive model, and the flakes’initiation and propagation characteristic under different total hydrogen concentration andresidual stress were studied. According to the analysis results, a BP neural network forquick prediction flakes’ initiation in heavy forgings was established, which provides a neweffective method for pre-controlling flakes’ initiation in heavy forgings’ production.
引文
[1]康大韬,叶国斌.大型锻件材料及热处理[M].北京:龙门书局出版社,1998:1-10,92-129,166-168,183-199.
    [2]孙志强.强化自主创新逐步实现高端锻件国产化[J].机械工程师,2010,(2):117.
    [3]王珉.大型锻件氢脆机理及残余应力场研究[D].秦皇岛:燕山大学工学硕士学位论文,2012:1:4,8-24.
    [4]凌进.面向新世纪大型铸锻件的发展战略[D].上海:上海交通大学工商管理硕士学位论文,2001,8-10.
    [5]蔡墉.我国自由锻液压机和大型锻件生产的发展历程[J].大型铸锻件,2007,1:37-44.
    [6]成先飚,张建华,郭晓锋.国内大型自由锻造液压机的技术特点[J].重型机械,2012,(3):121-124.
    [7]大型铸锻件行业协会,大型铸锻件缺陷分析图谱编委会.大型铸件件缺陷分析图谱[M].北京:机械工业出版社,1990:64-220.
    [8]郑爱聪.预防大型锻件缺陷的方法[J].机械工程与自动化,2004,(1):80-83.
    [9]江荣华.大型锻件几种常见缺陷的防止方法[J].锻压装备与制造技术,2010,(2):67-69.
    [10]许常青.大型锻件的缺陷定性分析[J].科学之友,2008,(24):5-7.
    [11]林荣.大型锻件中常见的缺陷与对策[J].科学实践,2008,(13):222.
    [12]赵俊伟,陈学文,史宇麟,张琪.大型锻件锻造工艺及缺陷控制技术的研究现状及发展趋势[J].锻压装备与制造技术,2009,(4):23-28.
    [13]陶正耀.55吨钢锭的解剖实验[J].大型铸锻件,1982,(4):1-22.
    [14]黄华贵.大型轧辊热态成形数值模拟[D].秦皇岛:燕山大学机械设计及理论博士学位论文,2006:2-6,52-57.
    [15]戚保华.大型锻件锻造效果的分析[J].大型铸锻件,1982,(2):66-70.
    [16]钟杰.大型轴类锻件锻造工艺的云纹法模拟研究[D].北京:清华大学机械工程博士学位论文,27-34.
    [17]刘光辉,郭会光. WHF锻造法的数值模拟研究[J].大型铸锻件,1988,(1):1-10.
    [18]魏泽辉. WHF法在轴类件生产中的应用[J].重型机械科技,2004,(3):32-33.
    [19]曹起骧,谢冰,杜学刚,等. WHF错砧锻造效果研究[J].大型铸锻件,1992,(3):18-24.
    [20]王连东,刘助柏. FM法应力场的滑移线解[J].大型铸件件,1988,81(3):1-5.
    [21]刘助柏.塑性成形新技术及其力学原理[M].北京:机械工业出版社,1995:71-76.
    [22]梁晨,刘助柏,王连东.新FM法拔长工艺参数匹配研究[J].塑性工程学报,2003,10(3):33-36.
    [23]邓陟,曹起骧.中心压实法锻造工艺的高温云纹法模拟研究[J].大型铸锻件,1990,(3):17-22.
    [24]邓陟,曹起骧.温度分布状态对锻件锻造变形的影响[J].北京科技大学学报,1991,13(3):245-251.
    [25]武威,刘敏,施熔钢.压力压实法(FMV法)压实效果的验证[J].一重技术,1998,78(4):46-47.
    [26]李仕华,刘助柏. FM上下V型砧拔长圆柱体应力状态的定量试验研究[J].燕山大学学报,1999,23(2):168-169.
    [27] Duan X, Sheppard T. Shape Optimization Using FEA Software: a V-shaped Anvil as anExample[J]. Jouranl of Material Processing Technology,2002,120:426-431.
    [28]赵冬兰.大型轴类锻件V形砧锻造的实验研究[J].东北重型机械学院院报,1993,17(3):206-210.
    [29]曹起骧,叶绍英,金坚,等. V型砧锻造时变形规律的云纹法研究[J].大型铸锻件,1987,(2):1-13.
    [30] Buteler D I, Neves P C U, Ramos L V. Effect of Anvil Geometry on the Stretching of Cylinders[J].Jouranl of Material Processing Technology,2006,(179):50-55.
    [31]陈英,钟志平,边翔,等.核电压力壳锻件芯轴拔长工艺V砧砧角的常温模拟研究[J].塑性工程学报,2000,7(3):52-56.
    [32]谢云岫.一种转子锻件锻造工艺的演变和发展[J].一重技术,1986,11.
    [33]李铭杰.锻工[M].北京:机械工业出版社,1992:56-63.
    [34] Dyja H, Banaszek G, Mroz S, et al. Modeling of Shape Anvils in Free Hot Forging of LongProducts[J]. Journal of Material Processing Technology,2004:131-137.
    [35] Dyia H, Banaszek G, Berski S, et al. Effect of Symmetrical and Asymmetrical Forging Processeson the Quality of Forged Products[J]. Journal of Material Processing Technology,2004:496-451.
    [36]任运来.大型锻件内部缺陷修复条件和修复方法研究[D].秦皇岛:燕山大学工学博士学位论文,2003:15-26,36-37,60.
    [37]黄华贵,杜凤山,臧新良.大型零件M锻造法及其孔洞缺陷锻合过程的数值模拟[J].锻压技术,2005,增刊:34-37.
    [38]吕炎.锻件缺陷分析与对策[M].北京:机械工业出版社,1999:49-52.
    [39]赵俊民,孙雪翠,王英丽.关于滞后白点的探讨及解决办法[J].经济技术协作信息,2009,986(03):105.
    [40]陈德和.钢的缺陷[M].第一版.北京:机械工业出版社,1966.
    [41]陈德和.钢的缺陷(修订本)[M].第二版.北京:机械工业出版社,1977.
    [42]陈廉,徐永波,尹万全.钢中白点断口的显微空隙与台阶花样[J].金属学报,1978,14(3):253-256.
    [43]陈廉,刘民治.钢中白点断口的晶体取向与元素偏析[J].金属学报,1981,17(1):20-25.
    [44]任学冲,褚武扬,李金许,等.车轮钢中的白点及其断口形貌研究[J].金属学报,2006,42(3):273-279.
    [45]刘民治等.中国金属学会1979-1980年度优秀论文选集(第四分册)[M].北京:冶金工业出版社,1982,21-55.
    [46]锻件质量分析编写组.锻件质量分析[M].北京:机械工业出版社,1983,64-68.
    [47]东北重型机械学院,第一重型机械厂.大锻件热处理[M].北京:机械工业出版社,1974.
    [48]潘川,李正邦,田志凌.不锈钢焊缝金属的氢脆[J].金属学报,2001,37(9):985-990.
    [49]康大韬,廖波,陈廉.34CrNi3Mo转子钢的氢致脆化[J].金属学报,1987,23(5): A391-A395.
    [50]康大韬,廖波,徐晶钢.大型发电机汽轮机转子用钢的氢致脆化[J].金属学报,1989,10(1):69-78.
    [51]康大韬,廖波,徐晶钢.大型冷轧辊用9Cr2Mo钢的氢致脆化的研究[J].钢铁,1987,22(10):35-39.
    [52]任学冲,褚武扬,李金许. MnS夹杂对钢中氢扩散行为的影响[J].北京科技大学学报,2007,29(2):232-236.
    [53] Zapffe C A, Sims C E. Hydrogen Embrittlement, Internal Stress and Defects in Steel[J].Trans.AIME,1941,(145):22,225-259.
    [54]褚武扬,乔利杰,陈奇志.断裂与环境断裂[M].北京:科学出版社,2002:136-153.
    [55] Besedin P T. The Causes of Flake Formation in Steel[J]. Metal Science and Heat Treatment,1959,1(2):14-18.
    [56] Shteinberg S S. Flakes and the Reasons for their Formation[J]. Metal Science and Heat Treatment,1972,14(9):761-764.
    [57] Sklyuev P V. Flakes in Steel[J]. Metal Science and Heat Treatment,1972,14(9):801-804.
    [58] Voronenko B I. Hydrogen and Flakes in Steel[J]. Metal Science and Heat Treatment,1997,39(11):462-470.
    [59] Hodge J M, Orehoski M A, Steiner J E. Effect of Hydorgen Content on Susceptibility to Flaking[J].Transactions of The Metallurgical Society of AIME,(230):1182-1193.
    [60] Permitin V E, Golovanov A L, Burovkin A B. Mechanism of Flake Formation in Steels[J]. MetalScience and Heat Treatment,1991,33(8):565-568.
    [61] Shrader H, Pranjpe V G. Factors Influencing of the Formation on Flakes in Steel[J]. Symposium onIndustrial Failure of Engineering Metals&Alloys,1953,197-221.
    [62] Johnson H H. Hydrogen in Iron[J]. Metallurgical Transactions B,1988,19(5):691-707.
    [63] Hirth J P. Effects of Hydrogen on the Properties of Iron and Steel[J]. Metallurgical Transactions A,1980,11(6):861-890.
    [64]刘振.30Cr2Ni4MoV钢白点防止工艺的研究[J].特钢技术,2003,(1):27-32.
    [65]王百木.42CrMo钢锻件的白点研究[J].金属铸锻焊技术,2010,(9):188-190.
    [66]刘民治,陈廉,刘盛炎.钢中白点形成的一种机制[J].金属学报,1983,19(2): A111-A117.
    [67]刘德富,张岩,王志新.冷轧辊中白点形成及预防的研究[J].大型铸锻件,2008,(4):8-12.
    [68]刘德富,刘大琦.关于钢中白点形成机理的探讨[J].大型铸锻件,2008,(5):37-41.
    [69]田鹏飞.低合金钢断口白点微观形貌分析[J].山西冶金,2009,(2):44-46.
    [70]李明,范益,赵亚娟.钢中白点特征及形成机理的研究[J].南钢科技与管理,2009,(2):20-23.
    [71]白广成,翟书研.锻件材产生白点的原因分析[J].特钢技术,2010,16(63):10-12.
    [72]宋敏华,韩国盛,蒋玲.不锈钢转子锻件缺陷分析[J].大型铸锻件,2009,(5):17-22.
    [73]王洋.锻件产生白点缺陷的问题分析与预防措施[J].重工与起重技术,2009,(4):9-24.
    [74]姚铁光.大锻件中白点的进一步探讨[J].大型铸锻件,1996,(1):2-8.
    [75]桂安钢.锻件白点的产生及与锻造的关系[J].一重技术,2008(2):43-44.
    [76]顾松霞,赵志刚,于瑛.白点缺陷锻合后锻件在实践中的应用[J].一重技术,2004,(3):27-28.
    [77] Ren X C, Chu W Y, Su Y J, et al. Effects of Atomic Hydrogen and Flaking on MechanicalProperties of Wheel Steel[J]. Metallurgical and Materials Transactions A,2007,38(5):1004-1011.
    [78] Ren X C, Chu W Y, Su Y J, et al. The Effects of Atomic Hydrogen and Flake on MechanicalProperties of a Tyre Steel[J]. Materials Science and Engineering,2008,491(1-2):164-171.
    [79]乔利杰,任学冲,宿彦京.车轮刚中白点的形成过程及其对力学性能的影响[C].中国金属学会第十三届分析测试学术年会,2006,42-52.
    [80]褚武扬,李金许,乔利杰.车轮刚中白点与断裂力学行为研究[C].全国钢铁产品防腐技术研讨会文集,2005,78-91.
    [81]江波,陈刚,崔银会,任学冲,褚武扬.车轮刚中的白点(一)[J].钢铁,2007,43(4):61-66.
    [82]江波,陈刚,崔银会,任学冲,褚武扬.车轮刚中的白点(二)[J].钢铁,2007,42(5):75-78.
    [83]任学冲,褚武扬,李金许,乔利杰.车轮钢中的白点及其断口形貌研究[J].金属学报,2006,42(3):273-279.
    [84]任学冲,褚武扬,李金许,乔利杰.原子氢和白点对车轮刚力学性能的影响[J].金属学报,2006,42(2):153-157.
    [85]任学冲,褚武扬,李金许,乔利杰.原子氢和白点对车轮钢力学性能影响的进一步研究[J].金属学报,2007,43(1):53-58.
    [86] Ren X C, Zhou Q J, Shan G B, Chu W Y, et al. A Nucleation Mechanism of Hydrogen Blister inMetals and Alloys[J]. Metallurgical and Materials Transactions A,2008,39(1):87-97.
    [87] Zhou Q J, Qiao L J, Qi H B, et al. Hydrogen Blistering and Hydrogen-Induced Cracking inAmorphous Nickel Phosphorus Coating[J]. Journal of Non-Crystalline Solids,2007,353(44-46):4011-4014.
    [88] Ren Xuechong, Chu Wuyang, Li Jinxu, et al. The Effects of Inclusions and Second Phase Particleson Hydrogen-Induced Blistering in Iron[J]. Materials Chemistry and Physics,2008,107(2-3):231-235.
    [89]任学冲,褚武扬,李金许.夹杂对氢鼓泡形成的影响[J].金属学报,2007,43(7):673-677.
    [90]任学冲,周庆军,褚武扬.金属中氢鼓泡形核的机理[J].科学通报,2007,52(6):725-729.
    [91]任学冲,单广斌,褚武扬.氢鼓泡的形核、长大和开裂[J].科学通报,2005,50(16):1689-1692.
    [92]任学冲,李高洋,陈朱耀.微合金化洁净车轮刚产生氢鼓泡的可扩散氢临界质量分数[J].中国科技论文,2012,7(2):83-88.
    [93]武明,褚武扬,李金许.应力和夹杂对车轮钢中氢鼓泡的影响[J].金属学报,2006,42(8):815-819.
    [94] Louthan M R J. Hydrogen Embrittlement of Metals: a Primer for the Failure Analyst[J]. Journal ofFailure Analysis and Prevention,2008,8(3):289-307.
    [95]南雲道彦.钢的氢脆的新研究方向[J].热处理,2010,25(3):1-6.
    [96] Eliaz N, Shachar A, Ta B, et al. Characteristics of Hydrogen Embrittlement, Stress CorrosionCracking and Tempered Martensite Embrittlement in High-strength Steels[J]. Engineering FailureAnalysis,2002,9(2):167-184.
    [97] Barthélémy H. Effects of Pressure and Purity on the Hydrogen Embrittlement of Steels[J].International Journal of Hydrogen Energy,2011,36(3):2750-2758.
    [98] Jarmila Woodtli, Rolf Kieselbach. Damage due to Hydrogen Embrittlement and Stress CorrosionCracking[J]. Engineering Failure Analysis,2007,7(6):427-450.
    [99] Ryosuke Matsumoto, Shinya Taketomi, Sohei Matsumoto, et al. Atomistic Simulations ofHydrogen Embrittlement[J]. International Journal of Hydrogen Energy,2009,34(23):9576-9584.
    [100]Junichiro Yamabe, Takuya Matsumoto, Saburo Matsuoka, et al. A new Mechanism inHydrogen-enchanced Fatigue Crack Growth Behavior of a1900-MPa-class High-strength Steel[J]. International Journal of Fracture,2012,177(2):141-162.
    [101]Toribio J, Kharin V. Evaluation of Hydrogen assisted Cracking: the Meaning and Significance ofthe Fracture Mechanics Approach[J]. Nuclear Engineering and Design,1998,182(2):149-164.
    [102]Zeynab Shirband, Mohammad Reza Shishesaz, Ali Ashrafi. Hyrogen Degradation of Steels and itsrelated Parameters, a Review[J]. Phase Transitions,2011,84(11-12):924-943.
    [103]Dong C F, Li X G, Liu Z Y, et al. Hydrogen-Induced Cracking and Healing Behavior of X70Steel[J]. Journal of Alloys and Compounds,2009,484(1-2):966-972.
    [104]Olden V, Thaulow C, Johnsen R. Modeling of Hydrogen Diffusion and Hydrogen-InducedCracking in Supermartensitic and Duplex Stainless Steels[J]. Materials&Design,2008,29(10):1934-1948.
    [105]Ekkarut Viyanit, Eng M. Numerical Simulation of Hydrogen Assisted Cracking inSupermartensitic Stainless Steel Welds[D]. Hamburg Germany, University of BundeswehrHamburg,2005.
    [106]Toribio J, Kharin V. On the Validity of the Fracture Mechanics Approach to Hydrogen AssistedCracking[J]. ICCES,2008,7(3):135-140.
    [107]万晓景.金属的氢脆[J].材料保护,1979,(Z1):12-25.
    [108]张建.高强度钢氢脆机理研究进展[J].莱钢科技,2009,(3):3-7.
    [109]潘川,李正邦,田志凌.不锈钢焊缝金属的氢脆[J].金属学报,2001,37(9):985-990.
    [110]孙小炎.螺栓氢脆问题研究[J].航天标准化,2007,(2):1-9.
    [111]宋仁国,曾梅光.高强度铝合金的氢脆[J].材料科学与工程,1995,13(1):63-65.
    [112]李娟,张太超,王军.9Cr2钢镁球轧辊断裂原因分析[J].金属热处理,2011,36(10):98-100.
    [113]周晓虎. GH4169合金涡轮盘锻件粗晶质量分析和控制[J].锻压技术,2004,(5):9-11.
    [114]吴元徽.浅析钢材的内部缺陷及其对热处理工艺和性能的影响[J].热处理,2011,26(2):78-82.
    [115]哈宽富.断裂物理基础[M].北京:科学出版社,2000:1-29,175-186,255-279.
    [116]Cherepanov G P. Mechanics of Brittle Fracture[M]. New York: McGraw-Mill International BookCompany,1973,29.
    [117]张之立.断裂之间的相互作用和应力场计算[J].地震学报,1994,16(1):32-40.
    [118]黄明利,唐春安.岩石裂纹相互作用的应力场分析[J].东北大学学报:自然科学版,2001,22(4):446-449.
    [119]郭树祥,许希武.任意多孔多裂纹有限大板的应力强度因子分析[J].固体力学学报,2005,26(3):351-358.
    [120]王清远,刘永杰,曾祥国.多裂纹相互作用下混凝土断裂参量的有限元数值分析[J].四川建筑科学研究,2006,32(6):73-77.
    [121]卿海,杨卫,吕坚.多条表面裂纹相互作用的应力分析[J].工程力学,2009,26(1):1-6.
    [122]Gorbatikh L, Kachanov M. A simple Technique for Constructing the Full Stress and DisplacementFields in Elastic Plates with Multiple Cracks[J]. Engineering Fracture Mechanics,2000,66(1):51-63.
    [123]Han X, Ellyin F, Xia Z. Interaction among Interface, Multiple Cracks and Dislocations[J].International Journal of Solids and Structures,2002,39(6):1575-1590.
    [124]Li Y P, Tham L G, Wang Y H. A Modified Kachanov Method for Analysis of Solids with MultipleCracks[J]. Engineering Fracture Mechanics,2003,70(9):1115-1129.
    [125]Jones R, Peng D, Pitt S. Assessment of Multiple Flat Elliptical Cracks with Interactions[J].Theoretical and Applied Fracture Mechanics,2002,38(3):281-291.
    [126]Kamaya M, Totsuka N. Influence of Interaction between Multiple Cracks on Stress CorrosionCrack Propagation[J]. Corrosion Science,2002,44(10):2333-2352.
    [127]张海.大锻件热处理后的残余应力研究[J].金属热处理,2002,27(5):53-55.
    [128]杜凤山,张芳,黄华贵,等.大型锻件喷雾冷却过程数值模拟[J].金属热处理,2008,33(5):35-38.
    [129]韩涛.高铬锻钢支承辊淬冷过程有限元分析[D].秦皇岛:燕山大学机工学硕士学位论文,2011.
    [130]商松. Cr5锻钢支承辊喷雾淬火过程的数值模拟与工艺优化[D].秦皇岛:燕山大学机工学硕士学位论文,2012.
    [131]张芳.大型轧辊热变形行为及热处理过程理论与实验研究[D].秦皇岛:燕山大学工学博士学位论文,2009.
    [132]Yokobori A T, Kushida T, Ohmi T. The Stress-induced Hydrogen Diffusion Behavior and theSensitivity of Hydrogen Embrittlement at the Heat Affected Zone of Weld Part based on AnalysisSolution[J]. Journal of the Japan Institute of Metal,2006,70(6):489-494.
    [133]Rogante M, Battistella P, Cesari F. Hydrogen Interaction and Stress-corrosion in HydrocarbonStorage Vessel and Pipeline Weldings[J]. International Jouranl of Hydrogen Energy,2006,31(5):597-601.
    [134]巩建鸣,蒋文春,唐建群,等.焊接残余应力对氢扩散影响的有限元模拟[J].金属学报,2006,42(11):1221-1226.
    [135]巩建鸣,蒋文春,唐建群,等.16MnR钢焊接接头氢扩散三维有限元模拟[J].机械工程学报,2007,43(9):113-118.
    [136]王艳飞,巩建鸣,唐建群,等.冷拔残余应力应变对钢丝氢扩散过程的影响[J].中国腐蚀与防护学报,2011,31(3):202-207.
    [137]Olden V, Thaulow C, Johnsen R. Modeling of Hydrogen Diffusion and Hydrogen-InducedCracking in Supermartensitic and Duplex Stainless Steels[J]. Material and Design,2008(29):1934-1948.
    [138]Sieverts A, Krumbhaar W. über Die L Slichkeit von Gasen in Metallen and Legierungen[J].Berichte der Deutschen Chemischen Gesellschaft,1910,43(1):893-900.(in German)
    [139]陈永定.金属和合金中的氢[M].北京:冶金工业出版社,1988:12.
    [140]Oriani R A. The Physical and Metallurical Aspects of Hydrogen in Metals[J]. InternationalConference on Cold Fusion,1993.
    [141]林崇德,姜璐,王德胜.中国成人教育百科全书·化学·化工[M].海口:南海出版公司,1994,263-264.
    [142]李椿.热力学[M].北京:人民教育出版社,1978,154-180.
    [143]蒋光锐,刘源,李言详.铝合金熔体中氢溶解度的计算模型[J].金属学报,2008,44(2):129-133.
    [144]Bilby B A, Hewitt J. Hydrogen in Steel-the Stability of Micro-Cracks[J]. Acta Metallurgica,1962,10:587-600.
    [145]Phragmen G. On the Relation Between the Hydrogen Proportion in Iron, the Temperature and theHydrogen Equilibrium Pressure[J]. Jemkontorets Annaler,1944,128:537-553.
    [146]Kazumaru Kohira, Takashi Yatake, Nobutaka Yurioka. A Numerical Analysis of the Diffusion andTrapping of Hydrogen in Steels and its Application to Weldments[J]. Japan Welding Society,1974,43(9):921-930.
    [147]Kazinczy F De. A Theory of Hydrogen Embrittlement[J]. Journal of Iron and Steel Institute,1954,177:85-92.
    [148]Geller W, Sun T H. Influence of Alloy Additions on Hydrogen Diffusion in Iron and Contributionsto the System Iron-hydrogen[J]. Arch. Eisenhuttenw,1950,21:243.
    [149]Kazinczy F De. On the Pressure of Hydrogen in Cavities of Steel[J]. Acta Metallurgica,1959,7(7):525-527.
    [150]Allen-Booth D M, Hewitt J. A Mathematical Model Describing the Effects of Micro Voids uponthe Diffusion of Hydrogen in Iron and Steel[J]. Acta Metallurgica,1974,22:171-175.
    [151]Bilby B A, Hewitt J. Hydrogen in Steel-The Stability of Micro-Cracks[J], Acta Metallurgica,vol.10, pp.587-600,1962.
    [152]Lange G, Hofman W. Realtion between Hydrogen Up-take and Porosity in Iron[J]. ArchEisenhuttenw,1966,37(5):391-397.
    [153]李磊.加氢站高压氢系统工艺参数研究[D].杭州:浙江大学材料与化学工程博士学位论文,2007:28.
    [154]黄华贵,杜凤山,许志强.大锻件内部疏松缺陷锻造压实过程FEM分析[J].工程力学,2011,28(9):245-250.
    [155]许志强,黄永健,刘才.基于相对密度的大棒材轧制对空隙性缺陷压合影响研究[J].北京理工大学学报,2009,29(12):1058-1062.
    [156]向伟,刘建生,安红萍.基于正交设计的FM法压实疏松结构的FEM模拟优化[J].太原科技大学学报,2010,31(5):378-381.
    [157]闵洁.600MW汽轮机低压转子锻造工艺分析[D].秦皇岛:燕山大学工学硕士学位论文,2010:21-26.
    [158]任学平,康永林.粉末塑性加工原理及其应用[M].北京:冶金工业出版社,1998:6-8,71-83.
    [159]刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994:39-42.
    [160]张沛.大型零件铸锻成型过程数值模拟及集成系统开发[D].秦皇岛:燕山大学工学博士学位论文,2008:74-75.
    [161]Maoqiu Wang, Eiji Akiyama, Kaneaki Tsuzaki. Effect of Hydrogen on the Fracture Behavior ofHigh Strength Steel during Slow Strain Rate Test[J]. Corrosion Science,2007,49(11):4081-4097.
    [162]刘红霞.复合材料分层损伤的数值模拟[D].西安:西北工业大学工学硕士学位论文,2006.
    [163]虞青俊.内聚力单元模型在混凝土断裂数值模拟中的应用[D].西安:西北工业大学硕士学位论文,2003.
    [164]吴治辉.韧性材料损伤断裂过程的数值模拟[D].西安:西北工业大学硕士学位论文,2006.
    [165]Mi Y, Crisfield M A, Davies G A O. Progressive Delamination Composite Using InterfaceElements[J]. Journal of composite materials,1998,32:1246-1272.
    [166]Geubelle PH, Baylor JS. Impact-induced Delamination of Laminated Composites: a2DSimulation[J]. Composites Part B: Engineering,1998,29(5):589-602.
    [167]Needleman A. An Analysis of Tensile Decohesion Along an Interface[J]. Journal of the Mechanicsand Physics of Solids,1990,38:289-324.
    [168]Xu X P, Needleman A. Numerical Simulations of Fast Crack Growth in Brittle Solids[J]. Journalof the Mechanics and Physics of Solids,1994,42(9):1397-1434.
    [169]Serebrinsky S, Carter E A, Oritiz M. A Quantum Mechanically Informed Continuum Model ofHydrogen Embrittlement[J]. Journal of the Mechanics and Physics of Solids,2004,52(10):2403-2430.
    [170]Liang Y, Sofronis P. Toward a Phenomenological Description of Hydrogen-Induced Decohesion atParticle Matrix Interfaces[J]. Journal of the Mechanics and Physics of Solids,2003,51(8):1509-1531.
    [171]Olden V, Thaulow C, Johnsen R. Application of Hydrogen Influenced Cohesive Laws in thePrediction of Hydrogen-Induced Stress Cracking in25%Cr Duplex Stainless Steel[J].Engineering Fracture Mechanics,2008,75(8):2333-2351.
    [172]Olden V, Thaulow C, Johnsen R. Cohesive Zone Modeling of Hydrogen-Induced Stress Crackingin25%Cr Duplex Stainless Steel[J]. Scripta Materialia,2007,57(7):615-618.
    [173]Olden V, Thaulow C, Johnsen R. Influence of Hydrogen from Cathodic Protection on the FractureSusceptibility of25%Cr Duplex Stainless Steel Constant Load SENT Testing and FE-modellingUsing Hydrogen-influenced Cohesive Zone Element[J]. Engineering Fracture Mechanics,2009,76(7):827-844.
    [174]Scheider I, Pfuff M, Dietzel W. Simulation of Hydrogen Assisted Stress Corrosion CrackingUsing the Cohesive Model[J]. Engineering Fracture Mechanics,2008,75(15):4283-4291.
    [175]王艳飞,巩建鸣,蒋文春.基于内聚力模型的AISI4135高强度钢氢致滞后断裂数值模拟[J].金属学报,2011,47(5):594-600.
    [176]白小敏,巩建鸣,王艳飞.高强钢氢致滞后断裂后时间的有限元预测[J].上海交通大学学报,2012,46(7):1079-1083.
    [177]Jiang D E, Carter E A. First Principles Assessment of Ideal Fracture Energies of Materials withMobile Impurities: Implications for Hydrogen Embrittlement of Metal[J]. Acta Materialia,2004,52(16):4801-4807.
    [178]Hondros E D, Seah M P. The Theory of Grain Boundary Segregation in Terms of SurfaceAdsorption Analogues[J]. Metallurgical Transactions A,1977,8(9):1363-1371.
    [179]Van der Ven A, Ceder G. Impurity-Induced Van Der Waals Transition During Decohesion[J]. TheAmerican Physical Society: Physical Review B060101,2003,67(6):1-4.
    [180]Viggo Tvergaard, John W H. The Relation between Crack Growth Resistance and FractureProcess Parameters in Elastic-Plastic Solids[J]. Journal of Mechanics and Physics of Solids,1992,40(6):1377-1397.
    [181]姜晶晶,林卓英,冯淼林.温度对Cr5冷轧辊钢断裂韧性影响的实验研究[J].锻压技术,2012,37(4):135-139.
    [182]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1994:32-47.
    [183]Chang T C, Chao R J. Application of Back-Propagation Networks in Debris Flow Prediction[J].Engineering Geology,2006,85(3-4):270-280.
    [184]蒋维,张秀利. Cr5系材料大型支承辊差温热处理工艺参数的研究[J].金属加工(热加工),2012,(3):45-47.
    [185]曹起骧,叶绍英,金坚.不同型砧锻造变形规律的云纹法模拟[J].大型铸锻件,1988,(3):9-17.
    [186]周洁.粉末成形过程的计算机模拟[D].昆明:昆明理工大学工学硕士学位论文,2005:42-44.
    [187]王欣. FM锻造法的模拟实验研究及刚塑性有限元理论分析[D].秦皇岛:燕山大学工学硕士学位论文,1984:45-58
    [188]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700