聚脲涂层体系及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国水电建设中水工建筑混凝土结构防护问题,研究聚脲涂层在水工建筑混凝土结构防护应用的可行性和技术关键;在深入分析水工建筑混凝土结构抗泥沙水流冲蚀破坏现象和聚脲涂层特性的基础上,针对涂层耐磨性和在混凝土基体上的附着强度要求,研制聚脲涂料和聚天冬氨酸酯涂料,设计出适合于混凝土表面防护的复合聚脲涂层体系;通过模拟水工环境条件下的冲蚀磨损试验和湿附着力试验,以及物理化学性能试验和表面分析,探讨高速含水沙流冲蚀条件下的涂层磨损和附着机理,为聚脲涂层在实际水工环境中的应用提供理论支撑。其主要研究内容与结论如下:
     1、针对水工建筑表面抗冲蚀保护的特殊需要出发,深入研究了聚脲A、B组分的材料和制备工艺及其与涂层性能之间的关系,开发出一种新的聚脲涂料。所研制的聚脲涂料的A组分外观无色透明,粘度、凝胶时间和NCO值能与氨基化合物(B组分)配套性能好,并提高了涂层伸长强度、伸长率。
     2、采用国产原料(聚环氧丙烷二胺和顺丁烯二酸二乙酯)合成了聚天冬氨酸酯,利用核磁共振氢谱、红外光谱、DSC曲线表征了聚天冬氨酸酯及其涂层的结构,优化了合成反应工艺。试验研究了用所合成的聚天冬氨酸酯制备的聚脲涂层的各项理化性能,制备的聚脲涂层固化时间较长、涂层施工方便、不需要特殊的喷涂设备,涂层能与基材充分润湿,具有优异的附着力,同时涂层还具优异的机械物理性能和耐化学介质性能。对聚天冬氨酸酯聚脲涂层的摩擦学性能研究发现,不论是在冲蚀条件下还是固定磨料干摩擦条件下的耐磨损性能都不及常规聚脲涂层。
     3、深入研究了聚脲涂层的摩擦学性能,首次运用高速含沙水射冲蚀磨损试验机评价聚脲涂层的泥沙冲蚀磨损性能,探讨了聚脲涂层的磨损机理。研究发现:(1)聚脲涂层成分对涂层耐冲蚀磨损性能影响主要体现在聚氨酯/聚脲涂层制备过程中产生的气泡影响,通过调整材料组分和施工工艺减少涂层中气泡是提高其耐磨性能的关键。(2)聚脲涂层具有比聚氨酯/聚脲混合体系涂层更优越的磨损性能,固定磨料干摩擦条件下和高速含水砂流冲蚀条件下都具有优异的抗冲蚀性能,而且对冲蚀角的敏感性有所改善。(3)在固定磨料干摩擦条件下,喷涂聚脲表面存在氧化磨损过程,而在高速含沙水射流条件下不易发生氧化磨损。(4)聚脲涂层在一定的温度范围内,具有较高的阻尼性和刚性,热稳定性高,能经受涂层高内耗产生的热能,并及时传递给试验流体,从而使涂层具有优异的耐冲蚀磨性能。(5)根据Bitter的塑性材料冲蚀理论建立了聚脲冲蚀磨损模型,描述了韧性材料在不同冲蚀角度和速度下的冲蚀行为,提出聚脲涂层在冲蚀角度31.5°时切削磨损量最大、冲蚀角度接近90°时变形磨损最大的冲蚀磨损规律。
     4、将湿附着力测试方法应用到聚脲涂层与混凝土的附着强度测试和研究中,获得了重要的科学数据,为表征聚脲涂层与混凝土的附着强度寻求到较好的解决方案。通过选择液体环氧树脂、活性稀释剂和固化剂开发出一种附着性能优异的无溶剂环氧封闭涂料,克服了聚脲涂料因快速成型而在基材表面润湿不充分导致粘附不强的缺陷,显著提高了聚脲涂层体系与混凝土之间的附着强度。利用表面形貌、红外光谱、电子能谱等手段,深入分析了混凝土与聚脲涂层界面特性,探讨了聚脲涂层在混凝土表面附着失效的机理。发现聚脲涂层与混凝土的附着失效为涂层与混凝土之间的物理附着破坏;而“无溶剂环氧封闭涂层+聚脲涂层”聚脲涂层体系的失效为封闭涂层与混凝土之间的物理附着破坏和封闭涂层本身的内聚破坏;封闭涂层的应用可提高混凝土表面的强度。
     5、综合聚脲涂层的优异耐冲蚀性能与聚天冬氨酸酯聚脲涂层的优异附着性能,提出在混凝土试样表面制备“聚天冬氨酸酯涂层+聚脲涂层”复合聚脲涂层体系作为水工建筑混凝土的保护涂层体系。表面分析和摩擦学性能试验证实:复合聚脲涂层体系具有良好的耐冲蚀磨损性能,采用复合聚脲涂层体系防护是水工建筑混凝土结构抗冲蚀磨损的有效手段和措施。研究发现,聚天冬氨酸酯聚脲作为封闭底涂层的复合聚脲体系,附着力明显高于单一聚脲涂层的附着力,封闭涂层渗入到粗糙混凝土表面使涂层体系获得良好的附着力,同时增强了混凝土表层的强度,保持冲蚀试验后涂层附着力基本不降低。由于聚天冬氨酸酯聚脲底涂层具有比无溶剂环氧底涂层更高的韧性,以及与聚脲涂层的良好匹配性,因此复合聚脲涂层体系比“无溶剂环氧封闭涂层+聚脲涂层”聚脲涂层体系更适合用做水工环境混凝土的表面防护。
Towards the protection of concrete structures of hydraulic architecture in hydropower construction of China, the feasibility and the key technology of the application of polyurea coatings to the protective concrete structures of hydraulic construction are studied. Based on the deep analysis of anti-sediment-flow erosion of concrete structures of hydraulic architecture and the properties of polyurea coatings the coatings of polyurea and polyaspartic ester are developed, and the composite coating systems are designed, which are suitable for the protection of concrete surface, according to the requirements of wear resistance and adhesion strength in the concrete surface; Through a series of mock tests (including the erosion, wet adhesion, physical and chemical properties and surface analysis) under the hydraulic conditions, the wearing and adhesion mechanism of these coatings under the condition of erosion by sand aquifer flow at a high speed are discussed. The main contents and the significant new results are shown as follows:
     1. From the special demand of anti-erosion protection of hydraulic construction surface, the ingredients of polyurea A, B components, their preparation, and their relationship with the performance of the coatings are studied intensively. Thereby, a new polyurea coating has been developed. The mechanical and physical properties of the new polyurea coating are excellent.
     2. The polyaspartic acid ester by the use of the domestic raw materials (poly propylene oxide diamine and diethyl maleate) is synthesized. The structure of polyaspartic acid ester and its coating are characterized by using NMR, IR and DSC curves, and the synthesis process is optimized. The polyaspartic acid ester coating has good adhesion, mechanical physical and chemical media properties. However, its wear-resistant performance is not good as the conventional polyurea coatings in the erosion wear conditions or dry conditions.
     3. The tribological properties of the polyurea coatings are studied intensively. The erosion performances of the coatings are evaluated by using the high pressure jet impact erosion testing machine firstly, and the erosion mechanism is explored. Studies showed: (1) The effect of polyurea coating compositions on erosion-resistant performance of the coatings is mainly reflected in the influence of bubbles arising during the preparation of the polyurethane-urea coatings. The key to improve their wear resistance is to decrease the bubbles of the coatings by adjusting the material compositions and spray process. (2) The polyurea coatings have superior wear performance than polyurethane/polyurea hybrid coating systems and display an excellent performance of anti-erosion under both conditions of dry friction and erosion and also an improved sensitivity on the erosion angle. (3) Under the dry-friction condition, the oxidation-wear process occurs on spray polyurea surface, while such a process does not easily happen under the high-speed water jet sandy condition. (4) The polyurea coating is provided with higher damping, hardness and thermal stability, which makes it withstand the heating created by high inner friction; the heat can be transmitted to the test fluid in time so that the coating has an excellent wear-resistance performance. (5) On the basis of Bitter's erosion theory of ductile materials, the erosion model of polyurea is established, the erosion behaviors of ductile materials at different impact angle and velocity are described, and the erosion law is also proposed, which holds that the maximal cutting wear is at the impact angle about 31.5°and the maximal deformation wear at the impact angle close to 90°.
     4. The wet-adhesion measurement was first applied to measure the adhesion strength of the polyurea coating on the surface of concrete, which provides important scientific data and finds a better solution to characterize the adhesion strength between the polyurea coating and the concrete surface. The solvent-free epoxy sealing coating is developed with an excellent adhesion by choosing liquid epoxy resin, reactive diluents and curing agent. This solvent-free epoxy sealing coating improves the adhesion of the coating system and enhances the strength of the concrete surface. The failure of the adhesion resulted from the damage of the physical adhesion between the polyurea coating and concrete. However, the failure of "solvent-free epoxy sealing coating + polyurea coating" system results from both the damage of the physical adhesion between the coating and concrete and the damage of cohesion of the sealing coating itself.
     5. The "polyaspartic acid ester + polyurea coating" composite polyurea coating system on the surface of the concrete sample was proposed and prepared firstly as the protective coating system of hydraulic concrete construction. The polyaspartic acid ester coating can enhance the adhesion of the coating system and the strength of the concrete surface. The composite polyurea coating system exhibits an excellent erosion resistance so as to be more suitable for the protection against the erosion under the hydraulic condition.
引文
[1]李健,高万振,卢进玉.我国的水力发电中的摩擦学问题[C].摩擦学科学与工程前沿,高等教育出版社,2005年9月.
    [2]Yoshiki Saito,Zuosheng Yang,Kazuaki Hori.The Huanghe(Yellow River)and Changjian(Yangtze River) deltas:a review on their characteristics,evolution and sediment discharge during the Holocene[J].Geomorphology,2001,41:219-231.
    [3]董兴林,郭军,胡孟等.高水头大流最泄洪洞内消能工研究进展[J].中国水利水电科学研究员院学报,2003,1(3):185-190.
    [4]杨永全.应用现代科技发展环境友好的水电建设技术[J].四川水利发电,2005,24(2):10-12.
    [5]肖兴斌,袁玲玲.高拱坝泄洪消能防冲技术发展与应用述评[J].水电站设计,2003,19(1):59-63.
    [6]Anne Chin.The geomorphic significance of step-pools in mountain streams[J].Geomorphology,2003,55:125-137.
    [7]Gregory B.Pasternack,Christopher R.Ellis,Kyle A.Leier,Brett L.Valle,Jeffrey D.Marr.Convergent hydraulics at horseshoe steps in bedrock rivers[J].Geomorphology,2006,82:126-145.
    [8]WANG Bo,WU Chao,HU Yao-hua,MO Zheng-yu.Relationship of first step height,step slope and cavity in x-shaped flaring gate piers[J].Journal of Hydrodymamics,Ser.B,2007,19(3):349-355.
    [9]张建民,邓军,杨永全,曾雄辉,许唯临,程浩,李艳玲,李延农.水平多股淹没射流理论及试验研究[J].自然科学进展,2005,15(1):97-102.
    [10]柯剑,沈孟玲.高水头水电站泄洪洞出口挑流鼻坎体型研究[J].四川水利,2004,6:38-45.
    [11]曾雄辉,程浩,李延农.向家坝水电站泄洪消能方案构思与初步研究[J].水利发电,2004.30:21-23(4).
    [12]Hu X G,Momber A W,Yin Y,Wang H,Cui D M.High-speed hydrodynamic wear of steel-fibre reinforced hydraulic concrete[J].Wear,2004,257:441-450.
    [13]Liu Y W,Yen T,Hsu T H.Abrasion erosion of concrete by water-borne sand[J].Cement and Concrete Research,2006,36:1814-1820.
    [14]Yen T,Hsu T H,Liu Y W,Chen S H.Influence of class fly ash on the abrasion - erosion resistance of high-strength concrete[J].Construction and Building Materials,2007,21:458- 463.
    [15]Liu Y W.Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume[J].Construction and Building Materials,2007,21:972-977.
    [16]Hanifi Binici,Orhan Aksogan,Ela Bahsude Gorur,Hasan Kaplan,Mehmet Nuri Bodur.Hydro-abrasive erosion of concrete incorporating ground blast-furnace slagand ground basaltic pumice[J].Construction and Building Materials,2009,23:804-811.
    [17]Elzbieta Horszczaruk.Abrasion resistance of high-strength concrete in hydraulic structures[J].Wear,2005,259:62- 69.
    [18]Horszczaruk EK.Hydro-abrasive erosion of high performance fiber-reinforced concrete[J].Wear,2009,267:110- 115.
    [19]Hu X G,Momber A W,Yin Y G.Hydro-abrasive erosion of steel-fibre reinforced hydraulic concrete[J].Wear,2002,253:848-854.
    [20]Adrian Colak.Effects of chrome oxide and limestone filler on the wear characteristics of paste and concretes made with white Portland cement[J].Construction and Building Materials,2008,22:2276-2280.
    [21]彭恩高.材料的含沙水流冲蚀磨损性能研究[D].北京:机械科学研究院硕士学位论文,2006.
    [22]李伟华,王爱华,于杰.混凝土结构的涂层防护[J].现代涂料与涂装,2007,10(8):26-29.
    [23]徐雪峰,施猛杰,胡迪春.水工泄水建筑物抗冲耐磨涂料的研究[J].化学建材,2003(2):15-16.
    [24]徐雪峰,杨长征,邱益军,蔡跃波.水工泄水建筑物耐磨涂层护面工艺探讨[J].水利水电技术,2003,34(6):21-23.
    [25]白福来,廖碧娥.抗冲耐磨涂料的选择与施工[M].北京:水利电力出版社,1988.
    [26]刘国杰,耿耀宗.涂料应用科学与工艺学[M].北京:中国轻工业出版社,1994.
    [27]杜洪彦,邱富荣,许世力,余兴增,石小燕.海上混凝土防腐蚀涂料研究进展[A].第五届全国建筑腐蚀防护学术交流会论文集[C],2000.
    [28]杭州湾大桥工程指挥部,中交公路规划设计院,中铁大桥勘测设计院.杭州湾跨海大桥混凝土涂层防腐蚀技术条件[R],2006.
    [29]陈迺昌.聚脲弹性体喷涂技术在建筑及基础设施防护工程领域的应用[J].上海涂料,2008,46(11):42-46.
    [30]中国化工学会涂料学会科普委员会.涂料工人必读[M].湖北:湖北科学技术出版社,1986.
    [31]丛树枫,喻露如.聚氨酯涂料[M].北京:化学工业出版社,2003.
    [32]Beck R A,Truss R W.Effect of chemical structure on the behaviour of polyurethane-urea elastomer[J].Wear,218(1998):145-152.
    [33]吴辅丰.浅谈无溶剂涂料[J].中国涂料,2002,4:23-25.
    [34]Primeaux Ⅱ D J.Polyurea spray technology in commercial[C].In:60 years of Polyurethanes:International symposium and exhibition.University of Detroit mercy:January,1998:224-238.
    [35]John Henningsen.Polyurea:Leading a revolution in coating technology[]].Paint and Coatings Industry,2002,(1):58-63.
    [36]Broekaert M.Polyurea spray coatings,the technology and latest developments,polyurethanes for high-performance coatings Ⅱ[C].ECC,Berlin,March 14-15,2002.
    [37]Primeaux Ⅱ D J.A study of polyurea spray elastomer systems[J].High Solids Coatings,1994,(15):2-7.
    [38]王宝柱,黄微波,陈酒姜,刘培礼,刘东晖.喷涂聚脲超重防腐涂层的应用[J].聚氨酯工业,2004,19(6):30-34.
    [39]黄微波,王宝柱,陈酒姜,刘培礼,刘东晖.喷涂聚脲弹性体的理论与实践[J].上海涂料,2003,41(4):8-13.
    [40]黄微波.喷涂聚脲弹性体技术[M].北京:化学工业出版社,2006.
    [41]黄微波,王宝柱,徐德喜,杨宇润,陈酒姜,刘东晖.刘培礼喷涂聚脲弹性体[J].弹性体,2000,10(3):28-34.
    [42]徐德喜,黄微波,陈酒姜.喷涂聚脲弹性体设备[J].聚氨酯工业,2000,15(2):5-8.
    [43]Twitchett H J.Chemistry of the production of organic isocyanates[J].Chemical Society Reviews,1914,3:209-230.
    [44]Pankratov V A,Vinogradova S V,Korshak V V.The Synthesis of Polycyanates by the Polycyclotrimerisation of Aromatic and Organoelement Cyanate Esters[J].Russian Chemical Reviews,1977, 46:278-295.
    [45]Lettmann,Christian,Kohlstruk,Stephan,Stochniol,Guido Spyrou,Emmanouil.Method for synthesis of aliphatic isocyanates from aromatic isocyanates[P].USP 6924385(2005).
    [46]Bayer O.DasDi-Isocyanat-Polyadditionsverfahren(Polyurethane)Angewandte Chemie-International Edition,1947,59:257-272.
    [47]郁维铭.100%固含量聚氨酯和聚脲涂料[J].化学推进剂与高分子材料,2007,5(2):29-32.
    [48]黄微波,王宝柱,陈酒姜,刘培礼,刘东晖.喷涂聚脲弹性体技术在我国的发展和展望[J].聚氨酯工业,2002,17(3):6-10.
    [49]Primeaux Ⅱ D J.Spray polyurea elastomers offer perfermance advantages[J].Modern Paint and Coatings,1991,(6):46-54.
    [50]Primeaux Ⅱ D J,Grigsby J,Robert A,Rice,Doris M.Sprayable polyurea elastomer made from reaction of isocyanate compound with amine terminated polyether and di(methylthio)toluene diamine and diethyltoluene diamine chain extenders[P].US P5124426(1992).
    [51]Zwiener.Process for the production of polyurethane coatings[P].US P5126170(1990).
    [52]Angeloff C A,Squiller E P,Best K E.New high solids technology achieves productivity gains[J].Journal of Protective Coatings and Linings,2003,20(11):35-40.
    [53]Lemmerz R.New very high solids protective topcoats reduce costs and VOC levels[J].Protective Coatings Europe,2002,7(7):17-22.
    [54]刘培礼,刘光晔,黄微波.聚天门冬氨酸酯聚脲的制备与研究[J].聚氨酯工业,2005,20(4):16-19.
    [55]吕平,陈国华,黄微波.不同硬段含聚天冬氨酸酯聚脲结构和性能的研究[J].现代化工,2006,29(9):28-33.
    [56]廖有为,熊平凡,赵舒超,曹树印.聚天门冬氨酸酯涂料的研制与应用[J].涂料工业,2006,36(3):38-40.
    [57]黄微波,王宝柱,刘培礼,陈酒姜,刘东辉.喷涂聚脲技术领域的最新进展--聚天门冬氨酸酯聚脲[J].上海涂料,2005,43(5):19-22.
    [58]邹涛,李珍,韩炜,汪在芹,邵晓妹,魏涛.混凝土表面保护材料的研究进展[J].混凝土,2008,12:66-68.
    [59]陈冠国,褚秀萍,张宏亮,郝雪第,屈延明,李俊杰.关于冲蚀磨损问题[J].河 北理工学院学报,1997,19(4):27-32.
    [60]Tilly G P.Erosion caused by impact of solid particles[J].Wear,1979,(13):287-319.
    [61]Finnie I.The mechanism of erosion of ductile metals[C].in Proc.3rd U.S.Natl.Congress of Applied Mechanics,1958,527-532.
    [62]Bitter J G A.A study of erosion phenomena,part 2[J].Wear,1963,(6):169-190.
    [63]李诗卓,董样林.材料的冲蚀磨损与微动磨损[M].北京:机械上业出版社,1987.
    [64]张清,金属磨损和金属耐磨材料手册[K].北京:冶金工业出版杜,1991.
    [65]康进兴,赵文轸,朱金华.材料抗冲蚀性研究进展[J].材料保护,2001,34(10):22-23.
    [66]邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [67]董刚,张九渊.固体粒子冲蚀磨损研究进展[J].材料科学与工程学报,2003,21(2):307-312.
    [68]Alan V.Levy,Wang B Q.Erosion of hard material coating systems [J].Wear,1988,121:325-346.
    [69]Kingswell R,R ickerby D S,Bull S J,Scott K T.Erosive wear of thermally sprayed tungsten coatings[J].Thin Solid Films,1991,198:139-148.
    [70]Walley,Field J E,Yennadhiou P.Single solid particle impact erosion damage on polypropylene[5].Wear,1984,100:263-280.
    [71]K.Friedrich.Erosive wear of polymer surfaces by steel ball blasting [J].Journal of Materials Science,1986,21(9):3317-3332.
    [72]Roy M,Vishwanathan B,Sundararajan G.The solid particle erosion of polymer matrix composites[J].Wear,1994,(171):149-161.
    [73]Zahavi J,Schmitt Jr G F.Solid particle erosion of reinforced composite materials[J].Wear,1981,71(2):179-190.
    [74]李健,张永振,彭恩高,秦襄培,杜三明.冲蚀与气蚀复合磨损实验研究[J].摩擦学学报,2006,26(2):164-168.
    [75]潘牧,罗志平.材料的冲蚀问题[J].材料科学与工程,1999,17(3):92-96.
    [76]Allen K W.A review of contemporary views of theories of adhesion[J].The Journal of Adhesion,1987,21(3-4):261-277.
    [77]刘登良.涂层失效分析的方法和工作程序[M].北京:化学工业出版社,2003.
    [78]郑国娟.漆膜附着力及其测试方法[J].化工标准·计量·质量,2003,23(5):23-24.
    [79]黄秉升.漆膜附着力测定和漆膜划格试验[J].表面技术,2000,29(3):28-30.
    [80]ASTM D 4541,Standard test method for pull-off strength of coatings using portable adhesion testers[S].
    [81]ISO 4624,Paints and varnishes-pull-off for adhesion[S].
    [82]Kenworthy T.100%Solid polyurethane and polyurea:A comparison of properties and uses[J].Journal of protective coatings & linings,2003,20(5):58-63.
    [83]廖有为,车轶才,赵舒超,曹树印,贺光辉.聚脲弹性涂料在皮卡车车厢内表面的应用[J].材料保护,2004,37(2):59.
    [84]廖有为,林伟,车轶材.喷涂聚脲类涂料在管道防腐工程领域的应用[A].第三届国际腐蚀与防腐蚀技术研讨会论文集[C],2005:235-237.
    [85]孙晶,廖有为,周庆军,李维绪,李健.低温管道改性聚脲补口涂料的研制[J].上海涂料,2008,46(6):1-3.
    [86]孙志恒,岳跃真.聚脲弹性体喷涂技术及在水利工程中的应用[J].大坝与安全,2005,1:63-66.
    [87]吴怀国.喷涂聚脲弹性体与潮湿混凝土基材粘接性能研究[J].应用技术,2005,26(2):61-62.
    [88]吴怀国.水工混凝土喷涂聚脲弹性体抗冲磨涂层的相关应用技术研究[J]中国水利水电科学研究院学报,2005,3(1):40-43.
    [89]Dudley J.Primeaux Ⅱ.Polyurea elastomer technology:history,chemistry & basic formulating techniques.http://www.primeauxassociates.com.
    [90]过美丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2002.
    [91]王雁冰,黄志雄,张联盟.DMA在高分子材料研究中的应用[J].国外建材科技,2004,25(2):25-27.
    [92]Sai S.Sarva,Stephanie Deschanel,Mary C.Boyce,Weinong Chen.Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates.Polymer,48(2007):2208-2213.
    [93]Dawn M.Crawford,John A.Escarsega.Dynamic mechanical analysis of novel polyurethane coating for military applications[J].Thermochimica Acta,2000,357-358:161-168.
    [94]Neilson J H,Gilchrist A.Erosion by a stream of solid particles [J].Wear,1967,11:111-123.
    [95]Neilson J H,Gilchrist A.An experimental investigation into aspects of erosion in rocket motor tail nozzles[J].Wear,1967,11:123-143.
    [96]Arefi B,Settari A,Angman P.Analysis and simulation of erosion in drilltools[J].Wear,2005,259:263-270.
    [97]Finnie I.Some reflections on the past and future of erosion[J].Wear,1995,(1-10):186-187.
    [98]Finnie I,McFadden D H.On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J].Wear,1978,48:181-190.
    [99]洪啸呤,冯汉保.涂料化学[M].北京:科学出版社,2005.
    [100]Funke W.Protection of metals by organic coatings against corrosion and relation to wet adhesion[C].7th Asian-Pacific corrosion control conference,1991.
    [101]刘斌,李瑛,林海潮,曹楚南.防腐蚀涂层失效行为研究进展[J].腐蚀与防护技术,2001,13(5):305-307.
    [102]黄微波,刘培礼,胡松霞,卢敏.喷涂聚脲技术领域的新进展--聚天门冬氨酸酯聚脲[J].中国涂料,2005,20(8):36-38.
    [103]慈洪涛.直接用于金属底材的100%固体含量的脂肪族聚脲涂料[J].现代涂料与涂装,2006,9(3):19-22.
    [104]杨林,吕平,李英.聚天冬氨酸酯聚脲最新研究进展[J].上海建材,2007,(4):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700