快速城市化地区生态安全格局构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市化在促进区域经济和社会发展的同时也导致一系列城市生态环境问题,严重威胁区域可持续发展。随着人类城市化活动的加剧,减缓和应对城市化带来的负面效应迫在眉睫。优化区域景观结构,构建生态安全格局,保育和恢复必要的区域生态过程已成为应对城市化环境问题的重要共识。但目前生态安全格局这一策略仍停留在概念阶段,缺乏切实可行的空间规划措施支持。武汉市是我国中部的中心城市,近年来正经历着前所未有的城市化进程,城市景观格局与环境急剧变化,在这一背景下针对区域生态环境问题探讨城市景观调控机制具有重要的理论与现实意义。本文以武汉市为研究对象,在景观生态学、保育生态学、城市生态学、环境科学及相关理论指导下,按照“格局动态—生态环境响应一生态安全格局构建”的研究思路,借助多时序遥感卫星影像,综合运用RS、GIS技术和相关分析方法研究了1987~2007a武汉市景观格局变化特征及驱动机制,分析了城市化背景下森林和湿地景观连接度变化特征和热环境空间分异特征及景观响应机制,在此基础上针对武汉市景观破碎化和城市热岛问题,从不同尺度上提出了武汉市生态安全格局的网络空间构型,为构建具有实践意义的城市生态安全格局提供了理论与方法依据。研究结果表明:
     (1)1987~2007a武汉市景观格局发生了显著变化,农田和水体面积大幅减少,城乡建设用地面积快速增加,森林面积明显提高,森林和水体景观破碎化程度加剧,城市建设用地集中程度增加,景观整体城市化特征显著。人类活动促使武汉市各类型景观斑块面积差异逐渐变小,复杂程度逐渐降低,景观粒度从粗粒景观向细粒景观转变。城市扩张、基础设施建设及其他人类活动已经明显影响区域景观格局,导致景观异质性持续增加。
     从1991a开始,武汉市景观整体动态变化度逐步增加,景观变化速度逐渐增加。整个研究期中,各景观类型面积变化具有一定波动性。疏林草地、建筑和裸地的年变化率较高,但不同阶段各景观类型年变化率存在一定差异。
     农业开发活动、城市化发展、森林建设和降水量增加是1987~1991a景观变化的主要直接驱动因素;城市人口数量增加、农业开发活动和积极的生态建设措施是1991~1996a景观格局变化的主要驱动力;1996~2001a景观变化的主要驱动力是城市化进程加速、产业比例结构的调整和林业生态建设措施等因素,在这一时期内,景观变化剧烈程度明显增加;社会经济发展、城市化进程加速和具有激励机制的林业生态政策是2001~2007a景观变化的主要驱动因素,在这一时期内,景观变化更为剧烈,城乡建设用地和森林两个类型的面积大幅增加。
     为改变武汉市景观破碎化加剧的状况,景观管理政策的制定必须综合考虑到变化条件下的多方利益,由保护单个的生态资源向保护生态资源系统和促进区域可持续发展转变。
     (2)基于土地覆盖数据,运用费用距离模型对1987-2007a武汉市景观连接度长期变化特征进行了定量评估。研究结果表明,随着城市化进程的不断加快,武汉市森林和湿地景观连接度迅速降低,高景观连接度景观的面积大幅减小,而低连接度景观的面积迅速增加,这揭示了武汉市生态资源景观连接度已经受到城市景观变化的严重影响。森林景观格局与景观连接度变化趋势不对称揭示出武汉市城市化进程对森林物种的影响已远大于森林建设带来的生态过程改善能力。因此,建议今后森林建设工程必须转变思路,从重视空间结构指标向注重功能连续性方面转变。水体景观连接度的变化与水体景观格局的总体变化趋势较为一致,随着水体面积减小和结构破碎化程度加剧,水体景观连接度持续下降。除水体面积和结构破坏之外,人类干扰活动对水体景观连接度的影响也非常明显。因此,对水体的保护和管理不能局限于保护水体面积和斑块结构不受损,而应充分考虑到水体边界景观对比度变化对水体景观连接度的影响。
     (3)基于地表温度反演的结果,将武汉市热环境按照地表温度值大小分为6类,其空间分异特征分析表明,武汉市热环境空间分布不均衡,呈明显的梯度分布特征,城市中心地区的温度明显高于城市外围地区。其中,高温景观和低温景观呈现组团式分布特征,高温景观主要分布在城市化较早,人口和建筑密集的中环线以内的城市建设区和工业区;城市低温区域主要分布在域内的大型湿地和森林地区,城市外围地区的低温景观面积明显高于城市建筑密集区。热岛斑块面积较小,且斑块间面积差异不大;最低温区和较低温区的平均斑块面积非常大。人类活动强度在增加地表温度的同时,也导致高温热力场分布向细粒景观转化。低温类型景观和高温类型景观分布较离散,而中等温度的景观类型斑块间距离较小。
     地表覆盖特征显著影响地表温度,城市建设用地均温最高,水体均温最低;高温区建设用地所占面积最大,低温区中水体所占面积最大;水体、裸地和城市建设用地中地表温度变化较大;从相对降温率来看,水体降温效率最高,滩涂湿地与森林也具有较高的降温效率,而城市建设用地会导致地表温度升高。植被覆盖度与地表温度之间存在极其显著的关系,其中水面覆盖区域植被覆盖度的增加与地表温度增加呈极其显著的正相关关系,植被覆盖度增加的温度降低作用规律依次为:裸地>建设用地>森林>草地>滩涂湿地>农田。此外,水体、滩涂湿地和森林对周边地表温度具有重要影响,多数情况下存在明显的距离效应和面积效应。降温景观对城市建设用地降温作用距离要高于其他景观类型上的作用距离,对植被覆盖区域(如农田、森林和草地等)降温距离略小。小型滩涂湿地斑块和小型森林斑块降温距离具有一定优势,因此,在城市中建立多个小型森林斑块比建立单一的大型森林斑块降温效果要好。研究同时表明,斑块面积对周围景观地表温度有一定影响,但影响能力普遍较弱。
     因此,为减缓武汉市城市热岛效应,需改善城市绿地质量,降低建设用地和裸地类型的斑块面积,建立城市湿地—森林一体化降温网络和改善城市风道。
     (4)针对城市区域景观破碎化加剧的趋势,本文提出构建城市绿道系统应对持续增加的城市绿地景观破碎化。通过集成最小费用路径模型、核密度估计、优先性原则和代理指标方法,本文构建了城市化地区多功能绿道构建方法框架。这一方法模型主要由识别规划目标与需求,决定潜在生态保育绿道、识别潜在游憩绿道、识别潜在水体保护绿道、设计综合绿道网络5部分内容构成。而对于单目标廊道识别则包括识别源汇斑块、设置费用权重、识别潜在连接和优化网络结构等4步骤。本研究通过将建设成本纳入最小费用路径分析改进了最小费用路径分析的现实性,使其模拟结果能够综合反映使用者和建设维护者需求,有助于促进城市绿道可持续性。
     运用这一方法,本研究提出了一个多目标优先性绿道网络体系。这一绿道网络体系由理想鸟类保育网络、理想小型哺乳动物保育网络、理想人类游憩网络、水体保护网络、骨干鸟类绿道网络、骨干小型哺乳动物保育网络、骨干人类游憩网络和综合性绿道网络等8个绿道网络构成,分别对应着低生态安全水平、中度生态安全水平和高生态安全水平等3个生态安全等级。在武汉市绿道建设中应该按照其生态安全等级进行分批建设分级管理。并针对不同生态安全水平上的绿道网络识别了其中重要绿道分布区和关键绿道。
     今后的研究应提高绿道规划的空间连续性、功能完整性和数据可靠性。
     (5)借鉴生态网络规划中景观连接度的理论,提出了构建城市“森林—湿地”降温网络改善城市热岛效应的思路和规划框架,并对武汉市城市森林一湿地降温网络构建进行了研究。这一规划框架运用源汇模型、最小费用路径模型和核密度分析模型识别了潜在的降温网络。城市“森林—湿地”降温网络由热梯度廊道、隔离廊道和低温廊道、绿色节点和降温斑块相互连接构成。
     武汉市城市“森林—湿地”降温网络研究共识别了6个不同层次和目的的降温网络,根据其网络结构的完整性可对应三个层次的环境安全层次:高环境安全等级水平、中度环境安全水平和低环境安全水平。而且,考虑到建设的可行性,综合性网络将冷热空气流动的需求整合,反映了降低城市热岛效应的最低要求,也是迫切需要付诸实施的廊道网络结构,它对应着最低的环境安全水平;骨干网络从不同降温作用方式更加完善的定义了区域降温网络的需求,对应着中度环境安全水平和中度优先性;而理想生态网络反映了最完善的降温需求,因此对应着最高环境安全水平和最低优先性。城市降温网络建设应以改善城市热岛区植被覆盖状况,缓解本身热量累积和构建城市植被降温廊道为主。通过建设一定结构特征的植被廊道将森林、湿地等降温斑块连接发挥其整体降温作用。
     (6)构建结构功能完整的生态网络对于快速发展地区森林保育具有重要意义。为改善武汉市森林景观连接度不断降低的趋势,本文以武汉市为研究对象,提出并应用了一个面向快速城市化环境的综合性的森林网络规划框架。研究结果显示通过整合物种包方法、多标准评价、最小费用路径模型、核密度估计和优先性原则,这一规划模型能够较好的适用于识别和规划生态网络。它使规划者能够将多物种需求整合到综合性生态网络中。
     本文识别了7个生态网络,对应着理想网络、骨干网络和综合性网络等三个保育优先性水平。这一综合性网络系统为规划者和利益相关者提供了一个深入和直观的视角来理解生态过程和提升区域生态系统可持续性。管理者应该尽快将综合性森林网络付诸实施,以保护当地物种多样性,应对城市化带来的森林生境破碎化问题。我们希望这一方法能够改善区域生态网络规划实践。
     (7)运用最小费用距离模型和焦点物种代理法识别了武汉市潜在的湖泊湿地生态网络,在此基础上运用中心度方法重点评价了武汉市湖泊湿地网络要素的重要性。研究结果显示,虽然武汉市湿地资源众多,但是能够作为湿地鸟类生境的湿地仅占武汉市湿地资源总量的21.53%,一些重要的生境斑块和廊道分布在中环线周围地区,这些地区正是今后城市扩张的主要位置。根据湿地核心生境斑块的节点度和中介度评估,本文将武汉市湖泊湿地生境重要性进行了排序,并分为最优先、中度优先和普通三个优先性类型。武汉市潜在湖泊湿地生态网络涉及到的56条廊道可分为3个优先层次。高优先性的廊道主要分布在网络内部,连接了多数高优先性生境斑块,构成了武汉市湿地生态网络的基本框架。
Rapid urbanization has caused many eco-environmental problems when it improves our living condition, and put a serious threat to regional sustainability. Hence, how to mitigate these negative effects linking to rapid urbanization has become an urgent task and considerable challenge to maintain social, economic and environmental sustainability. The optimization of regional landscape structure, construction of the ecological security pattern as well as conservation and restoration the necessary regional ecological processes have become an increasing consensus on coping urbanization environmental problems. Yet, the ecological security pattern model is still a conceptual strategy in landscape planning due to lack of practical and feasible spatial planning approaches. Wuhan, as the largest city in the central of China, is undergoing the unprecedented urbanization process with dramatically changing in landscape pattern, ecological processes and environmental condition. Therefore, the researches on the approach to improve our urban landscape configuration will be of important theoretical and realistic significance to combat these eco-environmental problems. In this paper, the historical remote sensing imageries, climate data, basic topographical data, and field investigation data were collected to study the optimum ecological patterns of Wuhan. Hence, the objectives of our study are to focus on the landscape configuration dynamics and its driver-forces, landscape connectivity trends of forests and wetlands, and spatial characteristics of urban heat island (UHI), identify major eco-environmental problems in Wuhan, and develop a set of optimum ecological patterns proposal to eliminate these eco-environmental threatens, and initial to present an feasible landscape approach for urban eco-security pattern planning. The main results are shown as follows:
     (1) The landscape configuration has significantly changed during1987-2007a. Farmlands and water areas decrease dramatically in their area while built-up areas and forest quickly increase in their size. Such characteristics present a clear trend that the whole landscape configuration was changing from agricultural pattern to urban pattern. Increasing fragmentations were found in forest and water. The Aggregated Index of urban built-up areas increased during the whole research period. Because increasing human activities, the landscape in Wuhan is changing from coarse grain to fine grain, difference of patch area gradually reduced. Urban sprawl, infrastructure development and other human activities have significantly affected the pattern of regional landscape, resulting in continued increase in landscape heterogeneity.
     Since1991a, the landscape gradually increases the overall degree of dynamic change. The area of various landscape types fluctuated throughout the study period. Grasslands, built-up lands and bare lands have high annual rates of landscape changing but there are some differences in various stages.
     Agricultural development, urbanization, forest development, and the large precipitation are the main direct drivers of landscape change in1987-1991a. Increasing urban population, agricultural development, and positive eco-construction measures is the main driving force of landscape pattern changes during1991-1996a; The main factors affecting landscape change in1996-2001a, is the accelerated urbanization, the increasing proportion of industrial in GDP, and forestry ecological construction measures. In this period, the landscape changes significantly increased in intensity. Socio-economic development, accelerated urbanization process, and forestry policy with incentives is the main driver of landscape change in the period of2001-2007a. In this period, the landscape changes more intense, urban and rural construction land and forest increased significantly.
     To alleviate the exacerbated situation of landscape fragmentation in Wuhan, the deciders must consider the benefits of changing stockholder and integrate them into the landscape management policies, and change protection strategy of ecological resources from single patches to whole system to promote regional sustainable development.
     (2) Based on the generated land-cover data, a cost-distance model was used to estimate and assessed the landscape connectivity trends of Wuhan during the twenty years of1987-2007a. The results shown that, the landscape connectivity among forest patches and that among water patches decreased dramatically in the process of rapid urbanization of Wuhan. Additionally, the landscape areas with high connectivity decreased clearly while the landscape areas with low connectivity increased quickly. This trend indicates that the rapid landscape changes have influenced connectivity of eco-resources. The trend difference in pattern and connectivity of forest indicates that the negative effects on forest connectivity resulted from rapid urbanization have offset the positive effects of afforesting. Therefore, future forest construction projects must change their thinking from a focus on indicators of spatial structure to focus on changes in functional continuity. Trends of water connectivity is similar to the trends of landscape pattern, with the water area decreasing and fragmentation degree increasing, landscape connectivity degree of water continued to decline. In addition, the increasing human activities also influence water connectivity. Therefore, the protection and management of water bodies should not only focus on patch area and patches structure, but also fully take changes in water contrast landscape border into account.
     (3) The urban land surface temperature (LST) of Wuhan was retrieved using Landsat TM5remote sening imagery and classified into six types according to their temperature value. Based on the LST data, the thermal pattern and thermal environment effect of urban landscape pattern were analyzed. The results shown that that the spatial distribution of thermal environment in Wuhan was uneven, and showed a clear urban-rural gradient distribution. The temperature of downtown significantly higher than outlying areas of the city, UHI areas concentrated on urban central area while the low-temperature landscape mainly appear at outlying areas of the city with significant group distribution characteristics. The patch size of UHI is very small while the patch size of the lowest-and lower-temperature patches is much larger. The Euclidean Nearest-Neighbor Distance (ENN) of the lowest-and highest-temperature landscape is larger than the ENN of the medium-temperature patches.
     The results also demonstrated that land-cover characteristics significantly affected LST of research area. The average LST of built-up areas is the highest, while the average LST of water is the lowest. The built-up areas share the largest area of highest-temperature zones while water occupied the largest area of the lowest-LST zone Water, beach wetlands and forests influence significantly LST of the neighbor landscape. In most case, there is a clear distance effect and size effect to decrease LST of their neighbor landscape. The effective cooling-distance on built-up area by low-temperature landscape is largest among various land-cover types while the effective distance on vegetation covered areas (i.e. farmlands, forest and grassland).is smaller than others.
     Additionally, small patches of beach wetlands and forest has relative higher efficiency to decrease surrounding LST. Hence, the cooling effect by several small patches is better than one single large patch. Patch size of cooling landscape could influence the cooling-effects to surrounding landscape in a certain extent, but their impacts are very weak. In order to mitigate urban heat island, several strategies, to improve vegetation coverage of the green space and other landcover types, reduce patch size of built-up areas and bare lands, and establish urban wetlands-forest network and improve urban air duct are proposed
     (4) Urban greenways are proven strategies to counter ecological fragmentation and improve urban sustainability. However, significant challenges remain when seeking to integrate multiple functions into priority-oriented planning. In this paper, we focus on the city of Wuhan (China) to present an innovative approach for developing multi-functional greenway networks. Based on remote sensing and geographical information systems, this approach applies a least-cost path model, a kernel density analysis and a proxy index to identify and integrate multiple needs into priority greenway networks. Our priorities are bird and small mammal conservation, human recreation and water protection. In the cost settings of the least-cost path model, we include simulated construction costs to realistically identify corridors. This method insures that our results reflect the expenses necessary for the construction of greenways. Our study demonstrates that the kernel density method is an effective tool to illustrate priorities by revealing the potential utilization intensity of corridors. Based on the proposed method, we identify eight potential greenway networks, each highlighting different sets of priorities. We divide these priority greenway networks into three categories of ecological security:ideal greenways, backbone greenways and the comprehensive greenway network. The latter represents the integration of animal conservation, human recreation and water protection objectives. Because priorities can be added, interchanged or weighted according to local specificities, our study offers a methodological framework applicable to developing and developed cities.
     (5) In order to mitigate UHI, this paper presented a framework for Forest-Wetlands Cooling network (FWC network) planning. The proposed framework was demonstrated by a case of Wuhan. Using the landscape connectivity theory, the presented approach combined source/sink theory, least-cost path model and kernel density estimate to identify the potential cooling network. Urban FWC network is composited of thermal gradient corridor, barrier corridor, low-temperature corridor, green hub and cooling patch.
     In this paper, the six networks, responding various functions were identified and classified into three environmental-security level of high, medium and low level. The environmental security levels reflect the priorities for their constructions. The comprehensive FWC network represents the lowest needs for eliminate UHI effects and responses the highest priority for construction. The ideal FWC network represents the optimum network to mitigate UHI, and therefore response to the highest environmental security level and lowest priority. Considering the construction cost, main issues of establishing forest-wetlands cooling network are to improve cooling rate of built-up by increase vegetation coverage and to develop cooling corridors.
     (6) Construction, preservation and connections between forested areas are proven strategies to counter human-induced fragmentation of natural ecosystems in urban areas and improve regional sustainability as a whole. Yet designing forest networks that target multiple species in urban areas remains a challenging task for planners. In this section, we present a modeling framework for multi-species forest network planning in rapidly urbanizing contexts using a case study of Wuhan, a city in Central China. Based on remote sensing and geographical information systems, our approach integrates the species assemblage method, multi-criterion assessment, least-cost path model, kernel density estimates, and priority principle to plan forest networks for regional biodiversity conservation. Focal species assemblages were developed to represent local species with high sensitivity to fragmentation. We include stepping-stone functions in the cost settings of the least-cost path model to realistically identify optimum network for different species assemblages. Our study demonstrates that the kernel density method is an effective tool to illustrate priorities as it reveals potential utilization intensity of corridors. Using the proposed method, we identified seven forest networks accounting for three priority levels of biodiversity conservation within Wuhan:the ideal network, backbone network and comprehensive network. The proposed approach enables planners to readily integrate multi-species demands and develop comprehensive forest networks. This approach may contribute to forest networks planning in rapidly changing areas, especially urban.
     (7) Assessing functional significance of landscape elements is considered as the important context of conservation planning and the basis of sustainable ecological network. Based on conservation needs of focal species, a potential wetlands network was identified. The centrality method was further employed to assess the functional significance of wetland ecological network in Wuhan. Our results indicated that:the potential wetland network was consisted of29core-habitat patches and56corridors with least travel costs. According to the degree and betweenness, these core-habitat patches and corridors can be categorized into three priority levels, including the highest priority, the medium priority and low priority groups. When the proposed network is implemented, deferent scheduling priorities should be given respectably to various significant levels. Moreover, our simulated results also illustrated the effectiveness of the centrality method. Incorporating focal-assemblage surrogate model, multi-criterion suitability model and least-cost path model, the centrality method is available to rank and identify the key elements in regional ecological network. The future researches are expected to focus on the scale-effects of ecological network.
引文
1.蔡婵静,周志翔,陈芳,郑忠明.武汉市绿色廊道景观格局.生态学报.2006,26(9):2996-3004
    2.蔡春菊,彭镇华,王成.扬州城市森林的文化承载功能初探.中国城市林业,2005,3(6):51-55
    3.曹国斌,朱兆泉,胡鸿兴,文安良,葛继稳,罗理芳,梁仕忠.湖北沉湖自然保护区鸟类多样性研究.四川动物,2004,23(4):358-365
    4.曹进,曾光明,石林,焦胜,周建飞.基于RS和GIS的长沙城市热岛效应与TSP污染耦合关系.生态环境,2007,16(1):12-17
    5. 曹新向,翟秋敏,郭志永.城市湿地生态系统服务功能及其保护.水土保持研究,2005,12(1):145-148
    6.潮落蒙,李小凌,俞孔坚.城市湿地的生态功能.城市问题,2003,3:9-12
    7.车生泉.城市绿色廊道研究.城市规划.2001,21(11):44-49
    8.陈力,邓媛,王维维,王晓斌,张毅.武汉城市圈湿地资源生态环境和管理现状及保护对策.湖北农业科学,2010,49(2):3036-3039
    9.陈利顶,傅伯杰,徐建英,巩杰.基于“源—汇”生态过程的景观格局识别方法—景观空间负荷对比指数.生态学报,2003,23(11):2406-2413
    10.陈利顶,傅伯杰,赵文武.“源—汇”景观理论及其生态学意义.生态学报,2006,26(5):1444-1449
    11.陈灵芝.中国的生物多样性现状及其保护对策.北京:科学出版社,2003
    12.陈文波,孙海放,肖笃宁.森林水文功能安全阻力面模型初探.江西农业大学学报,2004,26(3):386-389
    13.程承旗,吴宁,郭仕德,李树德,刘大平.城市热岛强度与植被覆盖关系研究的理论技术路线和北京案例分析.水土保持研究,2004,11(3):172-175
    14.迟文学,王劲峰,李新虎,廖一兰.出生缺陷的空间点格局分析.环境与健康杂志,2007,24(4):238-240
    15.达良俊,陈克霞,辛雅芬.上海城市森林生态廊道的规模.东北林业大学学报,2004,32(2):16-18
    16.戴晓燕,张利权,过仲阳,吴健平,栗小东,朱燕玲.上海城市热岛效应形成机制及空间格局.生态学报,29(7):3995-4004
    17.方圣辉,刘俊怡.利用Landsat数据对武汉城市进行热岛效应分析.测绘信息与工程,2005,30(2):1-2
    18.方淑波,肖笃宁,安树青.基于土地利用分析的兰州市城市区域生态安全格局 研究关.应用生态学报,2005,16(12):2284-2290
    19.傅伯杰,刘世梁,马克明.生态系统综合评价的内容与方法.生态学报,2001,21(11):1885-1892
    20.傅伯杰,吕一河,陈利顶,苏常红,姚雪玲,刘宇.国际景观生态学研究新进展.生态学报,2008,28(2):0798-0804
    21.傅书遐.湖北植物志3.武汉:湖北科学技术出版社,2002
    22.高凯,周志翔,杨玉萍,李华.基于Ripley K函数的武汉市景观格局特征及其变化.应用生态学报,2010,21(10):2621-2626
    23.高练,周勇.武汉市土地利用/土地覆盖变化的生态环境效应分析.农业工程学报,2008,24(S1):73-77
    24.高启晨,陈利顶,吕一河,李国强,姜昌亮.西气东输工程沿线陕西段区域生态安全格局设计研究.水土保持学报,2005,19(4):164-172
    25.郭明,肖笃宁,李新.黑河流域酒泉绿洲景观生态安全格局分析.生态学报,2006,26(2):457-466
    26.郭青海,马克明,赵景柱,杨柳,尹澄清.城市非点源污染控制的景观生态学途径.应用生态学报,2005,16(5):977-981
    27.胡道生,宗跃光,许文雯.城市新区景观生态安全格局构建—基于生态网络分析的研究.城市发展研究,2011,18(6):37-43
    28.胡鸿兴,康洪莉,贡国鸿,朱觅辉,郑文勤,吴法清,何定富,李振文,耿栋.湖北省湿地冬季水鸟多样性研究.长江流域资源与环境,2005,14(4):422-428
    29.黄沈发,吴建强,唐浩,吴健,王敏.滨岸缓冲带对面源污染物的净化效果研究.水科学进展,2008,19(5):722-727
    30.黄艺,陈晖,黄志基,蔡满堂,康俊水.利用廊道网络构建城市绿地生态系统—以东营市西城区为例.应用生态学报,2006,17(9):1683-1687
    31.蒋嘉麟,徐实.武汉市志—总志类.武汉:武汉大学出版社,1998
    32.解伏菊,肖笃宁,李秀珍.基于景观生态学的城市开放空间的格局优化.重庆建筑大学学报,2006,28(6):5-9
    33.黎德武.武汉地区夏季鸟类的区系和生态分布.华中师范大学学报(自然科学版).1979,13:70-83
    34.黎晓亚,马克明,傅伯杰等,牛树奎.区域生态安全格局:设计原则与方法.生态学报,2004,24(5):1055-1062
    35.李才嫒,彭春华,赵勤炳,谢萍,谌伟.武汉市2003年盛夏异常高温特征分析.华中师范大学学报(自然科学版),2004,38(3):379-382
    36.李存华,孙志挥,陈耿,胡云.核密度估计及其在聚类算法构造中的应用.计 算机研究与发展,2004,41(10):1712-1719
    37.李娟娟.上海城市景观格局演变及其生态安全影响研究.[博士学位论文].上海:复旦大学图书馆,2007
    38.李团胜,王萍.绿道及其生态意义.生态学杂志,2001,20(6):59-61
    39.李伟,俞孔坚,李迪华.遗产廊道与大运河整体保护的理论框架.城市问题,2004,1:28-31
    40.李卫锋,王仰麟,彭建,李贵才.深圳市景观格局演变及其驱动因素分析.应用生态学报,2004,15(8):1403-1410
    41.李晓文,胡远满,肖笃宁.景观生态学与生物多样性保护.生态学报,1999,19(3):399-407
    42.李秀珍,布仁仓,常禹,胡远满,问青春,王绪高,徐崇刚,李月辉,贺红士.景观格局指标对不同景观格局的反应.生态学报,2004,24(1):123-134
    43.李月辉,胡志斌,高琼,肖笃宁,胡远满,穆阳,关竹心,张小云.沈阳市城市空间扩展的生态安全格局.生态学杂志,2007,26(6):875-881
    44.李宗尧,杨桂山,董雅文.经济快速发展地区生态安全格局的构建—以安徽沿江地区为例.自然资源学报,2007,22(1):106-111
    45.梁益同,陈正洪,夏智宏.基于RS和GIS的武汉城市热岛效应年代演变及其机理分析.长江流域资源与环境,2010,19(8):914-918
    46.刘凤梅,曾敏,张志,黄长生.基于Landsat 7的武汉市热岛效应研究.中国环境监测,2010,26(5):51-54
    47.刘刚,邵军,林辉,孙华.武汉市湿地景观动态变化研究.中南林业科技大学学报,2010(30):32-36
    48.刘红玉,李兆富,白云芳.挠力河流域东方白鹳生境质量变化景观模拟.生态学报,2006,26(12):4007-4013
    49.刘吉平,吕宪国,刘庆凤,高俊琴.别拉洪河流域湿地鸟类丰富度的空间自相关分析.生态学报,2010,30(10):2647-2655
    50.刘小平,黎夏,彭晓鹃.生态位元胞自动机在土地可持续规划模型中的应用.生态学报,2007,27(6):2391-2402
    51.刘艳芳,明冬萍,杨建宇.基于生态绿当量的土地利用结构优化.武汉大学学报(信息科学版),2002,27(5):493-498
    52.马克明,傅伯杰,黎晓亚.区域生态安全格局:概念与理论基础.生态学报,2004,24(4):761-768
    53.马勇刚,塔西甫拉提·特依拜,黄粤,杨金龙.城市景观格局变化对城市热岛效应的影响—以乌鲁木齐市为例.干旱区研究,2006,23(1):172-176
    54.孟亚凡.绿色通道及其规划原则.中国园林,2004(5):14-18
    55.米金套.澳门城市景观格局变化与热岛效应研究.[博士学位论文].北京:北京林业大学图书馆,2009
    56.欧阳志云,李伟峰,Juargen Paulusze.大城市绿化控制带的结构与生态功能.城市规划,2004(4):41-45
    57.彭少麟,周凯,叶有华,粟娟.城市热岛效应研究进展.生态环境,2005,1(4):574-579
    58.戚仁海.生境破碎化对城市化地区生物多样性影口响的研究—以苏州为例.[博士学位论文].上海:华东师范大学图书馆,2008
    59.曲格平.关注生态安全之一:生态环境问题已经成为国家安全的热门话题.环境保护,2002:3-5
    60.荣冰凌,孙宇飞,邓红兵等.流域水环境管理保护线与控制线及其规划方法.生态学报,2009,29(2):924-930
    61.申绍杰.城市热岛问题与城市设计.中外建筑,2003,5:20-22
    62.史培军,江源,王静爱.土地利用/覆盖变化与生态安全响应机制.北京:科学出版社,2004
    63.苏伟忠,杨英宝,杨桂山.南京市热场分布特征及其与土地利用/覆被关系研究.地理科学,2005,25(6):697-703
    64.覃志豪,Zhang Minghua, Arnon Karniei, Pedro Berliner.用陆地卫星TM 6数据演算地表温度的单窗算法.地理学报,2001,56(4):456-466
    65.覃志豪,Li Wenjuan, Zhang Minghua, Arnon Karnieli, Pedro Berliner.单窗算法的大气参数估计方法.国土资源遥感,2003a,2:37-43
    66.覃志豪,李义娟,徐斌,张万昌.利用Landsat TM 6反演地表温度所需地表辐射率参数的估计方法.第十四届伞围遥感技术学术交流会,2003b
    67.覃志豪,李文娟,徐斌,陈仲新,刘佳.陆地卫星TM6波段范围内地表比辐射率的估计.国土资源遥感,2004,3:28-36
    68.汤洁,毛了龙,王晨野,徐小明,韩维峥.基于碳平衡的区域土地利用结构优化一以吉林省通榆县为例.资源科学,2009,31(1):130.135
    69.滕明君,周志翔,工鹏程,覃婕,王燕燕,史梅容.基于RS/GIS的武汉市九峰城市森林保护区景观结构特征及规划对策.长江流域资源与环境,2010,19(1):79-85
    70.滕明君,周志翔,工鹏程,徐永荣,吴昌广.景观中心度及其在生态网络规划与管理中的应用.应用生态学报,2010,21:863-872
    71.田丽,邓军,易兰,万红霞,刘家武.武汉桂予山地区冬季鸟类群落结构及多 样性研究.2007,26(1):157-160
    72.汪志如,单继红,李言阔,涂晓斌,贾道江,郝昕,宋玉赞,应钦,孙志勇,赵健.江西省中华秋沙鸭越冬种群现状调查与胁迫因素分析.四川动物,2010,29(4):597-600
    73.王棒,关文彬,吴建安,马克明,刘国华,汪西林.生物多样性保护的区域生态安全格局评价手段—GAP分析.水土保持研究,2006,13(1):192-196
    74.王建华,吕宪国.城市湿地概念和功能及中国城市湿地保护.生态学杂志,2007,26(4):555-560
    75.王良民,王彦辉.植被过滤带的研究和应用进展.应用生态学报,2008,19(9):2074-2080
    76.王敏,吴建强,黄沈发,吴健.不同坡度缓冲带径流污染净化效果及其最佳宽度.生态学报,200,28(10):4951-4956
    77.王青春,邓红兵,王庆礼.基于生物多样性保护的河岸带植被管理对策—以长白山二道白河为例.生态学杂志,2006,25(6):682-685
    78.王文杰,申文明,刘晓曼,张峰,潘英姿,罗海江.基于遥感的北京市城市化发展与城市热岛效应变化关系研究.环境科学研究,2006,19(2):44-48
    79.王学雷,蔡述明,曾艳红.湖北省湿地的保护与利用.长江流域资源与环境,2002,11(5):437-441
    80.王月健,徐海量,王成,凌红波,刘红玲,王绍明.过去30a玛纳斯河流域生态安全格局与农业生产力演变.生态学报,2011,31(9):2539-2549
    81.王云才.上海市城市景观生态网络连接度评价.地理研究,2009(28):284-292
    82.魏遐,白梅,鞠远江.基于景观评价的高速公路风景道旅游规划—以福宁高速风景道为例.旅游经济,2007,27(1):161-165
    83.邬建国.景观生态学—概念与理论.生态学杂志,2000,19:42-52
    84.吴必虎,李咪咪.小兴安岭风景道旅游景观评价.地理学报,2001,56(2):214-222
    85.吴国平,胡伟,腾恩江,魏复盛.我国四城市空气中PM2.5和PM10的污染水平.中国环境科学,1999,19(2):133-137
    86.吴吴.洞庭湖湿地生态系统特征与水禽生境适宜性评价研究.[硕士学位论文].长沙:湖南师范大学,2010
    87.吴后建,王学雷,宁龙梅,芦云峰.土地利用变化对生态系统服务价值的影响—以武汉市为例.长江流域资源与环境,2006,15(2):185-19
    88.吴建强,黄沈发,黄宇弛,王虹扬.污染负荷及植被生物量变化对缓冲带污染物净化效果的影响.环境工程学报,2008,2(10):1425-1429
    89.吴晓青,胡远满,贺红士,布仁仓,郗凤明.沈阳市城镇扩展时空格局及其驱 动力.应用生态学报,2007,18(10):2282-2288
    90.吴耀兴.长沙市城区热岛成因及绿地系统缓解热岛效应研究.[硕士学位论文].长沙:中南林业科技大学,2010
    91.吴振斌,陈德强,邱东茹,刘保元.武汉东湖水生植被现状调查及群落演替分析.重庆环境科学,2003,25(8):54-59
    92.武汉市环保局 .2010 年武汉市环境状况公报.http://www.whepb.gov.cn/publish/whhbj/2011-03/18/1201103181543280032.ht ml
    93.武汉市统计局.武汉统计年鉴—2010.北京:中国统计出版社,2010
    94.武剑锋,曾辉,刘雅琴.深圳地区景观生态连接度评估.生态学报,2008(28)1691-1701
    95.肖笃宁,陈文波,郭福良.论生态安全的基本概念和研究内容.应用生态学报,2002,13(3):354-358
    96.肖荣波,欧阳志云,李伟峰,张兆明,Tarver Jr Gregory,王效科,苗鸿.城市热岛的生态环境效应.生态学报,2005,25(8):2055-2059
    97.肖笃宁,解伏菊,魏建兵.景观价值与景观保护评价.地理科学,2006,26(4):506-512
    98.肖文军,徐春荣.城市湿地功能及研究进展.河北农业科学,2010,14(12):85-88
    99.肖治术,王玉山,张知彬,马勇.都江堰地区小型哺乳动物群落与生境类型关系的初步研究.生物多样性,2002,10(2):263-269
    100.谢苗苗,王仰麟,李贵才,常青,吴健生,曾祥坤.不同城市化阶段景观演变的热环境效应动态—以深圳西部地区为例.地理研究,2009,28(4):1085-1094
    101.许辉熙,但尚铭,何政伟.成都平原城市热岛效应的遥感分析.环境科学与技术,2007,30(8):21-23
    102.严安,万幼川,张晗.Landsat ETM+数据的武汉市地表温度反演研究.地理空间信息,2011,9(4):140-142.
    103.杨桂山,马荣华,张路,姜加虎,姚书春,张民,曾海鳌.中国湖泊现状及面临的重大问题与保护策略.湖泊科学,2010,22(6):799-810
    104.杨洪,陈红梅.武汉湖泊.武汉:武汉出版社,2003
    105.杨其仁,张铭,戴宗兴,张如松,何定富.湖北兽类物种多样性研究.华中师范大学学报(自然科学版),1998,32(3):352-358
    106.杨子生,工云鹏.基于水土流失防治的云南金沙江流域土地利用生态安全格局初探.山地学报,21(4):402-409
    107.叶飞,陈求稳,吴世勇.空间显式模型模拟河流岸边带植被在水库运行作用下 的演替.生态学报,2008,28(06):2604-2613
    108.叶智威.基于遥感的高层密集街区与热景观关系研究.[硕士学位论文].北京:首都师范大学,2009
    109.尹发能.略论武汉水资源水环境的保护.襄樊学院学报,2005,26(5):70-72
    110.余青,胡晓冉,刘志敏,宋悦.风景道的规划设计:以鄂尔多斯风景道为例.旅游学刊,2007,22(10):61-66
    111.俞孔坚.景观生态战略点方法与理论地理学的表面模型.地理学报,1998,53:12-20
    112.俞孔坚.生物保护的景观生态安全格局.生态学报,1999,19(1):8-15
    113.俞孔坚,李迪华,韩西丽.论“反规划”.城市规划,2005
    114.俞孔坚,李迪华,李伟.快速城市化地区遗产廊道适宜性分析方法探讨—以台州市为例.地理研究,2005,24(1):69-75
    115.俞孔坚,王思思,李迪华,李春波.北京市生态安全格局及城市增长预景.生态学报,2009,29(3):1189-1202
    116.张春玲,余华,宫鹏,居为民.武汉市地表亮温与植被覆盖关系定量分析.地理科学,2009,29(5):740-744
    117.张惠远,饶胜,迟妍妍,金陶陶.城市景观格局的大气环境效应研究进展.地球科学进展,2006(21):1025-1031
    118.张仁华.对于定量热红外遥感的一些思考.国土资源遥感,1999,1:1-6
    119.张仁华.一种从中红外和热红外数据中反演地表比辐射率的物理算法.中国科学(E辑),2000,30(增刊):18-26
    120.张穗.武汉市城区冬季热场分布与热岛效应的初步研究.[硕士学位论文].武汉:中国科学院测量与地球物理研究所,2003
    121.张穗,何报寅,杜耘.武汉市城区热岛效应的遥感研究.长江流域资源与环境,2003,12(5):445-449
    122.张霞,朱启疆,闵祥军.陆面温度反演算法—劈窗算法的敏感度分析.遥感学报,2004,1:8-12
    123.张小飞,王仰麟,李正国.基于景观功能网络概念的景观格局优化—以台湾地区乌溪流域典型区为例,生态学报,2005,25(7):1707-1713
    124.张小飞,王仰麟,吴健生,李卫锋,李正国.城市地域地表温度—植被覆盖定量关系分析—以深圳市为例.地理研究,2006,25(3):369-377
    125.张毅,邓宏兵.武汉市城市湖泊演化及开发利用初探.华中师范大学学报(自然科学版),2005,39(4):559-563
    126.赵俊华.城市热岛的遥感研究.城市环境与城市生态,1994,7(4):40-43
    127.赵振勇,王让会,孙洪波,张慧芝.塔里木河下游输水廊道植被恢复的生态学评价.科学通报,2006,51(2):31-35
    128.赵宗慈.近39年中国的气温变化与城市化影响.气象,1991,17(4):14-16
    129.郑兰芬,赵德刚,童庆禧,党顺行.航空热红外多光谱扫描仪(ATIMS)数据发射率信息分析和提取.红外与毫米波学报,1998,17(3):166-170
    130.郑小康,李春晖,黄国和,杨志峰.流域城市化对湿地生态系统的影响研究进展.湿地科学,2008,6(1):87-95
    131.郑忠明,李华,周志翔,徐永荣,滕明君.城市化背景下近30年武汉市湿地的景观变化.生态学杂志,2009,28(8):1619-1623
    132.周菁,李迪华,张蕾.菏泽市游憩网络的构建—探索整合各类游憩资源的城市绿地系统规划途径.中国园林,2006,8:51-55
    133.周年兴,俞孔坚,黄震方.绿道及其研究进展.生态学报,2006,26(9):3108-3116
    134.朱强,刘海龙.绿色通道规划研究进展评述.城市问题,2006(5):11-16
    135.朱强,俞孔坚,李迪华.景观规划中的生态廊道宽度.生态学报,2005,25(9):2406-2412
    136. Adriaensen F, Chardon JP, Blust GD, Swinnen E, Villalba S, Gulinck H, Matthysen E. The application of'least-cost'modelling as a functional landscape model.Landscape and Urban Planning,2003,64(4):233-247
    137. Ahern J. Greenways as a planning strategy. Landscape and Urban Planning,1995,33 (1-3):131-155
    138. Akbari H, Pomeranrz M, Taha H. Cool Surfaces and shade trees to reduce-energy use and improve air quality in urban areas. Solar Energy,2001,70(3):295-310
    139. Alberti M, Marzluff JM. Ecological resilience in urban ecosystems:linking urban patterns to human and ecological functions. Urban Ecosystems,2004,7:241-265
    140. Arnfield AJ. Two decades of urban climate research:a review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology,2003,23:1-26
    141. Ashie Y, Ca VT, Asaeda T. Building canopy model for the analysis of urban climate. Journal of Wind Engineering and Industrial Aerodynamics,1999,81(1-3):237-248
    142. Balling RCJ, Idso SB. Historical temperature trends in the United States and the effect of urban population growth. Journal of Geophysical Research,1989,94(D3): 3359-3363
    143. Baum KA, Haynes KJ, Dillemuth FP, Cronin JT. The matrix enhances the effectiveness of corridors and stepping stones. Ecology,2004,85:2671-2676
    144. Beaudry F, Maynadier PG, Hunter JML. Identifying road mortality threat at multiple spatial scales for semi-aquatic turtles. Biological Conservation,2008,141: 2550-2563
    145. Beazley K, Smandych L, Snaith T, MacKinnon F, Austen-Smith JP, Duinker P. Biodiversity considerations in conservation system planning:map-based approach for Nova Scotia, Canada. Ecological Applications,2005,15:2192-2208
    146. Beier P, Majka DR, Newell SL. Uncertainty analysis of'least-cost'modeling for designing wildlife linkages, Ecological Applications,2009,19(8):2067-2077
    147. Beier P, Spencer W, Baldwin RF, McRae BH. Toward Best Practices for Developing Regional Connectivity Maps. Conservation Biology,2011,25:879-892
    148. Bennett G. Integrating biodiversity conservation and sustainable use:lessons learned from ecological networks. Gland:IUCN-The World Conservation Union,2004
    149. Bierwagen BG. Connectivity in urbanizing landscapes:The importance of habitat configuration, urban area size, and dispersal. Urban Ecosystems,2007,10(1):29-42
    150. Blair RB. Land use and avian species diversity along an urban gradient, Ecological Applications,1996,6(2):506-519.
    151. Boitani L, Falcucci A, Maiorano L, Rondinini C. Ecological networks as conceptual frameworks or operational tools in conservation. Conservation Biology,2007,21(6): 1414-1422
    152. Bolger DT, Scott TA, Rotenberry J T. Use of corridor-like landscape structures by bird and small mammal species. Biological Conservation,2001,102(2):213-224
    153. Booth DB, Jackson CR. Urbanization of aquatic systems:Degradation thresholds, stormwater detection, and the limits of mitigation. Journal of the American Water Resources Association,1997,33(5):1077-1090
    154. Botequilha LA, Ahern J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning,2002,59:65-93
    155. Bougeret JL, Goetz K, Kaiser ML, Bale SD, Kellogg PJ. WAVES:The radioand plasma wave investigation on the wind spacecraft. Space Science Reviews,1995, 71(1-4):231-263
    156. Breuste J, Niemela J, Snep RPH. Applying landscape ecological principles in urban environments. Landscape Ecology,2008,23:1139-1142
    157. Bruner AG, Gullison RE, Balmford A. Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. BioScience,2004,54: 1119-1126
    158. Bryant MM. Urban landscape conservation and the role of ecological greenways at local and metropolitan scales. Landscape and Urban Planning,2006,76(1-4):23-44
    159. Ca VT, Takashi A, Eusuf MA. Reductions in air conditioning energy caused by a nearby park. Energy and Buildings,1998,29(1):83-92
    160. Cabeza M, Moilanen A. Design of reserve networks and the persistence of biodiversity. Trends in Ecology & Evolution,2001,16:242-248
    161. Carroll C, Dunk JR, Moilanen A. Optimizing resiliency of reserve networks to climate change:multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology,2010,16:891-904
    162. Chetkiewicz CLB, Clair CCS, Boyce MS. Corridors for Conservation:Integrating Pattern and Process. Annual Review of Ecology, Evolution, and Systematics,2006, 37:317-342
    163. Chetkiewicz CLB, Boyce MS. Use of resource selection functions to identify conservation corridors. Journal of Applied Ecology,2009,46:1036-1047
    164. Clay GR, Smidt RK. Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landscape and Urban Planning,2004,66(4): 239-255
    165. Collinge SK. Effects of grassland fragmentation on insect species loss, colonization, and movement patterns.Ecology,2000,81(8):2211-2226
    166. Conine A, Xiang WN, Young J, Whitley D. Planning for multi-purpose greenways in Concord, North Carolina. Landscape and Urban planning,2004,68:271-287
    167. Cook EA. Landscape structure indices for assessing urban ecological networks, Landscape and Urban Planning,2002,58(2-4):269-280
    168. Cushman SA, Mckelvey KS, Schwartz MK. Use of empirically derived source-destination models to map regional conservation corridors. Conservation Biology,2009,23(2):368-376
    169. Dale MRT, Fortin MJ. From graphs to spatial graphs. Annual Review of Ecology, Evolution, and Systematics,2010,41:21-38
    170. Damschen El, Haddad NM, Orrock JL, Tewksbury JJ, Levey DJ. Corridors increase plant species richness at large scales. Science,2006,313(5791):1284-1286
    171. Dan SM, Dan B. Analysis of the Effects of Urban Heat Island by Satellite Remote Sensing. The 22th Asian Conference on Remote Sensing, SingaPore,2001
    172. Davies Z, Pullin A. Are hedgerows effective corridors between fragments of woodland habitat? An evidence-based approach. Landscape Ecology,2007,22(3): 333-351
    173. Dawson KJ. A comprehensive conservation strategy for Georgia's greenways. Landscape and Urban Planning,1995,33:27-43
    174. Deng JS, Wang K, Hong Y, Qi JG. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning,2009,92(3-4):187-198
    175. Didier KA, Glennon MJ, Novaro A, Sanderson EW, Strindberg S, Walker S, Martino SD. The Landscape Species Approach:spatially-explicit conservation planning applied in the Adirondacks, USA, and San Guillermo-Laguna Brava, Argentina, landscapes. Oryx,2009.43:476-487
    176. Drielsma M, Ferrier S, Manion G A raster-based technique for analysing habitat configuration:The cost-benefit approach. Ecological Modelling,2007,202:324-332
    177. Driezen K, Adriaensen F, Rondinini C. Evaluating least-cost model predictions with empirical dispersal data:A case-study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling,2007,209(2-4):314-322
    178. Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS. Optimizing dispersal and corridor models using landscape genetics. Journal of Applied Ecology,2007, 44(4):714-724
    179. Esbah H, Deniz B, Kara B, Kesgin. Analyzing landscape changes in the BafaLake Nature Park of Turkey using remote sensing and landscape structure metrics. Environmental Monitoring and Assessment,2010,165:617-632
    180. Fabos JG. Introduction and overview:the greenway movement, uses and potentials of greenways. Landscape and Urban Planning,1995,33(1-3):1-13
    181. Fabos JG. Greenway planning in the United States:its origins and recent case studies. Landscape and Urban Planning,2004,68(2-3):321-342
    182. Fabos JG, Ryan RL. An introduction to greenway planning around the world. Landscape and Urban Planning,2006,76(1-4):1-6
    183. Fahrig L. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics,2003,34:487-515
    184. Falcy MR, Estades CF. Effectiveness of corridors relative to enlargement of habitat patches. Conservation Biology,2007,21:1341-1346
    185. Fall A, Fortin MJ, Manseau M, O'Brien D. Spatial graphs:Principles and applications for habitat connectivity. Ecosystems,2007,10(13):448-461
    186. Farina A. Principles and methods in landscape ecology:toward a science of landscape. The Netherland:Kluwer Academic Press,2006
    187. Ficetola GF, Sacchi R, Scali S, Gentilli A, Bernardi DF, Galeotti P. Vertebrates respond differently to human disturbance:implications for the use of a focal species approach. Acta Oecologica,2007,31(1):109-118
    188. Fieberg J. Kernel density estimators of home range:smoothing and the autocorrelation red herring, Ecology,2007,88(4):1059-1066
    189. Flink CA, Olka K, Seams RM. Trails for the twenty-first century:planning, design, and management manual for multi-use trails. Washington DC:Island Press,2001
    190. Forman RTT, Gordon M. Landscape ecology. New York:John Wiley & Sons,1986
    191. Forman RTT. Land mosaics:the ecology of landscapes and regions. New York Cambridge University Press,1997
    192. Forman RTT. The urban region:natural systems in our place, our nourishment, our home range, our future. Landscape Ecology,2008,23:251-253
    193. Freeman LC. Centrality in social networks:Conceptual clarification. Social Networks,1978-1979,1(3):215-239
    194. Fu BJ, Lii YH, Chen LD. Expanding the bridging capability of landscape ecology. Landscape Ecology,2008,23:375-376
    195. Gillies CS, Beyer HL, Clair SCC. Fine-scale movement decisions of tropical forest birds in a fragmented landscape. Ecological Applications,2011,21:944-954
    196. Gillies CS, Clair SCC. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest. Proceedings of the National Academy of Sciences, 2008,105(50):19774-19779
    197. Giordano LC, Riedel PS. Multi-criteria spatial decision analysis for demarcation of greenway:A case study of the city of Rio Claro, Sao Paulo, Brazil. Landscape and Urban Planning,2008,84(3-4):301-311
    198. Girvetz EH, Greco SE. How to define a patch:a spatial model for hierarchically delineating organism-specific habitat patches. Landscape Ecology,2007a,22(8): 1131-1142
    199. Girvetz EH, Jaeger AG, Thorne JH. Comment on'Roadless space of the conterminous United States'. Science,2007b,318:12-40
    200. Gobster PH, Westphal LM. The human dimensions of urban greenways:planning for recreation and related experiences. Landscape and Urban Planning,2004,68(2-3): 147-165
    201. Gong JZ, Liu YS, Xia BC, Zhao GW. Urban ecological security assessment and forecasting, based on a cellular automata model:A case study of Guangzhou, China. Ecological Modeling,2009,220(24):3612-362
    202. Goodwin BJ. Is landscape connectivity a dependent or independent variable? Landscape Ecology,2003,18:687-699
    203. Graves TA, Farley S, Goldstein MI, Servheen C. Identification of functional corridors with movement characteristics of brown bears on the Kenai Peninsula, Alaska. Landscape Ecology,2007,22(5):765-772
    204. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu JG, Bai XM. Briggs J M. Global Change and the Ecology of Cities. Science,2008a,319:756-760
    205. Grimm NB, Foster D, Groffman P, Grove JM, Hopkinson CS, Nadelhoffer KJ, Pataki DE, Peters DPC. The changing landscape:ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment,2008b,6:264-272
    206. Groves CR, Jensen DB, Valutis LL, Redford KH, Shaffer ML, Scott JM, Baumgartner JV, Higgins JV, Beck MW, Anderson MG. Planning for biodiversity conservation:putting conservation science into practice. Bioscience,2002,52(6): 499-512
    207. Gurrutxaga M, Lozano PJ, Barrio G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation,2010,18:318-326
    208. Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing,1998,19(8):1533-1544
    209. Haber W. Landscape ecology as a bridge from ecosystems to human ecology. Ecological Research,2004,19:99-106
    210. Haddad NM, Baum KA. An experimental test of corridor effects on butterfly densities. Ecological Applications,1999,9(2):623-633
    211. Haddad NM, Bowne DR, Cunningham A. Danielson BJ, Levey DJ, Sargent S, and Spira T. Corridor use by diverse taxa. Ecology,2003,84 (3):609-615
    212. Haddad NM, Tewksbury JJ. Low-quality habitat corridors as movement conduits for two butterfly species. Ecological Applications,2005,15(1):250-257
    213. Hellmund PC, Smith DS. Designing greenways:sustainable landscapes for nature and people. Washington DC:Island Press,2006
    214. Hess GR, Fischer RA. Communicating clearly about conservation corridors. Landscape and Urban Planning,2001,55(3):195-208
    215. Hobbs RJ. The role of corridors in conservation:solution or bandwagon? Trends in Ecology and Evolution,1992,7:389-392
    216. Hoctor TS, Carr MH, Zwick PD. Identifying a linked reserve system using a regional landscape approach:the Florida Ecological Network. Conservation Biology,2000, 14(4):984-1000
    217. Hoffmeister TS, Vet LEM, Biere A, Holsinger K, Filser J. Ecological and evolutionary consequences of biological invasion and habitat fragmentation. Ecosystems,2005,8(6):657-667
    218. Horskins K, Mather P, Wilson J. Corridors and connectivity:when use and function do not equate. Landscape Ecology,2006,21:641-655
    219. Howard L. Climate of London Deduced from Metrological Observations. London: Harvey and Dorton Press,1833
    220. Hu YQ, Su CX, Zhang YF. Research on the microclimate characteristics and cold island effect over a reservoir in the Hexi region. Advances in Atmospheric Sciences, 1988,5(1):117-126
    221. Huang L, Zhao D, Wang J, Zhu J, Li J. Scale impacts of land cover and vegetation corridors on urban thermal behavior in Nanjing, China. Theoretical and Applied Climatology,2008,94(3-4):241-257
    222. Humphries HC, Bourgeron PS, Reynolds KM. Suitability for conservation as a criterion in regional conservation network selection. Biodiversity and Conservation, 2008,17:467-492
    223. Ichinose T, Shimodozono K, Hanaki K. Impact of anthropogenic heat on urban climate in Tokyo.Atmospheric Environment,1999,33(24-25):3897-3909.
    224. IUCN. Red List of Threatened Species. IUCN,2011
    225. Jaeger JAG. Landscape division, splitting index, and effective mesh size: newmeasures of landscape fragmentation. Landscape Ecology,2000,15(2):115-130
    226. Janin A, Lena-P, Ray N, Delacourt C, Allemand P, Joly P. Assessing landscape connectivity with calibrated cost-distance modelling:predicting common toad distribution in a context of spreading agriculture. Journal of Applied Ecology,2009, 46:833-841
    227. Jenks GF, Caspall FC. Error on choroplethic maps:definition, measurement, reduction. Annals of the Association of American Geographers,1971,61(2):217-244
    228. Jones PD, Groisman PY, Coughlan M, Plummer N, Wang WC, Karl TR. Assessment of urbanization effects in time series of surface air temperature over land. Nature, 1990,347:169-172
    229. Jongman RHG, Kulvik M, Kristiansen I. European ecological networks and greenways. Landscape and Urban Planning,2004,68(2-3):305-319
    230. Jongman RHG Ecological Networks, from Concept to Implementation. Landscape Ecological Applications in Man-Influenced Areas. Berlin:Springer Netherlands, 2007,57-69
    231. Jonsen ID, Taylor PD. Fine-scale movement behaviors of calopterygid damselfiies are influenced by landscape structure:an experimental manipulation. Oikos,2000, 88:553-562
    232. Jordan F, Liu W, Davis AJ. Topological keystone species:measures of positional importance in food webs. Oikos,2006,122(3):535-546
    233. Kalnay E, Cai M. Impact of urbanization and land-use change on climate. microscope,1991,352:600-603
    234. Karl TR, Diaz HF, Kukla G. Urbanization:it s detection and effect in the United States climate record. Climate,1988,1:1099-1123
    235. Kautz R, Kawula R, Hoctor T, Comiskeyc J, Jansend D, Jenningse D, Kasbohmf J, Mazzott F. How much is enough? Landscape-scale conservation for the Florida panther. Biological Conservation,2006,130:118-133
    236. Kazimierz K, Krzysztof F. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmospheric Environment,1999,33(24-25):3885-3895
    237. Keitt TH, Urban DL, Milne BT. Detecting critical scales in fragmented landscapes. Conservation Ecology,1997,1(1):4.
    238. Kelley WJ. National Scenic Byways:Diversity Contributes to Success. Transportation Research Record,2004,1880:174-180
    239. Kim HH. Urban heat island. International Journal of Remote Sensing,1992,13(12): 2319-2336
    240. Kohut SM, Hess G, Moorman CE. Avian use of suburban greenways as stopover habitat, Urban Ecosystems,2009,12(4):487-502
    241. Kong F, Yin H, Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space:A case study in Jinan City, China. Landscape and Urban Planning,2007,79(3-4):240-252
    242. Kong F, Yin H, Nakagoshi N, Zong Y. Urban green space network development for biodiversity conservation:Identification based on graph theory and gravity modeling, Landscape and Urban Planning,2010,95(1-2):16-27
    243. Kramer-Schadt S, Kaiser TS, Frank K, Wiegand T. Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landscape Ecology,2011,26:501-513
    244. Kristan WB Ⅲ. The role of habitat selection behavior in population dynamics: source sink systems and ecological traps. Oikos,2003,103:457-468
    245. Labed J, Stoll MP. Spatial variability of land surface emissivity in the thermal infrared band:Spectral signature and effective surface temperature. Remote Sensing of Environment,1991,38(1):1-17
    246. Landsberg HE. The Urban Climate. Maryland:Academic Press,1981
    247. Lees AC, Peres CA. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conservation Biology,2008, 22(2):439-449
    248. Leitao AB, Ahern J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning,2002,59:65-93
    249. Levey DJ, Bolker BM, Tewksbury JJ, Sargent S, Haddad NM. Effects of Landscape corridors on seed dispersal by birds. Science,2005,309(5731):146-148
    250. Lewis PH. Quality Corridors in Wisconsin. Landscape Architecture Quarterly,1964, 20:101-108
    251. Li H, Wu J. Use and misuse of landscape indices. Landscape Ecology,2004,19: 389-399
    252. Li H, Li D, Li T, Qiao Q, Yang J, Zhang H. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake-Case study of Wolong Nature Reserve in China. Ecological Modelling, 2010,221(6):944-952
    253. Li T, Shilling F, Thorne J, LF, Schott H, Boynton R, Berry AM. Fragmentation of China's landscape by roads and urban areas. Landscape Ecology,2010,25:839-853
    254. Ligtenberg A, Bregt, AK, Van Lammeren R. Multi-actor-based land use modelling: spatial planning using agents. Landscape and Urban Planning,2001,56:21-33
    255. Linehan J, Gross M, Finn J. Greenway planning:developing a landscape ecological network approach. Landscape and Urban Planning,1995,33(1-3):179-193
    256. Little CE. Greenways for America. Baltimore:Johns Hopkins University Press,1990
    257. Lorion CM, Kennedy BP. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications,2009, 19(2):468-479
    258. Luck, M A, Jenerette, GD, Wu J, Grimm, NB. The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems,2001,4:782-796
    259. Luo N, Qian F. Multi-objective evolutionary of Distribution Algorithm using kernel density estimation model. Intelligent Control and Automation (WCICA),2010 8th World Congress on,2010, (7-9):2843-2848
    260. Ma M. Multi-scale responses of plant species diversity in semi-natural buffer strips to agricultural landscapes. Applied Vegetation Science,2008,11(2):269-278
    261.Manel S, Schwartz MK, Luikart G, Taberlet P, Landscape genetics:combining landscape ecology and population genetics. Trends in Ecology & Evolution,2003, 18:189-197
    262. Margules CR, Pressey RL. Systematic conservation planning. Nature,2000,405: 243-253
    263. Mason J, Moorman C, Hess G, Sinclair K. Designing suburban greenways toprovide habitat for forest-breeding birds, Landscape and Urban Planning,2007,80(1-2): 153-164.
    264. Matsuoka R, Kaplan R. People needs in the urban landscape:Analysis of landscape and urban planning contributions. Landscape and Urban Planning,2008,84(1):7-19.
    265. Mayer PMR, Reynolds Jr SK, McCutchen MD, Canfield TJ. Meta-analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality,2007,36(4): 1172-1180.
    266. McCallum H, Dobson A. Disease, habitat fragmentation and conservation. Proceedings of the Royal Society,2002,269(1504):2041-2049
    267. McDonnell MJ, PickettS TA, Groffman P, Bohlen P, Pouyat RV, Zipperer C,Parmelee RW, Carreiro MM, Medley K. Ecosystem processes along an urban-to-rural gradient. Urban Ecology,2008:299-313
    268. McHarg IL, History AM. Design with nature. New York:American Museum of Natural History,1992
    269. Mcintirc EJB, Schultz CB, Crone EE. Designing a network for butterfly habitat restoration:where individuals, populations and landscapes interact. Jurnal of Aplied Eology,2007,44(4):725-736.
    270. Mcrae BH, Dickson BG, Keitt TH, Shah VB. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology,2008,89(10): 2712-2724.
    271. Meier K, Kuusemets V, Luig J, Mander U. Riparian buffer zones as elements of ecological networks:Case study on Parnassius mnemosyne distribution in Estonia, Ecoleng,2005,24(5):531-537
    272. Miller W, Collins MG, Steiner FR, Cook E. An approach for greenway suitability analysis, Landscape and Urban Planning,1998,42(2-4):91-105
    273. Minor ES, Urban DL. A graph-theory frarmework for evaluating landscape connectivity and conservation planning. Cnservation Bology,2008,22(2):297-307
    274. Mitsovaa D, Shusterb W, Wangc XH. A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and Urban Planning,2011,99(2):141-153
    275. Mittermeier RA, Myers N, Thomsen JB, Da Fonseca GAB, Olivieri S. Biodiversity hotspots and major tropical wilderness areas:approaches to setting conservation priorities. Conservation Biology,1998,12:516-520
    276. Mnaley G On the frequency of snowfall in metropolitan England. Quarterly Journal of the Royal Meteorological Society,1958,84:70-72
    277. Moilanen A, Franco A, Early RI, Fox R, Wintle B, Thomas CD. Prioritizing multiple-use landscapes for conservation:methods for large multi-species planning problems. Proceedings of the Royal Society,2005,272(1575):1885-1891
    278. Myers N. Threatened Biotas Hot Spots in Tropical Forests.The Environmentalist, 1988,8(3):198-208
    279. Myers, N, Mittermeier, RA, Mittermeier, CG, Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature,2000,403(6772):853-858
    280. Myers N. Conservation of Biodiversity:How Are We Doing? The Environmentalist, 2003,23:9-15
    281. Nagendra H, Southworth J, Tucker C. Accessibility as a determinant of landscape transformation in western Honduras:linking pattern and process, Landscape Ecology, 2003,18(2):141-158
    282. Narumi D, Kondo A, Shimoda Y. Effects of anthropogenic heat release uponthe urban climate in a Japanese megacity, Environmental Research,2009,109(4): 421-431
    283. Newman MEJ. A measure of betweenness centrality based on random walks. Social Networks,2005,27(1):39-54
    284. Ng E, Wong NH, Han MQ Parametric studies of Urban Design Morphologies and their implied environmental performance, in Bay, JH, and BL Ong (ed.), Tropical Sustainable Architecture:Social and Environmental Dimensions, UK, London: Architectural Press, an imprint of Elsevier,2006:151-180
    285. Nikolakaki P, Dunnett N. The use of spatial concepts as a basis for designing a viable-habitat network:Conserving redstart (Phoenicurus) populations in Sherwood Forest, England, Journal for Nature Conservation,2005,13(1):31-48
    286. Noss RF. A checklist for wildlands network designs. Conservation Biology,2003,17: 1270-1275
    287. Ohman K, Edenius L, Mikusinski G. Optimizing spatial habitat suitability and timber revenue in long-term forest planning. Canadian Journal of Forest Research,2011,41: 543-551
    288. Oke TR. City size and the urban heat island. Atmospheric Environment,1973,7(8): 769-779
    289. Oke TR. Street design and urban canopy layer climate. Energy and Buildings,1988, 11(1-3):103-113
    290. Olson DM, Dinerstein E. The Global 200:Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden,2002,89(2):199-224
    291. O'Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW. Indices of landscape pattern. Landscape Ecology,1988,1(3):153-162
    292. O'Neill RV, Riitters K, Wickham J, Jones KB. Landscape pattern metrics and regional assessment. Ecosystem Health,1999,5:225-233
    293. Opdam P, Foppen R, Vos, C. Bridging the gap between ecology and spatial planning in landscape ecology. Landscape Ecology,2001,16:767-779
    294. Opdam P, Verboom J, Pouwels R. Landscape cohesion:an index for theconservation potential of landscapes for biodiversity. Landscape Ecology,2003,18:113-126
    295. Opdam P, Steingrover E, Rooij S. Ecological networks:a spatial concept for multi-actor planning of sustainable landscapes. Landscape and Urban Planning,2006, 75(3-4):322-332
    296. Opdam P. Landscape services as a bridge between landscape ecology and sustainable development. Landscape Ecology,2009,24:1037-1052
    297. Pascual-Hortal L, Saura S. Comparison and development of new graph-based landscape connectivity indices:towards the priorization of habitat patches and corridors for conservation. Landscape Ecology,2006,21(7):959-967
    298. Pena SB, Abreu MM, Teles R, Espirito-Santo MD. A methodology for creating greenways through multidisciplinary sustainable landscape planning. Journal of Environmental Management,2010,91(4):970-983.
    299. Perrow MR, Davy AJ. Handbook of ecological restoration. Volume 1:Principles of Restoration. New York:Cambridge University Press,2002
    300. Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA. Conservation planning in a changing world. Trends in Ecology & Evolution,2007,22:583-592
    301. Pullinger MG, Johnson CJ. Maintaining or restoring connectivity of modified landscapes:evaluating the least-cost path model with multiple sources of ecological information. Landscape Ecology,2010,25:1547-1560
    302. Qin Z, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing,2001,22(18):3719-3746
    303. Raffaella F, Barbara M, Giulia C. A landscape analysis of land cover changein the Municipality of Rome (Italy):Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landscape and Urban Planning,2011,100(1-2):117-128
    304. Rayfield B, Fortin MJ, Fall A. The sensitivity of least-cost habitat graphs to relative cost surface values. Landscape Ecology,2010,25(4):519-532
    305. Ren GY, Chu ZY, Chen ZH, Ren YY. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophysical Research Letters,2007,34:5
    306. Ribeiro L, Barao T. Greenways for recreation and maintenance of landscape quality: five case studies in Portugal. Landscape and Urban Planning,2006,76(1-4):79-97
    307. Riitters KH, O'Neill RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL. A factor analysis of landscape pattern and structure metrics. Landscape Ecology.1995,10(1):23-39
    308. Rizwan AM, Dennis LYC, Liu CH. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences,2008(10): 120-128
    309. Rodewald AD, Bakermans MH. What is the appropriate paradigm for riparian forest conservation? Biological Conservation,2006,128:193-200
    310. Rouget M, Cowling RM, Lombard AT, Knight AT, Kerley GIH. Designing Large-Scale Conservation Corridors for Pattern and Process, Conservation Biology, 2006,20(2):549-561
    311. Rozenfeld AF, Arnaud-Haond S, Hernandez-Garcia E, Eguiluzd VM, Serraob EA, Duarte CM,. Network analysis identifies weak and strong links in a metapopulation system. Proceedings of the National Academy of Sciences,2008,105(18):824-829
    312. Sanderson EW, Huron A. Conservation in the City. Conservation Biology,2011,25: 421-423
    313. Sandstrom UG, Angelstam P, Mikusinski G. Ecological diversity of birds in relation to the structure of urban green space. Landscape and Urban Planning,2006,77(1-2): 39-53
    314. Saraiva MG, Pinto P, Rabaca JE, Ramos A, Revez M. Protection, reclamation and improvement of small urban streams in Portugal. In:Harper, DM & Ferguson, JD (Eds.), The Ecological Basis for River Management,1995:275-287. John Wiley & Sons Ltd, London
    315. Sarkar S, Pressey RL, Faith DP, Margules CR, Fuller T, Stoms DM, Moffett A, Wilson KA, Williams KJ, Williams PH. Biodiversity conservation planning tools: present status and challenges for the future. Annual Review of Environment and Resources,2006,31:123-159
    316. Satellite Remote Sensing. The 22th Asian Coneference on Remote Sensing, Singapore,2001
    317. Saunders DA, Hobbs RJ, Margules CR. Biological consequences of ecosystem fragmentation:a review. Conservation Biology,1991,5:18-32
    318. Saura S, Pascual-Hortal L. A new habitat availability index to integrate connectivity in landscape conservation planning:Comparison with existing indices and application to a case study. Landscape and Urban Planning,2007,83(2-3):91-103
    319. Saura, S, Torne J. Conefor Sensinode 2.2:a software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modeling & Software,2009,24:135-139
    320. Saura S, Vogt P, Velazquez J, Hernando A, Tejera R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. Forest Ecology and Management,2011,262(2):150-160
    321. Sawyer SC, Epps CW, Brashares JS. Placing linkages among fragmented habitats:do least-cost models reflect how animals use landscapes. Journal of Applied Ecology, 2011,48:668-678
    322. Sawyer SC, Epps CW, Brashares JS. Placing linkages among fragmented habitats:do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 2011,48:668-678
    323. Schadt S, Revilla E, Wiegand T, Knauer F, Kaczensky P, Breitenmoser U, Bufka L, Cerveny J, Koubek P, Huber T, Stanisa C, Trepl L. Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology,2002,39:189-203
    324. Schmitt T, Dosskey M, Hoagland K. Filter strip performance and processes for different vegetation, widths, and contaminants. Journal of Environmental Quality, 1999,28(5):1479-1489
    325. Schoonover JE, Williard K.WJ, Zaczek JJ, Mangun J C, Carver AD. Agricultural sediment reduction by giant cane and forest riparian buffers. Water, Air,& Soil Pollution,2006,169(1-4):303-315
    326. Schott JR, Volchok WJ. Thematic Mapper thermal infrared calibration. Photogrammetric Engineering and Remote Sensing,1985,51:1351-1357
    327. Seams RM. The evolution of greenways as an adaptive urban landscape form. Landscape and Urban Planning,1995,33(1-3):65-80
    328. Simpson JR, McPherson EG. Potential of tree shade for reducing residential energy use in California. Journal of Arbori Culture,1996,22(1):23-31
    329. Sinclair KE, Hess GR, Moorman CE. Mammalian nest predators respond to greenway width, landscape context and habitat structure. Landscape and Urban Planning,2005,71(2-4):277-293
    330. Smith DS. An overview of greenways:their history, ecological context, and specific functions. In:Smith DS, Hellmund PC. ed. Ecology of greenways:design and function of linear conservation areas. Minneapolis, MN:University of Minnesota Press,1993
    331. Sobrino CM, Ramil-Rego P, Guitian MAR. Upland vegetation in the north-west Iberian peninsula after the last glaciation:forest history and deforestationdynamics. Veget Hist Archaeobot,1997,6:215-233
    332. Sobrino CM, Ramil-Rego P, Guitian MAR. Vegetation in the mountains of northwest Iberia during the last glacial-interglacial transition. Veget Hist Archaeobot,2001,1: 7-21
    333. Sobrino JA, Raissouni N,Li ZL. Comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment,2011,75(2):256-266
    334. Sospedra F, Caselles V, Valor E. Effective wave number for thermal infrared bands-application to Landsat-TM. International Journal of Remote Sensing,1998,19 (11):2105-2117
    335. Sovik AK, Syversen N. Retention of particles and nutrients in the root zone of a vegetative buffer zone-effect of vegetation and season. Boreal Environment Research,2008,13(3):223-230
    336. Stewart JB, Kustas WP, Humes KS, Nichols WD, Moran MS. Sensible heat flux-radiometric temperature relationship for eight semiarid areas. Journal of Applied Meteorology,1994,33:1110-1117
    337. Tanaka N. Vegetation bioshields for tsunami mitigation:review of effectiveness, limitations, construction, and sustainable management. Landscape and Ecological Engineering,2009,5:71-79
    338. Tang JM, Wang L, Yao ZJ. Analyses of urban landscape dynamics using multi-temporal satellite images:A comparison of two petroleum-oriented cities. Landscape and Urban Planning,2008,87(4):269-278
    339. Teng M, Wu C, Zhou Z, Lord, E, Zheng Z. Multipurpose greenway planning for changing cities:A framework integrating priorities and a least-cost path model. Landscape and Urban Planning,2011,103(1):1-14
    340. Termorshuizen JW, Opdam P. Landscape services as a bridge between landscape ecology and sustainable development, Landscape Ecol,2009,24(8):1037-1052
    341.Tian GJ, Yun OY, Quan Q, Wu JG. Simulating spatiotemporal dynamics of urbanization with multi-agent systems-A case study of the Phoenix metropolitan region, USA. Ecological Modelling,2011,222(5):1129-1138
    342. Tischendorf L, Fahrig L. On the usage and measurement of landscape connectivity. Oikos,2000,90:7-19
    343. Toccolini A, Fumagalli N, Senes G. Greenways planning in Italy:the LambroRiver Valley Greenways System, Landscape and Urban Planning,2006,76(1-4):98-111.
    344. Tong H, Walton A, Sang J, Chan JCL. Numerical simulation of the urban boundary layer over the complex terrain of Hong Kong. Atmospheric Environment,2005, 39(19):3549-3563
    345. Travis JMJ. Climate change and habitat destruction:a deadly anthropogenic cocktail. Proceedings of the Royal Society B:Biological Sciences,2003,270(1514):467-473
    346. Turner MJ. Spatial and temporal analysis of landscape patterns. Landscape Ecology, 1990,4(1):21-30
    347. Turner T. Greenway planning in Britain:recent work and future plans. Landscape and Urban Planning,2006,76(1-4):240-251
    348. Uezu A, Beyer D, Metzger J. Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodiversity and Conservation,2008,17: 1907-1922
    349. United Nations Population Division. World Urbanization Prospects:The 2009 Revision. New York:United Nations Press,2009
    350. Urban DL, Minor ES, Treml EA, Schick RS. Library Graph models of habitat mosaics. Ecology Letters,2009,12(3),260-273
    351. Uy P, Nakagoshi N. Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. Landscape and Ecological Engineering,2007,3:143-157
    352. Valente ROA, Vettorazzi CA. Definition of priority areas for forest conservation through the ordered weighted averaging method. Forest Ecology and Management, 2008,256:1408-1417
    353. Van D, Windt HJ, Swart JAA. Ecological corridors, connecting science and politics: the case of the Green River in the Netherlands. Journal of Applied Ecology,2008, 45(1):124-132
    354. Von HC, Reich M. The German way to greenways and habitat networks. Landscape and Urban Planning,2006,76(1-4):7-22
    355. Vos CC, Verboom J, Opdam PFM, Ter Braak CJF. Toward ecologically scaled landscape indices. American Naturalist,2001,157(1):24-41
    356. Walmsley A. Greenways and the making of urban form. Landscape and Urban Planning,1995,33(1-3):81-127
    357. Walmsley A. Greenways:multiplying and diversifying in the 21st century. Landscape and Urban Planning,2006,76(1-4):252-290
    358. Wang L, Wang WD, Gong ZG, Liu YL, Zhang JJ. Integrated management ofwater and ecology in the urban area of Laoshan district, Qingdao, China, Ecoleng,2006, 27(2):79-83
    359. Ward D, Phinn SR, Murray AT. Monitoring growth in rapidly urbanizing areas using remotely sensed data. Professional Geographer,2000,52(3):371-386
    360. Watts K, Eycott A, Handley P, Ray D, Humphrey J, Quine C. Targeting and evaluating biodiversity conservation action within fragmented landscapes:an approach based on generic focal species and least-cost networks. Landscape Ecology, 2010,25:1305-1318
    361. Weber C, Puissant A. Urbanization pressure and modeling of urban growth:example of the Tunis Metropolitan Area. Remote Sensing of Environment,2003,86:341-352
    362. Weng QH, Lu DS, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment,2004,89:467-483
    363. Williams JC, ReVelle CS, Levin SA. Using mathematical optimization models to design nature reserves. Frontiers in Ecology and the Environment,2004,2,98-105
    364. Wilson KA, McBride MF, Bode M, Possingham HP. Prioritizing global conservation efforts. Nature,2006,440(7082):337-340
    365. Worton BJ. Kernel methods for estimating the utilization distribution in home-range studies, Ecology,1989,70(1):164-168
    366. Wu J, David JL. A spatially explicit hierarchical approach to modeling complex ecological systems:theory and applications. Ecological Modelling,2002,153:7-26
    367. Wu J. Urban sustainability:an inevitable goal of landscape research. Landscape Ecology,2010,25:1-4
    368. Wukelic GE, Gibbons DE, Martucci LM, Foote HP. Radiometric calibration ofLandsat Thematic Mapper thermal band. Remote Sensing of Environment,1989, 28:339-347
    369. Xiang WN. Weighting-by-choosing:a weight elicitation method for map overlays, Landscape and Urban Planning,2001,56(1-2):61-73.
    370. Xiang WN, Stuber RMB, Meng X. Meeting critical challenges and striving for urban sustainability in China, Landscape and Urban Planning,2011,100(4):418-420
    371. Yu C, Hien WN. Thermal benefits of city parks. Energy and Buildings,2006,38(2): 105-120
    372. Yu K. Security patterns and surface model in landscape ecological planning. Landscape and Urban Planning,1996,36:1-17
    373. Yu K, Li D. Li N. The evolution of greenways in China, Landscape and Urban Planning,2006,76:223-239
    374. Zetterberg A, Mortberg UM, Balfors B. Making graph theory operational for landscape ecological assessments, planning, and design. Landscape and Urban Planing,2010,95(4):181-191
    375. Zhang L, Wang H. Planning an ecological network of Xiamen Island (China) using landscape metrics and network analysis. Landscape and Urban Planning,2006,78: 449-456
    376. Zhang L, Wang Y, Zhou Y, Newman C, Newman C, Kaneko Y, Macdonald D W, Jiang P, Ding P. Ranging and activity patterns of the group-living ferret badger Melogale moschata in Central China, Journal of mammalogy,2010,91(1):101-108
    377. Zhang X, Yang HQ, Chen ZH. A symmetrical features of intensity change of urban heat island effect in Wuhan. Torrential Rain Disaster,2000,1:75-81
    378. Zhao W, Hu G, Zhang Z, He Z. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region:A case study in the Hexi Corridor, northwest China. Ecological Engineering,2008,33(2): 119-125
    379. Zimmerer KS, Galt RE, Buck MV. Global conservation and multi-spatial trends in the coverage of protected-area conservation (1980-2000). AMBIO,2004,33: 520-529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700