喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喜马拉雅东构造结(简称东构造结)周围地区是青藏高原构造应力作用和构造变形最强的地区,也是地球上变化剧烈、构造类型复杂、保存完整的地区。该地区汇集了喜马拉雅、拉萨、羌塘、川滇地块和印度板块及主边界断裂、主中央断裂、雅鲁藏布江断裂、嘉黎断裂、怒江断裂、墨脱断裂、阿帕龙断裂等,可以说东构造周围地区是检验青藏高原晚新生代构造变形机制不同理论和学说的关键地区之一。由于本区是主要由海拔4000m以上高山和雅鲁藏布江、怒江、澜沧江和金沙江等构成的高山峡谷地貌,工作环境恶劣,而且地质构造复杂等多种原因,在短时间内很难利用单一手段确定其构造变形的运动场和对不同构造部位、不同性质、不同活动方式的断裂现今运动进行定量研究。因此,本文主要采用了多种方法综合分析来研究东构造结周边地区的构造变形和主要断裂的运动特征:通过野外地质调查获取研究区构造地块和边界断裂的几何特征和活动性质;通过高精度GPS观测技术的应用,在关键构造部位加密观测,获取研究区现今地壳变形速度场和主要断裂运动方式;通过地球物理探测资料的综合研究,分析地壳介质的物理参数和深部地质结构;通过大型数值模拟分析,探讨主要断裂的运动特征和区域构造变形的动力学机理。
     一、研究方法
     本文主要通过三种方法来研究本区的地壳变形速度场和主要断裂的运动方式:
     1.传统地质学研究
     野外实地调查是地质研究中不可缺少的方法,可以直接反映主要断裂带在历史时期的活动特征。通过对前人野外调查及GPS资料的分析,我们选择性地对雅鲁藏布江断裂、嘉黎断裂及怒江断裂的关键构造部位及前人研究工作存在分歧的地区进行了实地地质调查。在调查过程中,重点对各主要断裂晚第四纪以来运动的地质剖面进行了研究,获取了更多本区主要断裂晚第四纪以来运动特征的地质学证据。
     2.GPS观测与分析
     为了深入研究东构造结及其周边地区现今构造变形特征,作者系统分析了研究区内“中国地壳运动观测网络工程”GPS站点多年观测数据,并在原有GPS站点缺少的地区,与唐方头老师等一起新建了12个GPS观测点,现已进行了两期观测,获得了最新观测数据。本文采用跨断层GPS速度剖面和断层位错模型对不同构造部位主要断裂的运动特征进行研究。前者是将断层带两侧的GPS测点的速度矢量分解成垂直剖面的速度分量和平行剖面的速度分量,其中垂直剖面的速度分量反映断裂带的倾滑运动特征,平行剖面的速度分量则反映断裂带的走滑运动特征,断裂带两侧之间的差异运动代表其运动特征;后者是采用OKADA断层位错模型来对断层的运动速率及特征进行反演。
     3.有限元数值模拟
     有限元方法可以很好地对地质过程进行恢复再现和活动预测,基于三维有限元分析方法,以主要断裂为边界,通过已有的地质和地球物理资料对青藏高原不同区域岩石圈介质参数进行反演,建立东构造结地区的构造变形模型,以“中国地壳运动观测网络工程”和“中国大陆构造环境监测网络工程”最新GPS观测资料及国家自然科学基金资助的“喜马拉雅东构造结周边地区主要断裂现今运动的GPS观测研究”项目所布设的GPS观测点的最新观测数据作为边界约束位移和运动速率检验参考对象,对本区主要断裂的运动学特征进行模拟研究。
     二、研究内容及结果
     1.主要断裂的晚第四纪运动特征
     通过野外实地调查,发现雅鲁藏布江断裂自朗县以东段活动明显,多处出现断裂错断了晚第四纪地层。嘉黎断裂以东构造结为界分为了三段;西北段(那曲—通麦)右旋走滑运动明显,右旋走滑速率3.2~3.7mm/a;东构造结地区(通麦段)为右旋走滑运动,相对嘉黎断裂西北段来说弱些;嘉黎断裂的东南段(通麦—察隅)嘉黎断裂的运动性质发生了改变,在嘎龙寺附近的冰碛垄被嘉黎断裂左旋位错,走滑速率为3.8mm/a左右。怒江断裂在郭庆至田妥段,断层主要表现为挤压性质,显示晚第四纪以来活动不明显;东南段晚第四纪以来活动明显,多处可见断层错断了晚第四纪以来的地层。金沙江断裂西北段,地貌显示断裂影响了一系列冲沟水系的流向,造成冲沟水系左旋扭动,左旋运动明显;中段,没有发现错断晚第四纪堆积物和地貌面的地质剖面,显示晚第四纪以来活动不明显;南段显示金沙江断裂晚第四纪以来影响了冲沟水系的发育,造成冲沟水系的右旋扭动,多处出现晚第四纪地层被错断现象。
     2.GPS观测与分析
     通过跨过断层带的GPS剖面及位错模型研究,揭示了各断裂的活动性质和运动速率。
     雅鲁藏布江断裂右旋走滑特征明显,拉萨段右旋走滑速率2.4~3.9mm/a,挤压速率1.3~4.7mm/a左右,林芝段右旋挤压运动,其走滑速率为6.2~6.8mm/a,挤压速率为0.6~6.0mm/a左右。
     嘉黎断裂西北那曲附近地区表现为右旋挤压运动,走滑速率为4~5.8mm/a,挤压速率为4.6mm/a±;通麦附近表现为弱右旋挤压运动,走滑速率为1.3~2.0 mm/a,挤压速率为2.5mm/a±;东南察隅附近地区表现为左旋挤压运动,其走滑速率为3.7~4.0mm/a,挤压速率为6.2mm/a±。
     怒江断裂带在西北那曲附近地区,主要表现为挤压运动,挤压速率为1.2~2.0mm/a;中段主要表现为右旋走滑运动,走滑速率2.1mm/a;南段同样主要表现为右旋走滑运动,走滑速率3.2mm/a。走滑速率自北向南逐渐增大。
     金沙江断裂在青藏公路附近地区表现为左旋挤压运动,走滑速率3.0~4.0mm/a±,挤压速率3.5mm/a±;昌都、江达、白玉附近地区主要表现为右旋挤压运动,走滑速率3.4~4.3mm/a±,挤压速率1.8~2.9mm/a±;在巴塘、得荣附近地区主要表现为右旋挤压运动,走滑速率3.0~3.1mm/a±,挤压速率0.4~2.0mm/a±。
     3.有限元数值模拟结果
     通过数值模拟研究取得以下几点认识:
     1)东构造结北侧和东侧地块总体上围绕构造结发生顺时针旋转。右旋走滑的东南边界断裂不是嘉黎断裂,可能是阿帕龙断裂。
     2)嘉黎断裂不是整体右旋走滑断层,其西北段和东构造结顶端的通麦段为右旋挤压性质,东构造结以东的东南段运动性质发生了转变,由右旋走滑运动转变为左旋走滑运动;如果嘉黎断裂东南支与实皆断裂不相通,阿帕龙断裂与实皆断裂相连时,模拟结果与GPS观测值有更好的拟合效果,这一结果间接地证明嘉黎断裂与实皆断裂目前可能是不相连的,至少不是简单连通的;而阿帕龙断裂和实皆断裂可能是相连的。
     3)东构造结目前依然起着一定的作用,它与阿萨姆角共同影响着现今区域构造变形,许多断裂活动转换和重要构造事件都发生在它们之间或很近的区域。雅鲁藏布江断裂、怒江断裂、嘉黎断裂运动速率的变化、活动性质的转变和嘉黎断裂在阿萨姆角附近延伸终止,阿帕龙断裂活动强烈,并发生了1950年察隅8.6级地震,这些都可能与东构造结和阿萨姆角的共同作用有关。
     三、主要结论
     通过综合分析研究,主要取得如下几点初步认识:
     1.雅鲁藏布江断裂晚第四纪以来右旋走滑运动明显,自西向东活动性增强。拉萨段右旋走滑速率2.4~3.9mm/a,林芝段右旋走滑速率6.2~6.8mm/a。
     2.嘉黎断裂不是整体右旋走滑断层,其在不同的构造部位运动性质和速率具有分段差异特征,大致以东构造结为界分为三段,东构造结以西为嘉黎断裂西北段,东构造结顶端通麦段为嘉黎断裂中段,东构造结东南部分为嘉黎断裂的东南段,其西北段为右旋挤压运动,走滑速率3.2~5.8mm/a,中段弱右旋挤压运动,走滑速率1.3~2.0mm/a;东南段为左旋挤压运动,走滑速率3.7~4.0mm/a。
     3.怒江断裂在不同的构造部位其晚第四纪以来活动性是不同的。西北段以挤压运动为主;中段,地质结果表明晚第四纪以来活动不明显,GPS结果显示右旋走滑速率2mm/a;南段晚第四纪以来活动相对明显,在多处出现的断层剖面可见断层错断了晚第四纪以来的地层,右旋走滑速率2.3~3.2 mm/a。
     4.金沙江断裂在不同的构造部位其晚第四纪以来运动性质不同。西北段,断裂影响了一系列冲沟水系的流向,造成冲沟水系左旋扭动,左旋运动明显,左旋走滑速率3.0~4.0mm/a±;中段,地质结果显示晚第四纪以来活动不明显,GPS结果显示为右旋走滑,走滑速率3.4~4.3mm/a;南段断裂晚第四纪以来影响了冲沟水系的发育,造成冲沟水系的右旋扭动,右旋运动明显,速率3 mm/a。
     5.东构造结北侧和东侧地块总体上围绕构造结发生顺时针旋转,右旋走滑的东南边界断裂不是嘉黎断裂,而可能是阿帕龙断裂;
     6.数值模拟结果表明,嘉黎断裂与实皆断裂目前可能是不相连的,至少不是简单连通的;阿帕龙断裂和实皆断裂可能是相连的;
     7.东构造结目前依然起着一定的作用,它与阿萨姆角共同影响着现今区域构造变形,许多断裂活动转换和重要构造事件都发生在它们之间或很近的区域。
The area around the Eastern Himalayan Syntaxis(EHS) characterized by most intensive tectonic deformation, complicated tectonic types, and well-preserved geological traces. This area contains the Himalalyan, Lhasa, Qiangtang, and Sichuan-Yunnan block , involves the Indian Plate and the main boundary fault, the main central fault, the Yaluzangbu fault, Jiali fault, the Nu jiang fault, Motuo fault and Apalong fault. It can be thought that the area around the EHS is one of the key areas testing the different theories and doctrines about late Cenozoic deformation mechanisms of the Tibetan Plateau. As this area lies in mountains above 4000m with valley-mountain landscapes of Yaluzangbu jiang, Nu jiang, and Lancang jiang, bad working conditions and various reasons such as complicated geological structure, make it difficult to use a single way to determine the movement field of tectonic deformation and to conduct quantitative research of the faults with different natures and different ways of current movement on different structural parts in a short time. Therefore, this thesis uses a various of methods to make a comprehensive analysis of the tectonic deformation and the movement characteristics of main faults in the area around the EHS. They include collecting data of geometric and active features of tectonic blocks and boundary faults by field investigation, crustal deformation and the movement type of the main faults by high- accuracy of GPS observation technology with more observation sites in key tectonic parts, physical parameters and deep geological structure of crust by the comprehensive analysis of geophysical exploration data, discussing the movement features of main faults and the kinetic mechanism of tectonic deformation by large-scale numerical simulation analysis.
     Ⅰ、Research methods
     This work, uses three methods to study the crustal deformation velocity field and motion styles of the main faults movement:
     (ⅰ) Traditional geology
     Field survey is an indispensable way of geological research. It can directly observe the active features of main faults in the historical period. By analysis of previous field investigations and GPS data, several places are selected for field geological investigation, which are the Yaluzangbu fault, Jiali fault and Nu jiang fault and the area with different views in previous studies. During the investigation, the study was focused on the cross section of the main faults which are active since the late Quaternary, to obtain more geological evidence about the movement features of major faults in this area since the late Quaternary.
     (ⅱ) GPS observation and analysis
     In order to study the present tectonic deformation features of the EHS and the surrounding areas deeply, this work analyzed the long-term observation data of GPS sites for "China Crustal Movement Observation Network Project" in the study area systematically. In addition 12 new GPS observation points in the areas of lack GPS sites were built, to conduct two-period observations. In this thesis, GPS velocity profiles across the fault and the fault dislocation model were used for studying the movement characteristics of the main fault of the different structural sections. The former decomposed the velocity vector of GPS measured points on both sides of fault into the velocity components perpendicular to the profiles, which reflect the dip-slip motion of the fault and the velocity components parallel to profiles, which reflect the strike-slip movement of the fault. The difference between the both sides of the fault representes its motion characteristics. The latter used the OKADA dislocation model to retrieve movement rates and characteristics of the fault.
     (ⅲ) Finite element numerical simulation
     The finite element method can reconstruct the geological process and make activity prediction. Based on the three-dimensional finite element method, regarding main faults as boundaries, using the parameters of lithosphere in different areas of the Tibetan Plateau from geological and geophysical data, the tectonic deformation model for the EHS is established. Using the latest GPS observation data of“China Crustal Movement Observation Network”, and data of“China Continental Tectonic Environment Monitoring Network Project”and project“The main faults’current movement observation around Eastern Himalayan Syntaxis area”as the boundary constraints of displacement and the movement rates. This work has made a numerical modeling for the main faults’movement features.
     Ⅱ、Research contents and results
     (ⅰ) Movement characteristics of the main faults in Late Quaternary
     Through field investigation, it was found that the Yaluzangbu fault was active significantly from the eastern section of Long County, and that the fault has cut the late Quaternary strata in many places. The Jiali fault can be divided into three sections, and the EHS is its boundary. The northwest section (Naqu-Tongmai) displayed dextral strike-slip, with a rate of 3.2~3.7mm/a. The EHS region (Tongmai Section) has dextral strike-slip, and its rate is slower than the northwest section of the Jiali fault. The active characteristic of the southeast section of the Jiali fault (Tongmai-Chayu) was changed, as shown that the moraine ridge near the Galong Temple was sinistral dislocated by the Jiali fault with the slip rate of about 3.8mm / a. The Nu Jiang fault mainly showed the squeezing property from Guoqing to Tiantuo, and showed no significant activity since Late Quaternary. There is no found that the geological profiles dislocated the Late Quaternary deposits and landscape, and shows no significant activity since Late Quaternary. The south section was active obviously, and the Late Quaternary strata were dislocated in many places. The geomorphy of the northwest section of the Jinsha Jiang fault indicates that the direction of a series of river gullies was changed by this fault, which resulted in sinistral twisting river gullies and obvious sinistral movement. Along the middle- south section of the Jinsha Jiang fault, the development of river gullies was affected since the late Quaternary, which resulted in dextral twisting river gullies and many places of the Late Quaternary strata dislocated.
     (ⅱ) Results of GPS observation profiles
     The research of the GPS profiles across the faults and dislocation model revealed the nature of the faults and the movement rates.
     The Yaluzangbu fault has a clear dextral strike-slip characteristic. The strike-slip rate of Lhasa section of this fault is 2.4 ~ 3.9 mm/a, and the shortening rate is 1.3 ~ 4.7 mm/a. The Linzhi section has the slip rate of 6.2 ~ 6.8 mm/a and the shortening rate of about 0.6 ~ 6.0 mm/a, exhibiting a dextral-compressive motion.
     The northwest section of the Jiali fault near Naqu shows dextral compression, the strike-slip rate is 4 ~ 5.8mm/a, and the shortening rate is about 4.6mm /a. The fault near Tongmai has weak dextral compression, the strike-slip rate is 1.3~2.0mm/a, and the shortening rate is about 2.5mm/a. The fault near Chayu shows sinistral compression with a strike-slip rate 3.7~4.0mm/a, and shortening rate is about 6.2mm/a.
     The northwest section of the Nu Jiang fault zone near Nagqu mainly shows the compressive movement at a rate 1.2 ~ 2.0mm/a. The southeast section is mainly of dextral strike-slip with a rate gradually increasing from the north (the strike-slip rate of 2.1m /a) to south (the strike-slip rate of 3.2mm/a).
     The Jinsha Jiang fault in the vicinity of the Qinghai-Tibet Highway shows sinistral-compressive movement where the strike-slip rate is 3.0 ~ 4.0mm/a, and the shortening rate is about 3.5mm/a. The faults near Cangdu, Jiang Da and Baiyu mainly show dextral-compressive movement with strike-slip rate 3.4 ~ 4.3mm/a, and the shortening rate 1.8 ~ 2.9mm/a. The faults near Batang and Derong mainly show dextral compressive movement, with a strike slip rate 3.0 ~ 3.1mm/a, and the shortening rate 0.4 ~ 2.0mm/a.
     (ⅲ) Results of the finite element numerical simulation
     ⅰ)The blocks north and east of the EHS rotated clockwise around the EHS. The southeast boundary of the dextral strike-slip fault is not Jiali fault, instead likely the Apalong fault.
     ⅱ)The Jiali fault was not an overall dextral strike-slip fault. Its northwest section and the Tongmai section at the top of EHS have the dextral compressive properties, and the kinetic property of the southeast section of the EHS has changed from the dextral strike-slip into a sinistral strike-slip movement. If the southeast branch of the Jiali fault was not connected with the Sagaing fault, the simulation results have a better fitting to the GPS observations when the Apalong fault connects the Sagaing fault, and this result indirectly confirms that the Jiali fault may not be connected to the Sagaing fault current, at least not simply connected. The Apalong fault and Sagaing fault may be linked.
     ⅲ)The EHS is still playing a role at present, which together with the Assam horn affects the current regional tectonic deformation, and many of the fault activity conversions and important tectonic events occurred in or close to the region between them. The change of the movement rates and activity of the Yaluzangbu fault, the Nu jiang fault and the Jiali fault ends close to the Assam horn, so does the Jiali fault. The Apal Long fault is active highly, where occurred the Ms8.6 Chayu earthquake in 1950, all of which may have a relationship with interaction between the EHS and the Assam horn.
     Ⅲ、Main conclusions
     Through comprehensive analysis, this work has obtained some new recognitions:
     ⅰ) There is apparent dextral slip on the Yaluzangbu fault since late Quaternary. The activity increases from west to east. The dextral slip rate of its Lhasa section is 2.4~ 3.9mm/a. The dextral slip rate of its Linzhi section is 6.2~ 6.9mm/a.
     ⅱ) The Jiali fault isn’t an overall dextral strike-slip fault. Its movement features and rates are variable in different tectonic parts. Generally, it can be divided into three sections by EHS. The fault in west area of the EHS is the northwestern segment of the Jiali fault, the fault in Yigong-Tong mai area on the top of the EHS is the middle segment, and the fault in the southeast area of the EHS is the southeastern segment. The northwestern segment is right-lateral compressive movement, with a strike slip rate 3.2~ 5.8mm/a. The middle segment has weak dextral compressive movement, with a strike slip rate 1.3~ 2.0mm/a. And the southeast segment is left-lateral compressive movement, with a strike slip rate 3.7~ 4.0mm/a.
     ⅲ) The Nu Jiang fault has different activities in different tectonic parts since late Quaternary. The main activity of northwestern segment of the Nu jiang fault is compressive movement. The activity of the middle segment of the Nujiang fault is not obvious in geology since late Quaternary, but with a strike slip rate 2mm/a by GPS. The activity of south segment of the Nu jiang fault is obvious. It can be seen that the fault dislocation of the late Quaternary strata is present in many areas, and the strike slip rate 2.3 ~ 3.2mm/a.
     ⅳ) The Jinsha Jiang fault’s activity was also different in different tectonic parts since late Quaternary. In the northwest segment, the Jinsha Jiang fault affected the flow of a series of gullies, causing gullies to experience left-twist, sinistral movement significantly, and the strike slip rate 3.0 ~ 4.0mm/a. The activity is not obvious in middle segment in geology since late Quaternary, but with a strike slip rate 3.4 ~4.3mm/a by GPS. In south segment, the Jinsha Jiang fault affected the development of water-gully systems, causing gullies to undergo right-twist, dextral movement significantly.
     ⅴ) The northern and eastern blocks of the EHS rotate clockwise around the EHS overal. The southern boundary dextral strike-slip fault is not the Jiali fault, but the Yaluzangbu fault and Apa long fault.
     ⅵ) Numerical simulation results show that the Jiali fault and Sagaing fault may not be linked, at least not simply connected. The Apa long fault and the Sagaing fault may be connected.
     ⅶ) EHS still plays a role at present, and affects the current regional tectonic deformation together with the Assam horn. Some fault conversions and important tectonic events occurred between them or very close to the region.
引文
Achache J, V Courtilot, et al. Paleographic and Tectonic evolution of southern Tibet since middle Cretaceous time: New paleomagnetic data and sythesis. Jour Geophys Res, 1984, 89: 10311-10399.
    Active faulting and tectonics in China[J]. J G R, 1977, 82 (20): 2905-2930.
    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times[J]. Nature, 2001, 411:62-66.
    Anne Socquet, Christophe Vigny, Nicolas Chamot-Rooke, et al. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS[J]. Journal of Geophysical Research, 2006, 3, B05406.
    Argand E. La teconique de I’Asie: International geological congress, 13th. Brussels, Reports. 1924,1:170-372.
    Armijo R P, Tapponnier P, Han Tonglin. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Jour Geophys Res, 1989, 94: 2787-2838.
    Avouac J P, Tapponnier P, Kinematic model of active deformation in central Asia[J]. Geophys Res Lett, 1993, 20: 895-898.
    Barazangi M, Ni J. Velocities and propagation characteristics of Pn beneath the Himalayan arc and Tibet plateau: possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 1982, 10: 179-185.
    Beaumont C, Jamieson R, Nguyen M et al.. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature. 2001, 414(6865): 738-742.
    Beghoul N, Barzangi M, et al. Lithospheric structure of Tibet and western North America:mechanisms of uplift and a comparative study. J. Geophys. Res., 1993, 98: 1997-2016.
    Bigwaard H, Sjakman, Win. Closing the gap between regional and global travel tomography[J]. Journ. Geoph. Res, 1998, 103: 30055-30078.
    Bird P, Baumgardner J. Fault friction,regional stress, and crust-mantle coupling in southern California from finite element models[J]. J Geophys Res, 1984, 89(B3): 1932-1944.
    Bird P, Kong X. Computer simulations of California tectonics confirm very low strength of major faults[J]. Geological Society of America Bulletin, 1994, 106: 159-174.
    Bird P. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. J Geophys Res, 1991, 96 (B6): 10275-10286.
    Bird P. New finite element techniques for modeling deformation histories of continents with stratified temperature dependent rheology[J]. J Geophys Res, 1989, 94(B4): 3967-3990.
    Bird P. Thin-plate and thin-shell finite-element programs for forward dynamic modeling of plate deformation and faulting[J]. Computer and Geosciences, 1999, 25: 383-394.
    Burchfiel B C, Chen Z L, et al.. New technology: new geological challenges[J]. GSA Today, 2004, 14(2): 4-10.
    Burchfiel, B. C., Chen., Z., et al.. Tectonics of the Longmen Shan and adjacent regions[J].International Geological Review, 1995, 37(8): 661~736.
    Chamlagain D, Hayashi D. FE modeling of contemporary tectonic stress in the India-Eurasia collision zone[J]. Bulletin of the Faculty of Science, University of the Ryukyus, 2008, 85: 39-79. .
    Chang C F, Chen N S, et al.. Preliminary conclusions of the Royal Society and Academia Sinica 1985 Geotraverseof Tibet[J]. Nature, 1986, 323(9): 501-507.
    Chen W P, Molnar P.Constrains on the seismic wave velocity structure beneath the Tibetan Plateau and their tectonic implication[J]. Jour Geophys Res, 1981, 86: 5937-5962.
    Choi k, Bilich A, et al.. Modified sidereal filtering: Implications for high-rate GPS positioning [J]. Geophysical Research Letters, 2004, 31(10): 1-4.
    Christophe Vigny, Anne Socquet, Claude Rangin, et al.Present-day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research, 2003, 108(B11): 2533-2538.
    Denghai Bai, Martyn J. Unsworth, Max A. Meju, et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature geoscience, 2010, DOI: 10. 1038, 1-5.
    Dewey J F, Burke K C A. Tibetan, Variscan, and Pre-Cambrian basement reactivation:products of a continental collision[J]. J Geol, 1973, 81: 683-692.
    Dewey J F, Cande S, et al.. Tectonic evolution of the India/Eurasia Zone[J]. Eclogae Geol Helv, 1989, 82: 717-734. Dewey J F, K C A Burke,Variscan and Precambrian basement reactivation: Products of continental collision[J].Journal of Geology, 1973, 81: 683-692.
    Dewey J F, M R Hempton, et al.. Shortening of continental lithosphere:the neotectonics of Eastern Anatolia-A young collision zone, in Collision Tectonics, Edited by MP Coward and A C Ries, Spec Publ Geol Soc London, 1986, 19: 3-36.
    Dewey J, Shackleton R M, et al.. The tectonic evolution of the Tibetan Plateau[J]. Phil Trans Roy Socland, 1988, 327: 379-413.
    Dixon T H. An introduction to the Global Positioning System measurement and some geological application[J]. Journal of Geophysical Research, 1991, 29: 249-276.
    E. C. Malaimani, N. Ravi Kumar, A. Akilan, et al.. GPS-Geodesy with GNSS receivers for Indian plate kinematics’s studies with the recent plate velocities estimated from GNSS data[J]. J. Ind. Geophys, 2008, 12(3): 109-114.
    England P, Houseman G A, et al.. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions. Nature, 1985, 315(6017): 297-301.
    England P, Houseman G. Finite strain calculations of continental deformation:comparison with the India-Asia collision zone[J]. J Geophys Res, 1986, 91(B3): 3664-3676.
    England P, Housemen G A.The mechanics of Tibetan Plateau. Phil Trans R Soc Lond A , 1988, 326: 301-320. England P, McKenzie D. A thin viscous sheet model for continental deformation[J]. Geophys J R astr Soc, 1982, 70: 295-321.
    England P, McKenzie D. Correction to a thin viscous sheet model for continental deformation[J]. Geophys J R astr Soc, 1983, 73: 523-532.
    Fitch T J. Earthquake mechanisms in the Himalayan, Burmese, and Andaman regions and continental tectonics in Central Asia[J]. Journal of Geophysical Research, 1970, 75: 2699-2709.
    Flesch L. M., Haines A. J., Holt W. E.. Dynamics of the India-Eurasia collision zone[J]. J Geophys Res, 2001, 106(8): 16345-16460.
    Gan W J, Prescott W H. Crustal deformation rates in the central and eastern U. S. inferred from GPS[J]. Geophys Res Let, 2001, 28(19): 3733-3736
    Gan W J, Prescott W H. Crustal deformation rates in the central and eastern U. S. inferred from GPS[J]. Geophys Res Let, 2001, 28(19): 3733-3736.
    Gan W J, Zhang P Z, et al.. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res, 2007, 112: B08416.
    Gansser A . Geology of the Himalayas [J]. Wiley-Interscience, 1966a, New York.
    Goodman R E, Taylor R L, Brekke T L. A model for mechanics of jointed rock[J]. Proc Amer Soc Civ Engr, 1968, 94: 637-658.
    Grandt S P et al.. Global seismic tomography: a snapshot of convection in the Earth[J]. Nature, 1997, 386: 578-584.
    Harrison T M, Copeland P, et al.. Raising Tibet[J]. Science, 1992, 255: 1663-1670.
    Hirn A, A Nercessian, et al.. Lhasa block and bordering sutures-A continuation of a 500km traverse through Tibet[J].Nature, 1984, 307: 25-27.,
    Hirn A, Jiang M, Sapin M, et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet [J]. Nature, 1995, 375: 571-574.
    Houseman G, England P. A lithospheric-thickening model for the Indo-Asian collision[A]. In:Yin A,Harrison T M eds. The tectonic evolution of Asia[C]. Cambridge: Cambridge University Press, 3-17.
    Houseman G, England P. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. J Geophys Res, 1993, 98(B7): 12233-12249.
    Houseman G, England P. Finite strain calculations of continental deformation:method and general results for convergent zones[J]. J Geophys Res, 1986, 91(B3): 3651-3663.
    Ismail-Zadeh A, Le Mou l J, Soloviev A et al.. Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region[J]. Earth and Planetary Science Letters. 2007, 258(3-4): 465-485.
    Iwasaki, T. and R. Sato. Strain field in a semi-infinite medium due to an inclined rectangular fault[J]. J. Phys. Earth, 1979, 27: 285-314.
    J. C. Savage, Svarc J L, Prescott W H. Geodetic estimates of faults slip rates in the San Francisco Bay aarea [J]. J Geophys Res, 1999, 104: 4995-5005.
    J. C. Savage. Viscoelastic-coupling model for the earthquake cycle driven from below[J]. Journal of Geophsical Research, 2000, 105(B11): 25525-25532.
    J. Paul, R. Burgmann, V. K. Gaur, et al.. The motion and active deformation of India[J]. Geophysical Research letters, 2001, 28(4): 647-650.
    K. M. Larson, R. Burgmann, R. Bilham, et al.. Kinematics of the India-Eurasia collision zone from GPS measurements[J]. J. Geophys. Res. , 1999, 104: 1077-1093.
    King R W,Shen F,Burchfiel B,et al.Geodetic measurement of crustal motion in southwest China[J].Geology,1997,125:179-182.
    Klootwijk C T, Gee J S, Peirce J W, et al.. An early India-Asia contact: Paleomagnetic constraints from ninety east Ridge, ODP Leg 121. Geology, 1992, 20: 395-398.
    Kola-Ojo o, Meissner R. Southern Tibet: Its deep seismic structure and some tectonic implications[J]. J Asian Earth Sci, 2001, 19: 249-256.
    Kong X, Bird P. Neotectonics of Asia: thin-shell finite-element models with faults [A]. In: Yin A, Harrison T M eds. The Tectonic Evolution of Asia[C]. Cambridge: Cambridge University Press, 18-34.
    Kong X, Bird P. Shells: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults[J]. J Geophys Res,1995,100(B11):22129-22131.
    Kono M. Gravity anomalies in east Nepal and their implications to the crustal structure of the Himalayas[J]. Geophy Jour Roy Ast Soc, 1974, 39: 283-300.
    Lambert Wanninger and Manja May. Carrier phase multipath calibration of GPS reference stations [R]. Proc. ION GPS 2000, Salt Lake City UT, 132-144.
    Larson K M, Burgmann R, Bilham R, et al.. Kinematics of Indian-Eurasia collision zone from GPS measurements[J]. J. Geophys. Res, 1996, 260: 45-53.
    Larson K M, Freymueller J. Relative motion of the Australian, pacific and Antarctic plates estimated by the Global Positioning System[J]. Geophy. Res. Lett, 1995 , 22: 37-40.
    Lin J., D. R. Watts.Paleomagnetic constraints on Himalayan Tibetan evolution.Philos Trans R Soc London, 1988, 326: 177-188.
    Liu M, Yang Y. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling [J]. JOURNAL OF GEOPHYSICAL RESEARCH. 2003, 108(8).
    Lyon-caen H. Comparison of the upper mantle shear wave velocity structure of the Indian shield and the Tibetan Plateau and tectonic implication. Geophy J Royal Astron Soc, 1986, 86: 727-749.
    Mansinha, L. and D. E. Smylie. Effect of earthquakes on the Chandler wobble and the secular polar shift[J]. J. Geophys. Res., 1967, 72: 4731-4743. Mansinha, L. and D. E. Smylie. The displacement fields of inclined faults[J]. Bull. Seismological Society of
    America, 1971, 61: 1433-1440. Mattauer M.. Intracontinental subduction, Mantle decollement and crustal stacking wedge in the Himalaya and other collision belts[J]. Spec Publ J Geol Soc London, 1986, 19: 37-50.
    Matte P., Mattauer M, et al.. Continental subduction beneath Tibet and the Himalayan orogen: a review. Terra Nova, 9: 264-270.
    Molnar P., England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoo[J]. Rev Geophys, 1993, 31: 357-396.
    Molnar P., England P.. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? [J]Nature, 1990, 346: 29-33.
    Molnar P., Tapponnier P., Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189: 419-426.
    Molnar P.. Continental tectonics in the aftermath of plate tectonics[J]. Nature, 335(6186): 131-137.
    Ni J., Barazangi M. High-frequency seismic wave propagation beneath the Indian shield, Himalayan arc, Tibetan plateau, and surrounding regions: High uppermost mantle velocities and efficient Sn propagation beneath Tibet[J]. Geophys J Roysl Astron, 1983, 72: 665-689.
    Ni J., Barazangi M.Seismotectonics of the Himalayan collision zone: Geometry of underthrusting of Indian plate beneath the Himalaya[J]. J. Geophys Res, 1984, 89: 1147-1164.
    Okada Y. Internal deformation due to shear and tensile faults in a half-space[J].Bull. Seismological Society ofAmerica, 1992, 82: 1018-1040.
    Okada Y. Surface deformation due to shear and tensile faults in a half-space[J].Bull. Seismological Society of America, 1985, 75: 1135-1154.
    Partial P., Achache J., Indo-Asia collision chronology and its implications for crustal shortening and driving mechanisms of plates.Nature, 1984, 311: 615-621.
    Peltzer G, Saucier F. Present-day kinematics of Asia derived from geologic fault rates[J]. J Geophys Res, 1996, 101(B12): 27 943-27 956.
    Peltzer G, Tapponnier P., et al. Formation and evolution of strike-slip faults, rifts and basins during the India-Asia collision: an experiment approach[J].Journal of Geophysical Research, 93(B12): 15085-15117.
    Powell C M, Conaghan P G. Plate tectonics and the Himalayas[J]. Earth Planet Sci Lett, 1973, 20: 1-12.
    Rechardson R M. Finite element modeling of stress in the Nezca plate:driving forces and plate boundary earthquake[J]. Tectonophysics, 1978, 50: 223-248.
    Royden L. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust[J]. J Geophys Res., 1996, 101: 17679-17705.
    Segall paul, Davis L james. GPS applications for geodynamics and earthquake studies[J]. Reviews earth planet science, 1997, 25: 301-336.
    Shan jiazeng, Li Jiliang,Xiao Wenjiao. Physical model experiments of dynamic mechanism on continent-continent collision[J]. Earth Science Frontiers, 1999, 397-406.
    Shen Zhengkang,Zhao C, Yin A,et al.Contemporary crustal deformation in east Asia constrained by Global Positioning System measurement[J].J.Geophys.Res.,2000,105:5721-5734.
    Shen Zhengkang,Wang Min,Li Y,et al.Crustal deformation associated with the Altyn Tagh fault system,western China,from GPS[J].J.Geophys.Res.,2001,106:30607-30621.
    Shen F, Royden L H, Burchfiel B C. Large-scale crustal deformation of the Tibetan Plateau[J]. J Geophys Res, 2001, 106(B4): 6793-6816.
    Sonder L J, England P. Vertical averages of rheology of the continental lithosphere:relation to thin sheet parameters[J]. Earth and Planetary Science Letter, 1986, 77: 81-90.
    Tapponnier P, Molnar P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584): 319-324.
    Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. J G R, 1977, 82(20): 2905-2930.
    Tapponnier P, Molnar P. Slip-line theory and large-scale continental tectonics [J]. Nature, 1976, 264(5584): 319-324.
    Tapponnier P, Peltzer G, Dain A Y L, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine[J]. Geology, 1982, 10: 611-616.
    Tapponnier P., Xu Zh., et al., Oblique stepwise rise and growth of the Tibetan Plateau[J]. Science, 2001, 294(23): 1671-1677.
    Thatcher W. Microplate model for the present-day deformation of Tibet[J].J. Geophys. Res. , 2007, 112, B01401, doi: 10. 129/2005JB004244.
    Tralli M, D., Timothy H. D. A Few parts in 108 Geodetic Baseline Repeatability in Gulf of California Using the Global Positioning System(GPS). Geophys Res Lett, 15(4): 353-356.
    Van der Voo R, Spakman W, Bijwaad H. Mesozoic subducted slabs under Sibria[J]. Nature, 1999, 397: 246-249.
    Van der Voo R, Spakman W, Bijwaard H. Tethyan subducted slabs under India[J]. Earth Planet, Sci. Lett. , 1999, 171: 7-20.
    Vicotte J P, M Daigmieres, et al.. Numerical modeling of intraplate deformation: simple mechanical models of continental collision. J Geophys Res, 1982, 87: 10709-10728.
    Vicotte J P, M Daigmieres, et al.. The role of a heterogeneous inclusion during continental collision. Phys Earth and planet inter, 1984, 36: 236-259.
    Vilotte J P, Daignieres M, Madariaga R. Numerical modeling of intraplate deformation:simple mechanical models of continental collision[J]. J Geophys Res, 1982, 87(B13): 10709-10728.
    Vilotte J P, Madariaga R, Daignieres M, et al.. Numerical study of continental collision:influence of buoyancy forces and initial stiff inclusion[J]. Geophys J R astr Soc, 1986, 84: 279-310.
    Wang C Y, Cai Y, Jones D L. Predicting the areas of crustal faulting in San Francisco Bay region[J]. Geology, 1995, 23: 771-774.
    Wang C Y, Shi Y L. Dynamic uplift of the Himalaya[J]. Nature, 1982, 298: 553-556.
    Wang Q. , P. Zhang et al.. Present-day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294: 574-577.
    Wei Jun Gan, Pei Zhen Zhang. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J], Journal of Geophysical Research, 2007, 112(B08416): 1-14.
    Widiyanoro S, Van der Hils R D T. The slab of subducted lithosphere beneath the Sunda arc, Indonesia[J]. Science, 1996, 271: 1566-1570.
    Yang Y., Liu M.. Crustal thickening and lateral extrusion during the Indo-Asian collision: A 3D viscous flow model[J]. Tectonophysics, 2009, 465 (1-4) : 128-135.
    Yang, X. M. and P. M.. Davis. Deformation due to a rectangular tension crack in an elastic half-space[J]. Bull. Seismological Society of America, 1986, 76(3): 865-881.
    Zhang P Z, Shen Z K, Wang M, et al.. Continuous deformation of the Tibetan Plateau from GPS data[J]. Geology, 2004, 32(9): 809-812.
    Zhang P Z,Wang Min,Gan Weijun,et al..Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J].Earth Science Frontiers,2003a,10(3):81-92.
    Zhao W J, Nelson KD and INDEPTH Team. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature, 1993, 366: 557-559.
    Zhao W L, Morgan W J. Injection of Indian crust into Tibetan lower crust: a two-dimensional finite element model study[J]. Tectonics, 1987, 6: 489-504.
    Zhao W L, Morgan W J. Uplift of Tibetan plateau[J]. Tcetonics, 1985, 4: 359-369.
    蔡永恩,梁国平,殷有泉.多弹性体系统动力分析的LDDA[J].固体力学学报, 2000, 21(增刊): 182-191.
    曹建玲,石耀霖等.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J].科学通报, 2009, 54(2): 224-234.
    曾融生,丁志峰,吴庆举.青藏高原岩石层构造及动力学过程研究[J].地球物理学报, 1994, 37 (增刊) : 99-116.
    常承法等.青藏高原地质构造[M]北京:科学出版社, 1982.
    常利军,王椿镛,丁志峰.云南地区SKS波分裂研究[J].地球物理学报, 2006, 49(1): 200-207.
    陈智梁,张选阳等.中国西南地区地壳运动的GPS监测[J].科学通报, 1999, 44(8): 851-854.
    程佳.川西地区现今地壳运动的大地测量观测研究[硕士论文].中国地震局地质研究所, 2008.
    程军.浅谈GPS测量中多路径效应及精度控制措施[J].黑龙江科技信息, 2008, 35: 27-27.
    成都理工大学.雅鲁藏布江下游区域地质及构造稳定性初步研究.2009
    戴吾蛟,丁晓利等. GPS动态变形测量中的多路径效应特征研究[J].大地测量与地球动力学, 2008, 28(1): 65-71.
    邓凡平. ANSYS10. 0有限元分析自学手册[M].人民邮电出版社, 2007.
    邓启东,冉勇康,杨晓平等.中国活动构造图(1: 400万) .北京:地震出版社, 2007 .
    丁林,钟大赉,潘欲生等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报, 1995, 40(16): 1497-1500.
    丁志峰,曾融生.青藏高原上地幔横波各向异性的探测研究[J].地球物理学报, 1996, 39(2): 211-220.
    董玉祥.青藏高原沙漠化研究的进展与问题[J].中国沙漠, 1999, 19 (3) : 251-255.
    杜义.青藏高原地区现今构造应力场数值模拟[硕士论文].北京:中国地震局地壳应力研究所, 2006.
    傅容珊,黄建华,李力刚等.青藏高原隆升三阶段模型的数值模拟[J].地学前缘, 2000, 7(4): 588-596.
    傅容珊,李力刚等.青藏高原隆升过程的三阶段模式[J].地球物理学报, 1999, 42 (5) : 609-616.
    傅容珊,徐耀民.青藏高原挤压隆升过程的数值模拟[J].地球物理学报. 2000, (03): 346-355.
    甘卫军,程朋根.青藏高原东北缘主要活动断裂带GPS加密观测及结果分析[J].地震地质,2005,27 (2) : 177-187.
    甘卫军,沈正康等.青藏高原地壳水平差异运动的GPS观测研究[J].大地测量与地球动力学,2004,24(1): 29-35.
    甘卫军.中国地壳运动观测网络的建设及应用[J].国际地震动态, 2007, 343 (7) : 43-52.
    高登义,周立波.青藏高原环境气象研究进展[J].地球物理学进展,1999,14 (3) : 17-28.
    高山,骆庭川,张本仁等.中国东部地壳的结构和组成[J].中国科学D辑:地球科学, 1999, 29(3): 204-213.
    高祥林,罗焕炎, H. J.诺依格鲍尔.大陆碰撞动力学的三维数值模拟[J].地震地质. 1987, (02): 65-73.
    龚曙光,谢桂兰等. ANSYS参数化编程与命令手册[M].机械工业出版社, 2009.
    顾国华,王敏等.中国大陆现今地壳水平运动基本特征[J].地震学报, 2001, 23(4): 362-369.
    国家地震局地质研究所.西藏中部活动断层[M].地震出版社,1992.
    国家地震局地质研究所编.亚欧地震构造图(1: 80万).地图出版社, 1981.
    胡家富,胡毅力,夏静瑜等.缅甸弧及邻区的壳幔S波速度结构与动力学过程[J].地球物理学报, 2008, 51(1): 140-148.
    黄汲清,陈炳蔚.中国及邻区特提斯海的演化[M].北京,地质出版社, 1987,
    黄立信,李光岑等.喜马拉雅岩石圈构造演化—西藏高原地壳结构与速度分布特征[M].北京:地质出版社, 1992.
    江在森,马宗晋等. GPS技术应用于中国地壳运动研究的方法及初步结果[J].地学前缘, 2003, 10(1): 71-79.
    焦海松,王红芳等.卫星星历误差对GPS定位精度的影响与分析[J].全球定位系统, 2009, 34(1): 24-28.
    赖锡安,黄立人等.中国大陆现今地壳运动[M].北京:地震出版社, 2004.
    李传友.青藏高原东北部几条主要断裂带的定量研究[博士论文].中国地震局地质研究所,2005.
    李德威,庄育勋.青藏高原大陆动力学的科学问题[J].地质科技情报, 2006, 25 (2) : 1-11.
    李光涛,陈国星.滇西地区怒江河流阶地、夷平面变形反映的第四纪构造运动[J].地震,2008,28(3):125-132.
    李吉均,文世宣等.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学D辑, 1979, 6: 608-616.
    李吉均.青藏高原隆起与环境变化研究[J].科学通报, 1998, 43 (15) : 1568-1574.
    李铁明,邓志辉等.鲜水河断裂带北段GPS测量及其运动特征[J].西北地震学报, 2003, 25 (4) : 312-318.
    李延栋.青藏高原隆升的过程和机制[J].地球学报, 1995, 1(1): 1-9.
    李永华,吴庆举,田小波等.青藏高原拉萨及羌塘块体的地壳结构研究[J].地震学报, 2006, 28(6): 586-595.
    刘大杰,施一民等.全球定位系统(GPS)的原理与数据处理[M].同济大学出版社.
    刘宏兵,孔祥儒,马晓冰等.青藏高原东南地区地壳物性结构特征[J].中国科学D辑, 2001, 31(S1): 61-65.
    刘基余,李征航等.全球定位系统原理及其应用[M].北京:测绘出版社.
    刘金朝,陆诗阔,许鹤华等.三维粘弹性LDDA方法及其在地学中的初步应用[J].地震学报,2002,24(3): 325-332.
    刘相新,孟宪颐. ANSYS基础与应用教程[M].科学出版社, 2006.
    马晓冰,孔祥儒,刘宏兵等.青藏高原东部大地电磁测深探测结果[J].中国科学(D辑), 2001, 31: 72-77.
    马宗晋,陈鑫连等.中国大陆现今地壳运动的GPS研究[J].科学通报, 2001, 46(13): 1118-1120.
    马宗晋,张家声,汪一鹏.青藏高原地壳结构和新构造运动的东西差异[M].青藏高原岩石圈现今变动与动力学(马宗晋等主编),北京:地震出版社, 2001, 75-87.
    马宗晋,张家声,汪一鹏.青藏高原三维变形运动学的时段划分和新构造分区[J].地质学报,1998,72 (3) : 312-327.
    潘挂棠,王培生,徐理荣等.青藏高原新生代构造演化[M].北京:地质出版社, 1990.
    任纪舜.中国及邻区大地构造图(1: 500万).地质出版社, 2002.
    任金卫,沈军,曹忠权等.西藏东南部嘉黎断裂新知[J].地震地质, 2000, 22(4): 344-350.
    尚晓江,邱峰等. ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社, 2008.
    沈正康,王敏等.中国大陆现今构造应变率场及其动力学成因研究[J].地学前缘, 2003, 10(增刊): 93-100.
    施雅风,汤懋苍.青藏高原二期隆升与亚洲季风孕育关系探讨[J].中国科学D辑, 1998, 3: 263-271.
    石耀霖,曹建玲.中国大陆岩石圈等效粘滞系数的计算和讨论[J].地学前缘, 2008, 15(3): 82-95.
    宋慧珍,黄立人等.地应力场综合研究[M].北京:石油工业出版社, 1990: 61-94.
    谭观龙.浅谈GPS测量多路径误差[J].地理空间信息, 2008, 6(5): 56-58.
    唐方头.青藏高原东南部地区深浅构造耦合研究[博士后出站报告].中国地震局地球物理研究所,2005.
    唐文清,刘宇平等.基于GPS技术的活动断裂监测—以鲜水河、龙门山断裂为例[J].山地学报,2007,25 (1) : 103-107.
    唐文清.基于GPS监测的青藏高原东部及邻区地壳运动形变特征研究.博士论文, 2006.
    滕吉文,张中杰等.喜马拉雅碰撞造山带的深层动力过程与陆陆碰撞新模型[J].地球物理学报,1999,42 (42) : 481-494.
    滕吉文.青藏高原地球物理研究中几个重要问题之我见[J].地学前缘, 2006, 13 (3): 19-22.
    万天丰.古构造应力场[M].北京:地震出版社, 1988: 125-128.
    汪一鹏.青藏高原活动构造基本特征[M].青藏高原岩石圈现今变动与动力学(马宗晋等主编),北京:地震出版社, 2001, 251-262.
    王椿镛,楼海,吕智勇等.青藏高原东部地壳上地幔S波速度结构—下地壳流的深部环境[J].中国科学(D辑), 2008 , 38(1): 22-32.
    王椿镛,吴建平,楼海等.川西藏东地区地壳P波速度结构[J].中国科学D辑, 2003, 33(s): 181-189.
    王辉,张国民,石耀霖等.青藏活动地块区运动与变形特征的数值模拟[J].大地测量与地球动力学, 2006, 26(2): 15-23.
    王连捷,吴珍汉,王薇.青藏高原中段现今构造应力场的数值模拟[J].地质力学学报. 2006, 12(2): 140-149.
    王敏,沈正康等.现今中国大陆地壳运动与活动块体模型[J].中国科学D辑, 2003, 33(增刊): 21-33.
    王敏,张祖胜. 2000国家GPS大地控制网的数据处理和精度评估[J].地球物理学报, 2005, 48(4): 817-823.
    王琪,Seeber等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震, 1988, 2: 49-56.
    王琪,张培震.中国大陆现今地壳运动和构造变形[J].中国科学D辑, 2001,31 (7) : 529-536.
    王谦身,安玉林.青藏高原东部玛多—沙马地区的重力场与深部构造[J].地球物理学进展, 2001, 16(4): 4-10.
    王谦身,滕吉文,王光杰等.喜马拉雅“东构造结”地区特异重力场的探讨[J].地球物理学进展,2007,22(1): 35-42.
    王晓强. GPS测量中多路径误差的影响[J].地壳形变与地震, 2000, 20(1): 56-59.
    魏文博,金胜,叶高峰等.藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果[J].地球物理学报, 2006, 49(4): 1215-1225.
    西藏自治区地质矿产局.西藏自治区区域地质志(区域地质)[M].北京:地质出版社, 1993.
    西藏自治区科学技术委员会.西藏察禺当雄大地震[M].西藏人民出版社,1988.
    西藏自治区地震局.西藏米林机场场地地震安全性评价报告.2001.
    西藏自治区地震局.扎墨公路嘎龙寺隧道工程场地地震危险性评价报告.2006
    肖序常,李廷栋.青藏高原岩石圈结构、隆升机制及对大陆变形影响[J].地质论评, 1998, 44 (1) : 112.
    肖序常,王军.青藏高原构造演化的简要评述[J].地质论评, 1998, 44(4): 373-381.
    肖序常,王军.西昆仑--喀喇昆仑及其邻区岩石圈结构、演化中几个问题的探讨[J].地质论评, 2004, 50(3): 285-294.
    熊熊,刘孙君,许厚泽.青藏高原地壳东-西向拉张及力学机制[J].武汉大学学报(信息科学版), 2003, (S1): 150-154.
    胥颐,刘建华等.哀牢山-红河断裂带及其邻区的地壳上地幔结构[J].中国科学D辑, 2003, 33(12): 1201-1209.
    许才军,晁定波.有限元分析中断裂区域单元的划分[J].地壳形变与地震, 1997, 17(3): 33-38.
    许志琴,姜枚等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉[J].地学前缘,2004,11 (4) : 329-343.
    许志琴,李海兵等.造山的高原—青藏高原矩形造山拼贴体和造山类型[J].地学前缘,2006,13 (4) : 54-58.
    许志琴,杨经绥等.大陆俯冲作用及青藏高原周缘造山带的崛起[J].地学前缘,1999,6 (3) : 139-151.
    许志琴,杨经绥等.青藏高原与大陆动力学—地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质, 2006, 33(2): 221-238.
    杨保,施雅风.青藏高原冰芯研究进展[J].地球科学进展,1999,14 (2) : 183-188.
    杨辉,滕吉文,张雪梅.喜马拉雅西构造结及邻区岩石圈演化三维有限元数值模拟[J].地球物理学报,2009, (12): 3009-3019.
    杨辉,王勇.青藏高原低速层对岩石圈强度影响的三维有限元模拟[J].大地测量与地球动力学,2007,27(2): 25-31.
    叶际阳.青藏高原隆升及其构造变形的数值模拟研究[硕士论文].中国地震地壳应力研究所, 2010. (2010)
    叶叔华.青藏高原岩石圈现今变动与动力学[M].北京:地震出版社, 2001.
    尹安.喜马拉雅-青藏高原造山带地质演化-显生宙亚洲大陆生长[J].地球学报, 2001, 22(3): 193-230.
    游新兆,王启梁.青藏高原1993年GPS观测成果的精度分析[J].地壳形变与地震,14(3): 27-33.
    袁林果,黄丁发等. GPS载波相位测量中的信号多路径效应影响研究[J].测绘学报,2004, 33(3): 210-215.
    张宝红.美国的板块边界观测(PBO)计划[J].大地测量与地球动力学, 2004, 24(3): 105-108.
    张东宁,许忠淮.青藏高原南部上地壳正断层地震活动的一种可能解释[J].地震学报. 1995, (02): 188-195.
    张东宁,许忠淮.西藏南部地堑构造成因的数值模拟[J].中国地震,1997,(04): 41-49.
    张东宁,袁松涌,沈正康.青藏高原现代地壳运动与活动断裂带关系的模拟实验[J].地球物理学报,2007,50(1): 153-162.
    张进江,丁林.青藏高原东西向伸展及其地质意义[J].地质科学,2003,38(2): 179-189.
    张培震,邓起东等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003,33 (增刊): 12-20.
    张培震,甘卫军等.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79 (6) : 748-756.
    张培震,沈正康,王敏等.青藏高原及周边现今构造变形的运动学[J].地震地质, 2004, 26(3): 367-377.
    张培震,王敏,甘卫军等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003a,10(3):81-92.
    张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].地学前缘,2002,9(2): 442-450.
    张培震,王琪,马宗晋.中国大陆现今构造变形的GPS速度场与活动地块[J].地学前缘,2002,9(2): 430-441.
    中国地震局地质研究所.波罗水电站场地地震安全性评价报告.2009..
    张清志,刘宇平等.红河断裂带的GPS观测数据反演[J].地球物理学报,2007,22 (2) : 418-421.
    张炜.大地测量仪器的发展历程与GPS[J].东北测绘,2002, 25(3): 29-30.
    赵文津,赵逊,史大年等.喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J].地质通报,2002,21(11): 690-700.
    赵文津及INDEPTH项目组.喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M].北京:地质出版社, 2001.
    赵政璋,李永铁,叶和飞等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社, 2001.
    郑度,李炳元.青藏高原地理环境研究进展[J].地理科学,1999,19 (4) : 295-302.
    郑度,李炳元.青藏高原自然地理研究的进展[J].地理学报,1990,45 (2) : 235-244.
    郑勇,陈颙,傅容珊等.应用非连续性模型模拟断层活动对青藏高原应力应变场的影响[J].地球物理学报,2007,50(5): 1398-1408.
    郑勇,付容珊,熊熊等.中国大陆及周边地区现代岩石圈演化动力学模拟[J].地球物理学报,2006,49(2): 415-427.
    钟大赉,丁林.青藏高原的隆升过程及其机制探讨[J].中国科学D辑, 1996, 26(4): 289-295.
    钟大赉,丁林.西藏南迦巴瓦地区发现高压麻粒岩[J].科学通报,1995, 40(14): 1343.
    钟大赉等.滇川西部古特提斯造山带[J].北京:科学出版社, 1998.
    周德敏.青藏高原东北缘现今地壳形变的GPS观测研究[硕士论文].中国地震局地质研究所, 2005.
    周秀骥,赵平等.青藏高原热力作用对北半球气候影响研究[J].中国科学D辑, 2009, 11: 1473-1486.
    周中谟,易杰军等. GPS卫星测量原理与应用[M].测绘出版社.
    庄真,傅竹武,吕梓玲等.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构[J].地球物理学报,1992,35(6): 694-708.
    庄真,傅竹武等.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构[J]地球物理学报,1992,35 (6) : 694-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700