川西地区主干活动断裂间震期滑动习性与运动状态的地震学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间震期背景地震的活动性与活动断裂的现今滑动习性密切相关,而精确的震源位置是研究地震活动性的重要基础数据。本文利用双差地震定位法对川西地区1992~2002年发生的小震作了重新定位,基于高精度的相对震源参数资料,对川西地区的一些构造问题进行了探讨。研究了震源深度分布与地壳流变结构的关系,初步探讨了研究区的地壳变形特征;重点剖析了沿鲜水河-安宁河-则木河断裂带和龙门山推覆构造带的地震活动性及其所揭示的深部结构面、活动信息与地表断裂结构的关系;沿鲜水河-安宁河-则木河断裂带进行了b值与局部复发时间TL值的空间扫描,分析了断裂带的现今活动习性、应力应变水平以及可能存在的凹凸体;通过卫星影像解译、震源空间分布分析、前人野外地质调查工作的资料整理,建立起控制川西地区现今构造变形的主干活动断裂的三维空间几何结构模型与初始运动模型,采用各向同性半无限弹性空间的三维断裂位错模型,以本区域高精度、高密度GPS速度场为约束,反演了区域内主要断裂的现今深部滑动速率,探讨了研究区的深浅构造关系。本文的研究是在综合利用了前人大量的地表地质调查、野外填图、深部地球物理探测、震源机制等研究成果的基础上而开展的,主要研究内容及取得的成果概述如下:
     1.小震重新定位
     使用Waldhauser与Ellsworth 2000年提出的双差地震定位法对四川地震台网观测报告中自1992到2002年间记录的川西地区13367个小震作了重新定位,获得了10215个地震重新定位的震源参数。重新定位后,定位均方根残差得到显著降低,地震分布明显线性集中,显示出与活动断裂更加密切的关系,表明事件之间的相对定位精度得到显著提高,为活动构造现今运动状态分析提供高质量的基础数据,揭示出诸多为常规定位地震所模糊掉的重要构造变形信息。
     2.研究区主要活动断裂重新解译
     为利用重新定位的地震数据准确地反映并揭示活动断裂的现今活动状态,在前人大量的野外地质调查及活动断裂填图资料的基础上,采用ETM卫星影像处理,重新解译了研究区主要活动断裂的空间展布,为进一步探讨活动断裂与地震活动的关系,正确构建活动断裂三维几何结构模型提供了重要基础。
     3.震源深度分布与地壳流变结构关系研究
     当前流变学研究的一个重要发展方向是震源深度分布与地壳流变结构关系的对比研究。尽管不同地区的构造背景、地壳结构相差很大,国内外大量学者在世界范围内许多地区所作的震源深度与流变结构的对比研究发现,震源深度分布与岩石圈的流变分层性有着较好的对应关系。此认识为岩石圈流变结构及其力学性质随深度变化模型的建立给予了地震学有力的
Western Sichuan, located in the southeast borderland of the Tibetan plateau, is one of the most seismically active regions in continental China, which is characterized by active tectonic block movement controlled by large-scale,rapidly slipping active faults. Deformation of this region is thought to be localized along the boundary faults. To investigate detailed deep structures and slip behavior of the major active faults in the interseismic interval within this region using microseismicity, I performed double-difference relocations for 10,215 small earthquakes from a catalog of over 13,000 that occurred between 1992 and 2002. The relocated seismicity becomes highly organized in space, compared to the diffuse view seen in the routine locations, and focuses sharply along the surface traces of faults reinterpreted using the ETM satellite image, indicating that the precision of the relative relocations gets improved greatly, which enables me to address some problems in active tectonic deformation within this region.
     Relationship between hypocentral depth distribution and crustal rheological structure
     Most relocated events in western Sichuan occur within the upper crust at depths of 0-15km, and fewer at 20-50 km depths. There appears an aseismic layer between 15 and 20 km depth in the western Sichuan plateau, whereas no such aseismic layer in Sichuan basin. On the basis of fault friction law and rock rheological experimental data, the crustal strength envelopes (stress limit) for western Sichuan plateau and Sichuan basin were calculated respectively to investigate the relationship between the hypocentral depth distribution and the rheological structures, and the deformation feature of the aseismic layer as well. The result shows that the hypocentral depth distribution agrees with the crustal rheological structure well as most earthquakes occur in the brittle zone, and the aseismic layer in western Sichuan plateau corresponds to the ductile granite zone within the upper crust at depths of 14-19 km, while the earthquakes in the lower crust to the half-brittle zone of gabbro. The existence of the aseismic layer is likely to be associated with low velocity zone within the upper crust, which features the orogenic crust structure of western Sichuan plateau. It is proposed that the existence of this aseismic layer may result from eastward extrusion of material from the Tibetan plateau and clockwise rotation activity of the Sichuan-Yunnan block.
     Microseismicity along the Xianshuihe-Anninghe-Zemuhe fault zone
     The Xianshuihe-Anninghe-Zemuhe fault zone is a large left-lateral strike slip fault zone in western Sichuan, which forms the eastern boundary of the Sichuan-Yunnan rhombic block, and the eastern margin of the Tibetan plateau as well. The deep structures delineated by the relocated seismicity correspond to the surface faulting well, especially in the segmentation feature. The variation in the
引文
Aki K. Asperities, barriers, characteristic earthquakes and strong motion prediction. J. Geophy. Res., 1984, 89: 5867~5872.
    Aki K. Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits. Bull Earthquake Res Inst Univ. Tokyo, 1965, 43: 237~239.
    Allen C R, Zhuoli L, Hong Q, et al. 1991, Field study of a highly active fault zone: the Xianshuihe fault of southwestern China. Geol Soc Amer Bull, 103:1178~1199.
    Amelung, F, and King G. earthquake scaling laws for creeping and non-creeping faults. Geophys. Res. Lett., 1997, 24: 507~510.
    Avouac, J. P., and P. Tapponnier, 1993. Kinematic model of active deformation in central Asia, Geophys. Res. Lett., Vol.20(10): 859~898.
    Bennett R A, Rodi W A, and Reilinger R E. Global Posisioning System constraints on fault slip rates in southern California and northern Baja, Mexico. J. Geophy. Res., 1996, 101: 21943~21960.
    Benerjee P, and Burgmann R. Convergence across the northwest Himalaya from GPS measurement. Geophys. Res. Lett., 2002, 29.
    Billings S D. Simulated Annealing for Earthquake Location. Geophys. J. Int., 1994, 118: 680~692.
    Billings S D, Kennett B L and Sambridge M S. Hypocentre Location: Genetic Algorithms Incorporating Problem-Specific Information. Geophys. J. Int., 1994, 118: 693~706.
    Bodri B, Iizuka S, and Hayakawa M. Geothermal and rheological implications of intracontinental earthquakes beneath the Kanto-Tokai region, Central Japan. 1991, 194:337~347.
    Brace W F, and Kohlstedt D L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res., 1980, 85: 6248~6252.
    Byerlee J D. Friction of rocks. Pure Appl. Geophys. 1978, 116: 615~626.
    Cassidy J F, Waldhauser F. Evidence for both crustal and mantle earthquakes in the subducting Juan de Fuca plate. J. Geophys. Res., 2003, 30(2): 67-1~67-4.
    Chapman D S. Thermal gradients in the continental crust. In: Dawson J B (ed). The nature of the Lower Continental Crust. Geological Society Special Publication, 1986, 24: 63~70.
    Chen W P, and Molnar P. Focal depth of intracontinental and intraplate earthquakes and their implication for the thermal and mechanical properties of the lithosphere. J. Geophys. Res., 1983, 88: 4183~4214.
    Chinnery M A. The deformation of ground around surface faults. Bull. Seim. Soc. Am., 1961, 51: 355~372.
    Chinnery M A. The stress changes that accompany strike-slip faulting. Bull. Seim. Soc. Am., 1963, 53: 921~932.
    Chiu J M, Chiu S C C, and Kim S G. The significance of the crustal velocity model in local earthquake locations from a case example of a PANDA experiment in the central United States. 1997, Bull. Seim. Soc. Am., 87: 1537~1552.
    Christensen D H, Beck S L. The rupture process and tectonic implications of the great 1964 Prince William Sound earthquake. Pure Appl. Geophys., 1994, 142: 29~53.
    Crosson R S. Crustal structure modeling of earthquake data. 1. Simultaneous least squares estimation of hypocenter and velocity parameters. J. Geophys. Res., 1976, 81:3036~3046.
    Deichmann N, M Garcia-Fernandez, 1992. Rupture geometry from hige-precision relative hypocenter locations of microearthquake ruptures. Geophys J Int, 110:501~517.
    Dinger K B and Shearer P M, Earthquake locations in southern California obtained using source-specific station terms, J. Geophys. Res., 2000, 105(B5): 10939~10960.
    Dodge D A, Beroza G C, and Ellsworth W L. Foreshock Sequence of the 1992 Landers, California, Earthquake and its Implications for Earthquake Nucleation. J. Geophys. Res., 1995, 100(B7): 9865~9880. Douglas A. Joint epicenter determination. Nature, 1967, 215: 47~48.
    Eberhart-Philips and Michael A J, Three-Dimensional Velocity Structure, Seismicity, and Fault Structure in the Parkfield Region, Central California. J. Geophys. Res., 1993, 98(B9): 15737~15758.
    Eberhart-Philips D. Three-Dimentional P and S Velocity Structure in the Coalinga Region, California. J Geophys. Res., 1990, 95(B10): 15343~15363.
    Ellsworth W L. Three-dimensional structure of the crust and mantle beneath the island of Hawaii, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, 1977, 327.
    Kagan Y Y, and Jackson D D. Long-term earthquake clustering. Geophys. J. Int., 1991, 104:117~133.
    Fehler M, Phillips W S, and House L, et al. Improved Relative Locations of Clustered Earthquakes Using Constrained Multiple Event Location. Bull. Seim. Soc. Am., 2000, 90(3):775~780.
    Fremont M J and Malone S D. High Precision Relative Locations of Earthquakes at Mount St. Helens, Washington. J. Geophys. Res., 1987, 92(B10):10223~10236.
    Frohlich C. An efficient method for joint hypocenter determination for large groups of earthquakes. Comput. Geosci., 1979, 5: 387~389.
    Frohlich C, and Davis S. Teleseismic b values: Or, much ado about 1.0. J. Geophys. Res., 1993, 98: 631~644.
    Gan W, Svarc JL, Savage JC, Prescott WH. Strain accumulation across the Eastern California Shear Zone at latitude 36 degrees 30 'N. J. Geophys. Res., 2000, 105: 16229~16236.
    Gieger L. herdbestimming bei Erdbeben aus den Ankunftszeiten. K. Ges. Wiss. Gott., 1910, 4:331~349.
    Gillard D, Rubin A M, and Okubo P. Highly concentrated seismicity caused by detformation of Kilauea’s deep magma system. Nature, 1996, 384: 343~346.
    Got J –L, Frechet, Klein F W. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J. Geophys. Res., 1999, 99: 15375~15386.
    Gutenberger, B., Richter, C. F., Frequency of earthquakes in California. Bull. Seism. Soc. Am., 1944, 34:185~188. Haase J S, Shearer P M, and Aster R C. Constraints on Temporal Variations in Velocity near Anza, California, from Analysis of Similar Event Pairs. Bull. Seim. Soc. Am., 1995, 85(1): 194-206.
    Hasegawa H S, Adams J A, and Yamazakik. Upper crustal stresses and vertical stress migration in eastern Canada. J. Geophys. Res., 1985, 90: 3637~3648.
    Hawley B W, Zandt G, and R. B. Smith R B. Simultaneous Inversion for Hypocenters and Lateral Velocity Variations: An Iterative Solution with a Layered Model. J Geophys. Res., 1981, 86(B8): 7073~7086.
    Ito A. High resolution relative hypocenters of similar earthquakes by cross-spectral analysis method. J Phys. Earth, 1985, 33: 7073~7086.
    Iwasaki T, and Sato R. Strain field in a semi-infinite medium due to an inclined rectangular fault. J. Phys. Earth, 1979, 27: 285~314.
    Kagan Y Y. Statistics of characteristic earthquakes. Bull. Seim. Soc. Am., 1993, 83:7~24.
    King R W, Shen F, Burchfiel et al,1997. Geodetic measurement of crustal motion in southwest China. Geology, 25: 179~182.
    Kirby S H. Rheology of the lithosphere. Rev. Geophys. Space Phys., 1983, 21: 1485~1487.
    Lay T, Kanamori H, and Ruff L. The asperity model and the nature of large subduction zone earthquakes. Earthquake Prediction Res, 1982, 1: 3~72.
    Lay T, and Kanamori H. The asperity model of earthquake sources and its implication for triggering and discrimination, in Earthquake Prediction: An International Review, Maurice Ewing Ser., 4, vol. Edited by D. W. Simpson, and P. G. Richards, AGU, Washington, D.C. 1981, 579~592.
    Lindh A G, and Boore D M. Control of rupture by fault geometry during the 1966 Parkfield earthquake. Bull. Seim. Soc. Am., 1981, 71: 95~116.
    Ma K F and Song T A. Thermo-mechanical structure beneath the young orogenic belt of Taiwan. Tectonophysics, 2004, 388:21~31.
    Malin P E, Blakeslee S N, Alvarez MG, and Martin A J. Microearthquake imaging of the Parkfield asperity, Science, 1994, 244: 557~559.
    Magistrale H, and Sanders C. Evidence from precise earthquake hypocenters for segmentation of the san Andreas fault in San Gorgonio Pass. J Geophys Res., 1996, 101: 3031~3044.
    Mansinha L, and Smylie D E. Effect of earthquakes on the Chandler wobble and the secular polar shift. J Geophys Res., 1967, 72: 4731~4743.
    Mansinha L, and Smylie D E. The displacement fields of inclined faults. Bull. Seim. Soc. Am., 1971, 61: 1433~1440.
    Maruyama T. Statical elastic dislocation in an infinite and semi-infinite medium. Bull. Earthq. Res. Inst., Tokyo Univ. 1971, 42: 289~368.
    Menke W. Using Waveform Similarity to Constrain Earthquake Locations. Bull. Seim. Soc. Am.,1999, 89(4):1143~1146.
    Michael A J. Effects of three-dimensional velocity structure on the seismicity of the 1984 Morgan Hill, California, after sequence. Bull. Seim. Soc. Am., 1988, 78: 1199~1221.
    Miyamura S, Omote S, Teissryre R, et al. Multiple shocks and earthquake series pattern. Bull. Int. Inst. Seismol. Earthquake Eng., 1964, 2: 71~92.
    Mogi, K., Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, Bull. Earthq. Res. Inst., 1962, 40:831~853.
    Mori, J., Abercrombie, R. E., Depth dependence of earthquake frequency-magnitude distributions in California: Implications for the rupture initiation, J. Geophys. Res., 1997, 102: 15081~15090.
    Nadeau R M, Foxall W, and McEvilly. Clustering and periodic recurrence of microearthquakes on the san Andreas Fault at Parkfield, California. Science, 1995, 267: 503~507.
    Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seim. Soc. Am., 1985, 75: 1135~1154.
    Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seim. Soc. Am., 1992, 82(2): 1018~1040.
    Ogata Y, and Katsura K. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophys. J. Int., 1993, 113: 727~738.
    ?ncel A O, Main I, Alptekin O, et al. Spatial variations of the fractal properties of seismicity in the Anatolian Fault Zones. Tectonophysics, 1996, 257: 189~202.
    ?ncel A O, Wyss M. The major asperities of the 1999 Mw=7.4 Izmit earthquake defined by the microseismicity of the two decades before it. Geophys. J. Int., 2000, 143: 501~506.
    Paige C C, Saunders M A. LSQR: Sparse linear equations and least squares problem. ACM Translations on Mathematical Software, 1982, 8/2: 195~209.
    Pasquale V, Verdoya M, Chiozzi P, et al. Dependence of the seismotectonic regime on the thermal state in the Northern Italian Apennines. Tectonophysics, 1993, 217: 31~41.
    Pasquale V, Verdoya M, Chiozzi P, et al. Rheology and seismotectonic regime in the northern central Mediterranean. Tectonophysics, 1997, 270: 239~257.
    Pavlis G L and Booker J R. The Mixed Discrete-Continuous Inverse Problem: Application to the Simultaneous Determination of Earthquake Hypocenters and Velocity Structure. J Geophys. Res., 1980, 85(B9):4801~4810.
    Pavlis G L and Booker J R. Progressive Multiple Event Location (PMEL). Bull. Seim. Soc. Am.,,1983,73,6,1753-1777.
    Paul J, Burgmann R, Gayr V K, et al. The motion and active deformation of India. Geophys. Res. Lett.,, 2001,28: 647~650.
    Poupinet G, Ellsworth W L, Frechet J. Monitoring Velocity Variations in the Crust Using Earthquake Doublets: An Application to the Calaveras Fault, California. J Geophys Res., 1984, 89: 5719~5731.
    Power J A, Wyss M, and Latchman J L. Spatial variations in the frequency-magnitude distribution of earthquakes at Soufriere Hills Vocano, Montserrat, West Indies. Geophys. Res. Lett., 1998, 25(19): 3653~3656.
    Pujol J. Comments on the Joint Determination of Hypocenters and Station Correction. Bull. Seim. Soc. Am.,1988, 78(3):1179~1189.
    Pujol J. Joint hypocentral location in media with lateral velocity variations and interpretation of the station corrections. Phys. Earth Planet. Inter., 1992, 75: 7~24.
    Pujol J. Application of the JHD technique to the Loma Prieta, California, mainshock-aftershock sequence and implications for earthquake location. Bull. Seim. Soc. Am.,1995, 85:129~150.
    Pujol J. An integrated 3D velocity inversion-joint hypocentral determination relocation analysis of events in the Northridge area. Bull. Seim. Soc. Am.,1996, 86(1B):S138~S155.
    Ranalli G. Rheology of the earth: Deformation and flow Processes in Geophysics and Geodynamics. Allen and Unwin, Boston, 1987.
    Ranalli G and Murphy D C. Rheological stratification of the lithosphere. Tectonophysics, 1987, 132: 281~295. Rietbrock and Waldhauser. A narrowly spaced double-seismic zone in the subducting Nazca plate. Geophys. Res. Lett., 2004, 31: L10608.
    Rubin A M, Gillard D, Got J –L. Streaks of microearthquakes along creeping faults. Nature, 1999, 400, 635~641.
    Sambridge M and Gallagher K. Earthquake hypocenter location using genetic algorithms. Bull. Seim. Soc. Am., 1993, 83(5):1467~1491.
    Sanchez J J, Mcnutt S R, Power J A, et al. Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo Vocano. Bull. Seim. Soc. Am., 2004, 94(2): 430~438.
    Savage J C. Effect of crustal layering upon dislocation modeling. J. Geophy. Res., 1987, 92(B10): 10595~10600.
    Savage J C ,Svarc J L, and Prescott W H. Geodetic estimates of fault slip rates in the San Francisco Bay area. J. Geophys. Res., 1999, 104: 4995~5002.
    Schaff D P, Bokelmann G H R, Beroza G C, et al. High-resolution image of Calaveras fault seismicity. J. Geophys. Res., 2002, 107(B9): ESE 5-1~5-16.
    Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seim. Soc. Am., 1968, 58: 399~4151968.
    Schorlemmer D, Wiemer S, and Wyss M. Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res., 2004, 109: B12307.
    Shaw J H, Shearer P M. An elusive blind-thrust fault beneath Metropolitan Los Angeles. Science, 1999, 283: 1516~1518.
    Shearer P M. Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence. J Geophys Res.,1997, 102(B4): 8269~8283.
    Shearer P M. Evidence from a Cluster of Small Earthquakes for a Fault at 18km Depth Beneath Oak Ridge, Southern California. Bull. Sceism. Soc. Am., 1998, 88(6):1327-1336.
    Shearer P M. Parallel fault strands at 9-km depth resolved on the Imperial Fault, Southern California, Geophys. Res. Lett., 2002, 29(14): 19.1~19.4.
    Shen Z K, Lu J N, and Wang M et al. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J Geophys Res, 2005, 110, B11409.
    Shi, Y., Bolt, B., The standard error of the magnitude frequency b value, Bull. Seism. Soc. Am., 1982, 72: 1677~1687.
    Sibson R H. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States. Bull. Sceism. Soc. Am., 1982, 72: 151~163.
    Sibson R H. Continental fault structure and the shallow earthquake source. J. Geol. Soc., London, 1983, 140: 741~767.
    Sobiesiak M M. Fault plane structure of the Antofagasta, Chile earthquake of 1995. Geophys. Res. Lett., 2000, 27(4): 581~584.
    Spencer C, and Gubbins D. Travel time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media. Geophys. J. R. Astron. Soc., 1980, 63: 95~116.
    Steketee J A. on Volterra’s dislocation in a semi-infinite elastic medium. Can. J. Phys. 1958, 36: 192~205. Sun Y, Kuleli S, Morgan F D, et al. 2004. Location Robustness of Earthquakes in Sichuan Province, China. Seismo. Res. Lett., 75(1):54~62.
    Thurber C H. Earthquake Locations and Three-Dimensional Crustal Structure in the Coyote Lake Area, Central California. J. Geophys. Res. 1983, 88(B10):8226~8236.
    Urbancic T I, Trifu C I, Long J M, et al. Space-time correlations of b values with stress release. Pure Appl. Geophys., 1992, 139: 449~462.
    Waldhauser F, Ellsworth W. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull. Sceism. Soc. Am., 2000, 90(6): 1353~1368.
    Waldhauser F, Ellsworth W. Fault structure and mechanics of the California, from double-difference earthquake locations. J. Geophys. Res., 2002, 107(B3): ESE 3-1~3-14.
    Waldhauser F, Ellsworth W L, Schaff D P, et al. Streaks, multiplets, and holes: High-resolution spatio-temporal behavior of Parkfield seismicity. Geophys. Res. Lett., 2004, 31: L18608.
    Wang Q, Zhang P Z, Freymueller T J, et al. Present-day crustal deformation in China constrained by Global Positioning System measurements. Science, 2001, 294: 574~577.
    Warren, N W, and Latham G V, An experimental study thermally induced microrupture and its relation to volcanic seismicity, J. Geophys. Res., 1970, 75: 4455~4464.
    Wiemer S. Analysis of seismicity: new techniques and case studies, Ph.D. Thesis, 1996, University of Alaska, Fairbanks, Alaska.
    Wiemer S, and Benoit J P. Mapping the b value anomaly at 100km depth in the Alaska and New Zealand subduction zones, Geophys. Res. Lett., 1996, 23, 13:1557~1560.
    Wiemer S, and McNutt S. Variations in frequency-magnitude distribution with depth in two volcanic areas: Mount St. Helens, Washington, and Mt. Spurr, Alaska and new Zealand subduction zones, Geophys. Res. Letts., 1996, 23: 1557~1560.
    Wiemer S, and McNutt S R, Wyss, M., Temporal and three-dimensional spatial analyses of the frequency-magnitude distribution near Long Valley Caldera, California, Geophys. J. Int., 1998, 134: 409~421.
    Wiemer S, and Wyss M. Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophy. Res., 1997, 102(B7): 15115~15128.
    Wiemer S, and Wyss M. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan. Bull Seismol Soc Am, 2000, 90: 859~869.
    Wolfe C J, Okubo P G, and Shearer P M, Mantle fault zone beneath Kilauea volcano, Hawaii. Science, 2003, 300: 478~480.
    Wu F T, Rau R J, and Salzberg D H. Taiwan orogeny: thin-skinned or lithospheric collision. Tectonophysics, 1997, 274: 191~220.
    Wyss M. Towards a physical understanding of the earthquake frequency distribution, Geophys. J. Roy. Astr. Soc., 1973, 31:341~359.
    Wyss M. Locked and creeping patches along the Hayward fault, California. Geophys. Res. Letts., 2001, 28(18): 3537~3540.
    Wyss M, and Brune J N. The Alaska earthquake of 28 March 1964: A complex multiple rupture. Bull. Seim. Soc. Am., 1967, 57: 1017~1023.
    Wyss M, and Matsumura S. Most likely location of large earthquakes in the Kanto and Tokai areas, Japan, based on the local recurrence times. Physics of the Earth and Planetary Interiors. 2002, 131: 173~184.
    Wyss M, Schorlemmer D, and Wiemer S. Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. J. Geophy. Res., 2000, 105(B4):7829~7844.
    Wyss M, Shimazaki K, and Wiemer S. Mapping active magma chambers by b values beneath the Off-Ito volcano, Japan. J. Geophys. Res., 1997, 102: 20413~20422.
    Wyss M, Hasegawa A, and Nakajima J. Source and path of magma for volcanoes in the subduction zone of northeastern Japan. Geophys. Res. Letts., 2001, 28: 1819~1822.
    Xie J. Rupture characteristics of clustered microearthquakes and variations in fault properties in the New Madrid Seismic Zone. J. Geophys. Res., 2001, 106(B11): 26495~26509.
    Xu X W and Deng Q D. Nonlinear characteristics of paleoseismicity in China, J Geophys. Res., 1996, 101(B3): 6209~6231.
    Yamazaki K. Theory of crustal deformation due to dilatancy and quantitative evaluation of earthquake precursors. Sci. Rep. Tohoku Univ. Ser. 5, Geophys. 1978, 25: 115~167.
    Yang X, and Davis P. Deformation due to a rectangular tension crack in an elastic half-space. Bull. Seim. Soc. Am., 1986, 76: 865~881.
    Yang Z X, Waldhauser F, Chen Y T, et al. Double-difference relocation of earthquakes in central-western China, 1992-1999. J. of Seiem., 2005, 9: 241~264.
    Zhou H.L.,H.L.Liu,and H.Kanamori,Source processes of large earthquakes along the Xianshuihe fault in southwestern China,Bull.Seismol.Soc.Am., 1983, 73(2):537~551.
    Zuniga F R, Wyss M. Most and least-likely locations of large to great earthquakes along the pacific coast of Mexico estimated from local recurrence times based on b-values. Bull. Seim. Soc. Am., 2001, 91(6): 1717~1728.
    陈立华,宋仲和 安昌强等,1992,中国南北带地壳上地幔三维面波速度结构和各向异性. 地球物理学报,35(5):574-583.
    陈社发, 邓起东, 赵小麟等. 1994. 龙门山中段推覆构造带及相关构造的演化历史和变形机制(二). 地震地质, 16(4): 413~421.
    陈运泰, 吴忠良, 王培德等著. 2000. 数字地震学. 北京: 地震出版社.
    陈智梁,张选阳,沈凤等. 1999. 中国西南地区地壳运动的GPS监测. 科学通报, 44(8):851~854.
    成尔林. 1981. 四川及其邻区现代构造应力场和现代构造运动特征. 地震学报,3(3):231~241.
    崔效锋,谢富仁. 1999. 利用震源机制解对中国西南及邻区进行应力分区的初步研究. 地震学报,21(5): 513~522.
    崔作舟, 卢德源, 陈纪平等. 攀西地区的深部地壳结构与构造. 地球物理学报, 1987, 30(6):566~580.
    邓起东, 陈社发, 赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学. 地震地质, 16(4): 389~403.
    邓起东, 冯先岳,张培震等. 2000. 天山活动构造. 北京:地震出版社.
    邓起东,张培震,冉永康. 2002,中国活动构造的基本特征,中国科学 (D),32(12):352~376.
    邓起东. 2002. 中国活动构造研究的进展与展望. 地质论评, 48(2): 168~177.
    邓起东, 张培震, 冉永康等. 2003,中国活动构造与地震活动. 地学前缘, 10 (特刊):66~73.
    丁国瑜. 1990,我国大陆的新构造变形与板内现代运动,《国际大陆岩石圈构造演化与动力学讨论会—第三届全国构造地质会议论文选集》(Ⅱ):前寒武纪构造、活动构造与地震以及其他,北京:科学出版社,73~85.
    丁国瑜,1991,中国岩石圈动力学概论,北京:地震出版社.
    丁志峰,何政勤,孙为国,等,1999,青藏高原东部及其边缘地区的地壳上地幔三维结构. 地球物理学报,42(2):197~205.
    甘卫军,沈正康,张培震等. 2004. 青藏高原地壳水平差异运动的 GPS 观测研究. 大地测量与地球动力学, 24(1): 29~35.
    甘卫军. 2001. GPS 的地球物理应用-美国加州东部及全美中部地壳变形研究[博士论文]. 北京: 中国地震局地质研究所.
    何昌荣, 周永胜, 桑祖南等. 2002. 四川攀枝花辉长岩半脆性—塑性流变的实验研究[J]. 中国科学(D 辑), 32(9): 717~726.
    黄金莉,宋晓东,王素云. 2003. 川滇地区上地幔顶部 P 波速度结构. 中国科学,(D 辑),33(增刊):14~150.
    黄立人,顾国华. 1982. 静力位错理论. 北京:地震出版社.
    黄伟,周荣军,何玉林等. 2000. 四川玉农希断裂的全新世活动与 1975 年康定六巴 6.2 级地震. 中国地震, 16(1):53~59.
    胡圣标, 何丽娟, 汪集旸. 2001. 中国大陆地区大地热流数据汇编(第三版). 地球物理学报, 44(5): 612~626.
    贾东,陈竹新,贾承造等. 龙门山前陆褶皱冲断带构造解析与川西前陆盆地的发育. 高校地质学报,9(3):402~409.
    江在森,马宗晋,张希等. 2001. 青藏块体东北缘近期水平运动与变形。地球物理学报,44(5):636~644.
    阚荣举,张四昌,晏凤桐等. 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨. 地球物理学 报, 20(2): 96~108.
    李传友, 宋方敏, 冉永康. 2004. 龙门山断裂带晚第四纪活动性讨论. 地震地质, 26(2): 248~258.
    李国和, 王思敬, 商彦军等. 2000. 川滇交界地区地壳结构及现代地壳活动模式. 地质力学学报, 6(2): 82~91.
    李 坪, 汪良谋. 1975. 云南川西地区地震地质基本特征的探讨. 地质科学, 4: 308~325
    李坪. 鲜水河—小江断裂带. 北京:地震出版社, 1993, 74.
    李松林,张先康,张成科等. 2002. 玛沁—兰州—靖边地震测深剖面地壳速度结构的初步研究. 地球物理学报,45(2):210~25.
    李涛,王宗秀,马宗晋. 2003. 中轴构造带(南段)的变形及缩短速率计算. 地学前缘, 10(S1):176~187
    李天祒. 1998. 鲜水河活动断裂带及强震危险性评估. 北京:地震出版社,230pp.
    梁尚鸿,束沛镒等. 1986. 攀西地区地震分布和构造应力场特征. 地球物理学报, 29(6): 557~566.
    林茂炳, 吴山. 1991. 龙门山推覆构造带变形特征. 成都地质学院学报, 18(1): 46~55.
    刘和甫,梁慧社,蔡立国等. 1994. 川西龙门山冲断系构造样式与前陆盆地演化. 地质学报,68(2):101~117.
    刘树根,罗志立,赵锡奎等. 2003. 中国西部盆山系统的耦合关系及其动力学模式-以龙门山造山带-川西前陆盆地系统为例. 地质学报,77(2): 177~186.
    龙思胜,赵珠. 2000. 鲜水河、龙门山和安宁河三大断裂交汇地区震源应力场特征. 地震学报,22(5):457~464.
    卢华复,董火根,邓锡殃等. 1989. 前龙门山前陆盆地推覆构造的类型和成因. 南京大学学报(地球科学), 25(4):32~41.
    罗志立. 1991. 龙门山构造带岩石圈演化的动力学模式. 成都地质学院学报, 18(1): 1~7.
    龙德雄, 邓天岗. 1990. 1786 年康定地震形变特征的初步研究. 地震研究, 13 (1): 51~60.
    吕江宁,沈正康,王敏. 2003. 川滇地区现代地壳运动速度场与活动块体模型研究. 地震地质,25(4):543~554.
    马保起, 苏刚, 侯治华等. 2005. 利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率. 地震地质, 27(2): 234~242.
    马杏垣(主编),1989,中国岩石圈动力学地图集. 北京:中国地图出版社,1~68.
    牛之俊,王敏,孙汉荣等. 2005. 中国大陆现今地壳运动速度场的最新观测结果. 科学通报,50(8):839~840.
    潘杏南, 赵济湘, 张选阳等. 1987. 康滇构造与裂谷作用. 重庆:重庆出版社: 205~288.
    乔学军,王琪,杜瑞林. 2004. 川滇地区活动地块现今地壳形变特征. 地球物理学报, 47(5): 805~811.
    任金卫,李坪. 则木河断裂北段地震地貌及古地震研究.地震地质,1989,11(1):27~34.
    申重阳, 王 琪, 吴 云等. 2003. 川滇菱形块体主要边界运动模型的 GPS 数据反演分析. 地球物理学报, 45(3): 352~361.
    宋鸿彪, 1994,龙门山造山带地质和地球物理资料的综合解释,成都理工学院学报,21(2):79~88.
    宋仲和,安昌强,陈国英等,1991,中国西部三维速度结构及其各向异性,地球物理学报,34(6):694~707.
    宋仲和,陈国英,安昌强等. 1993. 中国大陆及其海域地壳—上地幔三维速度结构. 中国科学(B 辑),23(2):180~188.
    孙洁, 徐常芳, 江钊等. 1989. 滇西地区地壳上地幔电性结构与地壳构造运动的关系. 地震地质, 11(1): 35~45.
    孙洁, 晋光文, 白登海等. 2003. 青藏高原东缘地壳、上地慢电性结构探测及其构造意义. 中国科学(D 辑), 33(增刊): 173~180.
    唐荣昌,韩渭宾. 1993. 四川活动断裂与地震. 北京:地震出版社.
    滕吉文等. 2002. 东亚大陆及周边海域 Moho 界面深度分布和基本构造格局. 中国科学,32(2):89~100.
    王椿镛, 韩渭宾, 吴建平等. 2003. 松潘一甘孜造山带地壳速度结构. 地震学报, 25(3): 229~241.
    王椿镛,W. D. Mooney,王溪莉等. 2002. 川滇地区地壳上地幔三维速度结构研究. 地震学报,24(1),1~16.
    王椿镛,吴建平,楼海等. 2003. 川西藏东地区的地壳 P 波速度结构.中国科学,(D 辑),33(增刊):181~189.
    王二七,Burchfiel C. B., Royden R等. 1995. 滇中小江走滑剪切带晚新生代挤压变形研究. 地质科学,3(03):209~219.
    王凯英. 2003. 川滇地区现今应力场与断层相互作用研究[博士论文]. 北京: 中国地震局地质研究所.
    王敏,沈正康,牛之俊等. 2003. 现今中国大陆地壳运动与活动地块模型研究. 中国科学(D 辑),33(增刊): 21~32.
    王小亚, 朱文耀, 符养等. 2002. GPS 监测的中国及其周边现时地壳形变. 地球物理学报, 45(2): 198~209.
    汪集旸, 黄少鹏. 1990. 中国大陆地区大地热流数据汇编(第二版). 地震地质, 12(4):351~366.
    汪素云,许忠淮,俞言祥等. 北京及邻区现代微震重新定位及其构造含义. 中国地震,1995,11(3):222~230.
    汪 洋. 1999. 中国大陆大地热流分析[博士论文]. 北京: 中国科学院地质研究所.
    闻学泽. 1983. 则木河断裂带的第四纪构造活动模式. 地震研究, 6(1):41~50.
    闻学泽,吴迪忠. 1985. 四川西昌邛海第四纪盆地成因的探讨. 地质论评,31(4): 360~366.
    闻学泽,白兰香. 1985. 鲜水河活动断裂带形变组合与运动特征的研究. 中国地震,1(4):53~59.
    闻学泽,杜平山,龙德雄. 2000. 安宁河断裂带小相岭段古地震的新证据及最晚事件的年代. 地震地质, 22 (1): 1~8.
    闻学泽,徐锡伟,郑荣章等. 2003. 甘孜—玉树断裂的平均滑动速率与近代大地震破裂. 中国科学,(D 辑),33(增刊):199~208.
    向宏发, 徐锡伟, 虢顺民等. 2002. 丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义-陆内活动地块横向构造的屏蔽作用. 地震地质, 24(2): 188~198.
    熊绍柏, 滕吉文, 尹周勋等. 1986. 攀西构造带南部地壳与上地慢结构的爆炸地震研究. 地球物理学报, 29(3): 235~244.
    徐杰,李祥根,虢顺民. 1978. 安宁河断裂带新构造运动的初步研究. 地质科学,3:235~245.
    徐锡伟,于贵华,马文涛等. 2003a. 中国大陆中轴构造带地壳最新构造变动样式及其动力学内涵. 地学前缘,10(增刊):160~167.
    徐锡伟,闻学泽,郑荣章等. 2003b. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D 辑),33(增刊):151~162.
    徐锡伟,程国良,于贵华等. 2003c. 川滇菱形块体顺时针转动的构造学与古地磁学证据. 地震地质,25(1):61~70.
    徐锡伟,闻学泽,于贵华等. 2005a. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征. 中国科学(D 辑),35(6):540~551.
    徐锡伟,张培震,闻学泽等. 2005b. 川西及其邻近地区活动构造基本特征与强震复发模型. 地震地质,27(3): 446~461.
    徐旭辉. 1993. 川西龙门山前缘地质地球物理解释. 石油实验地质,15(1):60~72.
    许志琴,侯立玮,王宗秀. 1992. 中国松潘-甘孜造山带的造山过程. 北京, 地质出版社.
    鄢家全,时振梁,环文林等. 1980. 强余震的断层解特征. 地震学报,2(4):395~403.
    杨晓平,蒋溥,宋方敏等. 1999. 龙门山断裂带南段错断晚更新世以来地层的证据. 地震地质,21(4):31~34.
    杨智娴,陈运泰,郑月军等. 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用. 中国科学,(D 辑),33(增刊):129~134.
    杨智娴,于湘伟,郑月军等. 2003.我国中西部地区地震的重新定位和三维地壳速度结构. 地震学报,2004, 26(1):19~29.
    易桂喜, 闻学泽, 徐锡伟. 2002. 川滇地区若干活动断裂带整体的强地震复发特征研究[J].中国地震, 18(3): 267~276.
    易桂喜, 闻学泽,范军等. 2004. 由地震活动参数分析安宁河-则木河断裂带的现今活动习性及地震危险性. 地震学报,26(30):294~303.
    易桂喜,范军,闻学泽. 2005. 由现今地震活动分析鲜水河断裂带中南段活动习性与强震危险地段. 地震, 25(1): 58~65.
    尹周勋, 熊绍柏. 1992. 西昌-渡口-牟定地带二维地壳结构的爆破地震研究. 地球物理学报, 35(4): 451~458.
    臧绍先,李昶,魏荣强. 2002. 岩石圈流变机制的确定及影响岩石圈流变强度的因素. 地球物理学进展, 17(1):50~60.
    张国民,汪素云,李丽等. 2002. 中国大陆地震震源深度及其构造含义. 科学通报, 47(9): 663~668.
    张家声,李燕,韩竹军. 2003. 青藏高原向东挤出的变形响应及南北地震构造带组成. 地学前缘,10(特刊):168~175.
    张培震,邓起东,张国民等. 2003. 中国大陆的强震活动与活动地块. 中国科学(D 辑),33(增刊):12~20.
    张培震,王琪,马宗晋. 2002. 中国大陆现今构造运动的 GPS 速度场与活动地块. 地学前缘,9(2):430~441.
    赵小麟, 邓起东, 陈社发等. 1994. 龙门山中段推覆构造带的构造地貌学研究. 地震地质, 16(4): 422~428.
    赵小麟、邓起东、陈社发. 1994. 岷江隆起的构造地貌学研究. 地震地质,16(4):429~439.
    赵 珠, 张润生. 四川地区地壳上地幔速度结构的初步研究. 地震学报,1987,9(2):154~166.
    赵 珠,范军,郑斯华等. 龙门山断裂带地壳速度结构和震源位置的精确修定. 地震学报, 1997, 19(6):615~622.
    周德敏. 2005. 青藏高原东北缘现今地壳形变的 GPS 观测研究[硕士论文]. 中国地震局地质研究所.
    周荣军, 蒲晓虹, 何玉林 等, 2000. 四川岷江断裂带北段的新活动、岷江断块的隆起及其与地震活动的关系地震地质, 22(3): 285~294
    周荣军, 李勇, Densmore 等, 2000. 青藏高原东缘晚第四纪构造变形的新证据. 见:中国地震学会第 8 次
    学术讨论大会论文摘要集. 北京:地震出版社.
    周永胜,何昌荣. 2003. 地壳主要流变参数及华北地壳流变性质研究. 地震地质, 25(1): 109~122.
    周永胜,何昌荣. 2004. 大陆岩石圈流变研究进展与高温高压流变实验现状. 地球物理学进展,2004, 19(2):246~254.
    朱介寿, 曹家敏, 刘舜化等. 1984. 用人工地震初探川西地区的地壳结构. 成都地质学院学报, 3: 111~122.
    《四川地震资料汇编》编辑组,1980. 四川地震资料汇编,四川人民出版社.
    中国地震局震害防御司编, 1999.中国近代地震目录. 北京: 中国科学技术出版社.
    国家地震局震害防御司编, 1995. 中国历史强震目录(公元前 23 世纪—公元 1911 年), 北京: 地震出版社, 514.
    国家地震局震源机制研究小组,1973. 中国地震震源机制的研究(第一集).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700