棘球蚴自然抗原和卡介苗对Th1/Th2转录因子和细胞因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的模拟自然环境下泡球蚴感染的过程,通过观察Th1/Th2关键转录因子(T-bet和GATA-3)和其标志性细胞因子在卡介苗和棘球蚴自然抗原免疫及免疫后再用泡球蚴原头蚴攻击感染昆明鼠模型的表达水平,探讨包虫病感染对中间宿主的抗感染免疫和免疫病理反应在不同情况下的调节机制,并评估其对宿主细胞免疫反应的影响。
     方法建立昆明小鼠动物模型:用实验室常规制备的含0.1mg/ml蛋白的单房棘球蚴囊液抗原和泡球蚴组织提取抗原以皮下注射的方法免疫昆明小鼠,初始免疫量为0.2mg/每只,每一个月加强免疫量为0.1mg/每只。用市售的卡介苗(BCG)免疫方法同前(0.05mg/每只注射)。取一半的免疫后小鼠作泡球蚴原头蚴的攻击感染,感染方采用腹腔内注射2000个原头蚴(PBS稀释)。上述所有组各为20只鼠,雌雄各半。设PBS注射的空白对照和不作免疫的感染对照。各组10只雌雄各半。动物模型的处理和标本的收集:攻击感染四个月后,所有的鼠用乙醚麻醉处死前取血,然后立即取肝脾脏放入RNALater保存液中。处死后记录一般状况并检查个器官状态和感染病灶的分布,大小等情况;所取得的标本放置于-800C备用。用实时定量聚合酶链反应(qRT-PCR)检测脾组织中GATA-3及T-bet的mRNA表达水平;酶联免疫吸附法检测血清中白介素4(IL-4)、γ干扰素(IFN-γ)、白介素2(IL-2)、白介素6(IL-6)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、白介素10(IL-10)和白介素17(IL-17)的含量。所有的数据结果用SPSS软件做单因素相关分析,并对比个各组间转录因子和细胞因子的表达量均数差别的显著性检验。
     结果:泡球蚴攻击感染的小鼠在感染20天后,腹外可看到小米粒大的包囊,之后,腹腔逐步膨隆,活动减弱,毛发稀疏。同时出现互相撕咬现象,个别小鼠咬头,有些小鼠出现哮喘等过敏样症状,多数小鼠尿道口红肿,导致尿道水肿,排尿不畅,解剖发现膀胱充盈,肾脏灰白色,未做任何处理,很快死亡。所有实验鼠包括正常对照,感染对照,免疫和免疫后感染鼠模型的成活率为73% (102/140)并且各感染组病灶的大小和重量比较的差异无显著意义;Th1/Th2关键转录因子和细胞因子在血清中的表达量检测结果显示:比较CE免疫组、AE免疫组、卡介苗免疫组、感染对照组、CE免疫攻击组和AE免疫攻击组与PBS对照组小鼠的转录因子(GATA-3mRNA和T-betmRNA)和其标志性细胞因子(INF-γ及IL-4)以及其它细胞因子包括GM-CSF、IL-2、IL-6、IL-10和IL-17的表达量,差异均无统计学意义(P>0.05)。比较卡介苗免疫攻击组与PBS对照组的转录因子(T-betmRNA)和其标志性细胞因子(INF-γ)以及其它Th1/Th17型的细胞因子(GM-CSF、IL-2和IL-17)的表达量,差异有统计学意义(P<0.05)。而比较卡介苗免疫攻击组与PBS对照组及感染对照组的转录因子(GATA-3mRNA)和其标志性的细胞因子(IL-4)和其它Th2细胞因子(IL-6和IL-10)的表达量,差异无统计学意义(P>0.05)。卡介苗免疫攻击组T-betmRNA的表达量与IFN-γ成正相关(r=0.71,P<0.05)。
     结论: Th1/Th2细胞免疫反应在泡球蚴感染的昆明鼠动物模型宿主体内可以长期共同存在处于平衡状态,反映了宿主对泡球蚴产生的抗感染免疫和由寄生虫抗原诱导宿主产生的免疫病理反应的相互作用和相互适应的复杂调节过程。实验证明卡介苗(BCG)有上调Th1型免疫反应的作用,用BCG可以干预或治疗由泡球蚴抗原诱导的晚期泡球蚴(AE)病人的免疫抑制状态。
Objective: To investigate the cellular immune effects of either immunization by natural antigens of Echinococcus spp. and BCG or challenge by the protoscolexes of E. multilocularis (Em) in mice model of Kunming spp.
     Methods: After either immunized mice with BCG (0.1 IU/ml), natural antigens (0.1mg/ml) of Echinococcus spp. By subcutaneous injection 0.2ml/per mice firstly, and boosted 0.1ml/per mice after a month for twice. After immunization above, half numbers of mice were challenged by use of E. multilocularis protoscolexes. Every immunized and challenged group had 20 mice with half and half females and males. The normal control and infectious control (no-immunization but only infectious) group had 10 mouse, respectively with half and half females and males. A quantity of the signature Th1/Th2 cytokines of IFN-γ/IL-4 and other cytokines (GM-CSF or IL-2/IL-6 and IL-10/ IL-17) in serum by using capture-ELISA, and of the transcriptional regulators of T-bet and GATA-3 in spleen-tissue by using qRT-PCR was undertaken. The data analysis were carried out by use of SPSS for a comparison of the average expression amounts of various proteins between different groups and the 95% CIs was set-up for significant difference.
     Results: After 20 days challenging of alveolar echinococcosis protoscolexes, the successful infectious mice (73%, 102/140) can be observed some allergic symptoms and abdominal lesion growth signs. Comparing the weight and size of lesions in various infectious group showed all in the insignificant findings. During the whole time infection-period after E.multilocularis protoscolex challenge, both key transcription factors and signature cytokines showed a homogeneious expression patterns. But it was very different in BCG immunized mice of either post-challenge or non-challenge, showing regulated the expressions of T-bet mRNA and signature cytokine of IFN-γand other Th1/Th17type of cytokines (IL-2, GM-CSF,IL-17) though insignificant impact of GATA-3 mRNA and its signature cytokine of IL-4 and or other cytokines ( IL-6/ IL-10) expressions were found.
     Conclusion: The long term balanced co-existence of Th1/Th2 reactions in mice model with alveolar echinococcosis (AE) infection may reflect a regulation mechanism for optimally adapted immune responses to a plethora of invading pathogens by adjusting a fine balance between protective and immunopathological inflammatory processes. BCG may be used for intervention when immune-suppression is induced in AE sufferance.
引文
1、Mejri N, Hemphill A, Gottstein B。Triggering and modulation of the host-parasite interplay by Echinococcus multilocularis : a review[J] .Parasitology. 2010 .137(3):557-68
    2、Gottstein, B. and Hemphill, A. . Echinococcus multilocularis : the parasite-host interplay[J]. Experimental Parasitology ,2008.119, 447–452
    3、Grakoui A ,Donermeyer DL ,K anagawa O ,et al . TCR-independent pathways mediate the effects of antigen dose and altered peptide ligands on Th cell polarization[J]。J Immunol ,1999 .162 :1923
    4、Del Prete GF ,De Carli M,Mastromauro C ,et al . Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper ) profile of cytokine production[J ] . J Clin Invest .1991 .88 :346
    5、Xin L ,Li Y, Soong L.Role of interleukin-1 in activating the CD11chigh CD45RB- dendritic cell subset and priming Leishmania amazonensis-specific CD4+T cells in vitro and in vivo[J].Infect Immun .2007. 75 (10 )5018-5026.
    6、王莉,吴玉章。Th1/ Th2极化:多因素的参与和调控[J]。上海免疫学杂志,2001,21(6):376-379
    7、周必英,陈雅棠,李文桂.多房棘球蚴病诊断抗原研究进展[J]。中国寄生虫学与寄生虫病杂志。2009;27(1):75-80
    8、Siracusano A, Margutti P, Delunardo F, et al.Molecular cross-talk in host-parasite relationships:the intriguing immunomodulatory role ofEchinococcus antigen B in cystic echinococcosis[J]。Int J Parasitol. 2008 Oct;38(12):1371-6
    9、周必英,陈雅棠,李文桂。囊型包虫病诊断抗原研究进展[J]。中国人兽共患病学报。2009,25(4):386-389
    10、Hiroyuki Sugimoto, Tomoki Ito, Yoshitaro Torii, et al.Thymic stromal lymphopoietin plays an adjuvant role in BCG-mediated CD8+ cytotoxic T cell responses through dendritic cell activation[J]. Clinical Immunology. 2010. 136, 205–216
    11、李文桂,朱佑明,王鸿。pCD- Em10对泡球蚴感染小鼠免疫应答的影响[J]。中国免疫学杂志。2008;24(2):96-105
    12、ETTIE M. LIPNER, P. G. GOPI, R. SUBRAMANI, C. KOLAPPAN, K. SADACHARAM,et al. Coincident filarial intestinal helminth and mycobacterial infection helminths fail to influence tuberculin reactivity but BCG influences hookworm prevalence[J]. Am. J. Trop. Med. Hyg., 74(5), 2006, pp. 841–847
    13、F. Biet , C. Duez , L. Kremer , et al.Recombinant Mycobacterium bovis BCG producing IL-18 reduces IL-5 production and bronchoalveolar eosinophilia induced by an allergic reaction[J] . Allergy 2005: 60: 1065–1072
    14、叶艳菊,李文桂。棘球蚴病重组BCG疫苗的研究进展[J]。中国病原生物学杂志2009;4(5):391-395
    15、D. ELIAS, D. WOLDAY, H. AKUFFO, et al.Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacilli Calmette-Guerin (BCG) vaccination[J]. Clin Exp Immunol. 2001; 123:219-225
    16、Mariani L,Lohning M,Radbruch A,Hofer T.Transcriptional controlnetworks of cell differentiation:insights from helper T lymphocytes[J].Prog Biophys Mol Biol,2004;86(1):45-76.
    17、Agnello D,Lankford CS,Bream J,et al。Cytokines and transcription factors that regulate T helper cell differentiation:new players and new insights[J].Clin Immunol,2003;23(3):147-161
    18、Mark S Sundrud and Michael A Nolan。Synergistic and combinatorial control of T cell activation and differentiation by transcription factors。Curr Opin Immunol[J]. 2010 Jun;22(3):286-92
    19、Dong-Hong Zhang, Liyan Yang, Lauren Cohn, et al。Inhibition of Allergic Inflammation in a Murine Model of Asthma by Expression of a Dominant-Negative Mutant of GATA-3[J]。Immunity, 1999,11:473–482
    20、I-cheng ho and Sung-yun pai.GATA-3–Not just for Th2 cells anymore[J]。Cellular & molecular immunology.2007,4(1):15-29
    21、Edward E.et al.GATA-3 actives transcription via two novel domains that areconservedwithintheGATA-4/5/6subfamily[J].Biol.chem.1997.272:8515-8524.
    22、Onodera K et al.Conserved structure、regulatory elements and transcription regulation from the GATA-1 gene testis promoter[J].Biochem.1997,121:251-263
    23、Coussens PM,Pudrith CB ,Skovgaard K, et al . Johne′s disease in cattle is associated with enhanced expression of genes encoding IL-5 ,GATA-3 ,tissue inhibitors of matrix metalloproteinases 1 and 2 ,and factors promoting apoptosis in peripheral blood mononuclear cells[J ] . Vet Immunol Immunopathol ,2005 ,105 (3) :221-234.
    24、董萍云,王娟,李立红。T-bet /GATA-3调控Th1 /Th2分化失衡疾病的研究进展[J]。中国皮肤性病学杂志;2008,22(1):53-54
    25、Dong-Hong Zhang, Lauren Cohn, Prabir Ray,et al。Transcription Factor GATA-3 Is Differentially Expressed in Murine Th1 and Th2 Cells and Controls Th2-specific Expression of the Interleukin-5 Gene[J]。THE JOURNAL OF BIOLOGICAL CHEMISTRY;1997;272(34):21597-21603
    26、Jinfang Zhu, Hidehiro Yamane, Javier Cote-Sierra, et al. GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors[J]. Cell Research ;2006,16: 3-10
    27、Djuretic IM, Levanon D, Negreanu V, et al. Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells[J]. Nature Immunol, 2007, 8: 145-153
    28、邰贺,侯海燕,尹博宇,梁会岭。转录因子T-bet/GATA-3的表达与Th1 /Th2分化的相关性研究[J]。临床误诊误治。2009;22(3):68-70
    29、Qing Yu, Archna Sharma, Sun Young Oh,et al。T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ[J]。Nat Immunol. 2009 ; 10(9): 992–999
    30、Schmitz J, Owyang A, OldhamE, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor–related protein ST2 and induces T helper type 2-associated cytokines[J]. Immunity, 2005, 23: 479-90
    31、谭政,龚非力. T细胞功能亚群[J]。2010,22(6):499-504
    32、Rao A, Luo C,Hogan PG,et al. Transcription factors of the NF-AT family regulation and function[J].Annu Rev Immunol,1997;15:707-747.
    33、Laurie H.Glimcher,Michael J. Townsend, Brandon M. Sullivan et al.Recent developments in the transcription regulation of cytolytic effector cells[J]. IMMUNOLOGY;2004,4:900-911
    34、Takashi usui,Jan c.preiss,Yuka kanno. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription[J].Jem. 2006,203(3):755-766
    35、Stanford L.Peng. The T-box Transcription factor T-bet in immunity and autoimmunity[J]. Cellular & molecular immunology.2006,3(2):86-95
    36、Yi XU , Feng FANG, Hong ZHEN , et al。The Effects of Allitridin on the Expression of Transcription Factor T-bet/GATA-3 in Mice Infected by Murine Cytomegalovirus[J]。Microbiol Immunol , 2004;2(2): 106-110
    37、Hwang ES, Szabo SJ, Schwartzberg PL, et al. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3[J]. Science, 2005, 307: 430-33
    38、王锁英。转录因子T-bet对支气管哮喘免疫调控作用的临床与实验研究[D]。南京:江苏大学,2007
    39、Tau GZ, von der Weid T,Lu B,et al.Interferonγsignaling alters the function of T helper type1 cells[J].J ExP Med,2000;192:977-986
    40、Vila-del sol V,Diaz-Munoz MD,Fresno M.Requirement of tumor necrosis factor alpha and nuclear factor-kappa B in the induction byIFN-gamma of inducible nitric oxide synthasein Macrophages [J].LeukocBiol,2007;81(l):272-283.
    41、刘凡,尹慧彬,苏川. Th17细胞在寄生虫感染免疫中的作用.中国寄生虫学与寄生虫病杂志;2008,26(5):382-387.
    42、Komiyama YS Nakae T Matsuki A et al.IL 17 plays an important role in the development of experimental autoimmune encephalomyelitis [J] . J Immunol 2006 177 (1): 566 -573.
    43、Chen Y Thai P Zhao Y H et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop[J] . J Biol Chem 2003 278(19): 17036 -17043.
    44、Wong CK Ho CY Li EK et al. Elevation of proinflammat orycytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus [J] . Lupus,2000 9(8): 589- 593.
    45、Yoshida S Haque A Mizobuchi T,et al. Anti-type V collagen lymphocytes that express IL-17 and IL-23 induce rejection pathology in fresh and well healed lung transplants[J] . Am J Transplant .2006 6(4): 724-735.
    46、Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods. 2001.25:402–408.
    47、Bortoletti G, Gabriele F, Conchedda M. Natural history of cystic echinococcosis in humans[J]. Parassitologia. 2004;46(4):363-6.
    48、Wu XW, Peng XY, Zhang SJ, et al . Formation mechanisms of the fibrous capsule around hepatic and splenic hydatid cyst[J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2004;22(1):1-4.
    49、Al-Qaoud KM, Abdel-Hafez SK.Humoral and cytokine response during protection of mice against secondary hydatidosis caused by Echinococcus granulosus[J]. Parasitol Res. 2005 Dec;98(1):54-60.
    50、朱兴全,窦兰清,孙学勤。.细粒棘球绦虫排泄分泌抗原研究.。中国兽医科技,.1991,11(21):8-10
    51、陈新华。抗原B诱导泡球蚴肝移植后免疫耐受的机制研究[D]。杭州:浙江大学,2006
    52、张波。泡球蚴感染纯系小鼠诱导免疫耐受的实验研究[D]。乌鲁木齐:新疆医科大学,2009
    53、Wellinghausen, N., P. Gebert, et al. Interleukin (IL)-4, IL-10 and IL-12 profile in serum of patients with alveolar echinococcosis[J].Acta Trop.1999. 73(2): 165-174.
    54、魏晓丽,丁剑冰,许晏。小鼠感染泡球蚴后细胞因子水平的变化[J]。中国寄生虫学与寄生虫病杂志,2004,22(6):361-365
    55、Amri, M., D. Mezioug, et al. Involvement of IL-10 and IL-4 in evasion strategies of Echinococcus granulosus to host immune response[J]. Eur Cytokine Netw .2009.20(2): 63-68.
    56、Emery I, Liance M, Deriaud E,et al.Characterization of T-cell immune responses of Echinococcus multilocularis-infected C57BL/6J mice[J]. Parasite Immunol. 1996 Sep;18(9):463-72.
    57、Mondragon-de-la-Pena, C., S. Ramos-Solis, et al. Echinococcus granulosus down regulates the hepatic expression of inflammatory cytokines IL-6 and TNF alpha in BALB/c mice. Parasite .2002.9(4): 351-356.
    58、Adriana Baz, Gustavo Mourglia Ettlin, Sylvia Dematteis。Complexityand function of cytokine responses in experimental infection by Echinococcus granulosus.Immunobiology 211 (2006) 3–9
    59、Haralabidis S , Karagouni E , Frydas S ,et al . Immunogloblin and chtokine profile in murine secondary hydatidosis [ J ] .Parasite Immunol ,1995 ,17 (12) :625
    60、R. RIGANò, B. BUTTARI,E. DE FALCO,et al. Echinococcus granulosus-speci?c T-cell lines derived from patients at various clinical stages of cystic echinococcosis。Parasite Immunology, 2004, 26, 45–52
    61、SYLVIA DEMATTEIS, MARTIN ROTTENBERG, ADRIANA BAZ. Cytokine response and outcome of infection depends on the infective dose of parasites in experimental infection by Echinococcus granulosus. Parasite Immunology, 2003, 25, 189–197
    62、Mejri N, Gottstein B.Intraperitoneal Echinococcus multilocularis infection in C57BL/6 mice affects CD40 and B7 costimulator expression on peritoneal macrophages and impairs peritoneal T cell activation。Parasite Immunol[J]. 2006 Aug;28(8):373-85
    63、Kizaki T, Ishige M, Bingyan W,et al.Interleukin-1-dependent mitogenic responses induced by protoscoleces of Echinococcus multilocularis in murine lymphocytes[J].J Leukoc Biol. 1993 Mar;53(3):233-9.
    64、Reuben J M, Tanner C E, Portelance V et al . Protection of cotton rats against experi mental Echinococcus multilocularis infections with BCG cellwalls[J] . Infect I mmun, 1979; 23 (3) : 582-586
    65、Lucia E. Rosas, Heidi M. Snider, Joseph Barbi,et al。Cutting Edge: STAT1 and T-bet Play Distinct Roles in Determining Outcome ofVisceral Leishmaniasis Caused by Leishmania donovani[J]。J Immunol。2006;177;22-25
    66、Rutitzky LI, Smith PM, Stadecker MJ.T-bet protects against exacerbation of schistosome egg-induced immunopathology by regulating Th17-mediated inflammation[J].Eur J Immunol. 2009 Sep;39(9):2470-81.
    67、Dustin Cobb, Siqi Guo, Ana M.Lara, et al. T-bet-dependent regulation of CD8+T-cell expansion during experimental Trypanosoma cruzi infection[J]. Immunology, 2009,128, 589–599
    68、Guo, S., D. Cobb, et al. T-bet inhibits the in vivo differentiation of parasite-specific CD4+ Th17 cells in a T cell-intrinsic manner[J].J Immunol.2009. 182(10): 6179-6186
    1. Graichen DA, Gottstein B, Matsumoto J, Muller N, et al. Expression and diversity of Echinococcus multilocularis AgB genes in secondarily infected mice: evaluating the influence of T-cell immune selection on antigenic variation[J]. Gene. 2007;392(1-2):98-105.
    2. Kamenetzky L, Muzulin PM, Gutierrez AM, et al. High polymorphism in genes encoding antigen B from human infecting strains of Echinococcus granulosus[J]. Parasitology. 2005;131(Pt 6):805-15.
    3. Bortoletti G, Gabriele F, Conchedda M. Natural history of cystic echinococcosis in humans[J]. Parassitologia. 2004;46(4):363-6.
    4. Wu XW, Peng XY, Zhang SJ, et al . Formation mechanisms of the fibrous capsule around hepatic and splenic hydatid cyst[J]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2004;22(1):1-4.
    5. Ferreira AM, Irigoin F, Breijo M, Sim RB, Diaz A. How Echinococcus granulosus deals with complement [J].Parasitol Today. 2000;16(4):168-72.
    6. Diaz A, Irigoin F, Ferreira F, et al. Control of host complement activation by the Echinococcus granulosus hydatid cyst[J]. Immunopharmacology. 1999;42(1-3):91-8.
    7. Irigoin F, Laich A, Ferreira AM, et al. Resistance of the Echinococcus granulosus cyst wall to complement activation: analysis of the role of InsP6 deposits[J]. Parasite Immunol. 2008;30(6-7):354-64.
    8. Mejri N, Hemphill A, Gottstein B. Triggering and modulation of the host-parasite interplay by Echinococcus multilocularis: a review[J]. Parasitology. 2009:1-12.
    9. Steers NJ, Rogan MT, Heath S. In-vitro susceptibility of hydatid cysts of Echinococcus granulosus to nitric oxide and the effect of the laminated layer on nitric oxide production[J]. Parasite Immunol. 2001;23(8):411-7.
    10. Dai WJ, Waldvogel A, Jungi T, et al . Inducible nitric oxide synthase deficiency in mice increases resistance to chronic infection with Echinococcus multilocularis[J]. Immunology. 2003;108(2):238-44.
    11. Rigano R, Buttari B, Profumo E, et al. Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response[J]. Infect Immun. 2007;75(4):1667-78.
    12. Kanan JH, Chain BM. Modulation of dendritic cell differentiation and cytokine secretion by the hydatid cyst fluid of Echinococcus granulosus[J]. Immunology. 2006;118(2):271-8.
    13.沈元元,翟志敏. CD4+CD25+调节性Treg细胞与急性移植物抗宿主病[J].免疫学杂志, 2008,24(6) :711-715.
    14. Amri M, Mezioug D, Touil-Boukoffa C. Involvement of IL-10 and IL-4 in evasion strategies of Echinococcus granulosus to host immune response[J]. Eur Cytokine Netw. 2009;20(2):63-8.
    15. Rigano R, Buttari B, De Falco E, et al. Echinococcus granulosus-specific T-cell lines derived from patients at various clinical stages of cystic echinococcosis[J]. Parasite Immunol. 2004;26(1):45-52.
    16. Mezioug D, Touil-Boukoffa C. Cytokine profile in human hydatidosis: possible role in the immunosurveillance of patients infected with Echinococcus granulosus[J]. Parasite. 2009;16(1):57-64.
    17. Macintyre AR, Dixon JB, Green JR. Mitosis and differentiation in T-cells under cytotoxic action of Echinococcus granulosus hydatid fluid[J]. Vet Parasitol. 2001;96(4):277-89.
    18. Macintyre AR, Dixon JB. Echinococcus granulosus: regulation of leukocyte growth by living protoscoleces from horses, sheep, and cattle. Exp Parasitol[J].2001;99(4):198-205.
    19. Eiermann TH, Bettens F, Tiberghien P, et al. HLA and alveolar echinococcosis[J]. Tissue Antigens. 1998;52(2):124-9.
    20. Li F, Shi Y, Shi D. Association of HLA-DRB1 allele and the susceptibility to alveolar echinococcosis in the west of China[J]. Zhonghua Yi Xue Za Zhi. 2000;80(6):414-6.
    21. Vuitton DA, Zhang SL, Yang Y, et al. Survival strategy of Echinococcus multilocularis in the human host[J]. Parasitol Int. 2006;55 Suppl:S51-5.
    22. Zhang S, Hue S, Sene D, Penfornis A, et al. Expression of major histocompatibility complex class I chain-related molecule A, NKG2D, and transforming growth factor-beta in the liver of humans with alveolar echinococcosis: new actors in the tolerance to parasites[J]? J Infect Dis. 2008;197(9):1341-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700