Parylene涂敷技术用于赝复硅橡胶表面改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅橡胶材料由于其优异的生物相容性、化学稳定性及良好的物理机械性能,被国际上公认为颌面缺损软组织修复的首选材料。目前国内外赝复硅橡胶的种类繁多,多数性能已接近或达到了理想值水平,但由于硅橡胶表面疏松多孔,极易被细菌粘附,从而导致患者白色念珠菌性口炎和其他细菌感染的发生。同时,赝复硅橡胶材料也具有表面润湿性差的缺点,与患者敏感脆弱的伤后粘膜接触时会产生摩擦,造成患者不适。这些不足,都是赝复硅橡胶研究中亟待解决的问题。
     Parylene具有极好的防潮性、防霉、抗细菌性、并有极佳的生物惰性和生物相容性、无毒无刺激,可用于金属、玻璃、树脂、塑料、橡胶、陶瓷、纸张等多种材料,已被广泛应用于航空、航天、军工、微电子、半导体、医疗、文物保护等领域。被称为电子器件、医疗元件、橡胶制品和金属零件保护涂层的最高标准。
     本研究首次将Parylene涂敷技术用于口腔生物材料改性方面。并通过多方面性能测试评价了该项技术应用于赝复硅橡胶表面改性的可行性,为口腔生物材料表面改性提出了新的方法和思路,为今后的研究提供参考和依据。
     所进行的研究及结果如下:
     第一部分用于赝复硅橡胶表面改性的Parylene类型筛选
     本实验通过扫描电镜观察三种类型的Parylene涂敷后的试件断面,发现Parylene N涂层与硅橡胶的结合优于Parylene C和Parylene D。Parylene涂敷前,硅橡胶表面疏松多孔,Parylene涂敷后,硅橡胶表面致密,有散在球状突起,无孔隙。通过测试Parylene涂敷前后硅橡胶试件的表面粗糙度,结果表明,Parylene涂敷后的硅橡胶表面粗糙度明显低于涂敷前。
     第二部分Parylene涂敷技术对赝复硅橡胶的抗细菌粘附性能的影响
     本部分以白色念珠菌和变性链球菌为研究对象,分别采用了多种方法测试Parylene涂敷前后白色念珠菌和变性链球菌对硅橡胶和基托树脂的粘附性。计数法结果显示Parylene涂敷可显著降低白色念珠菌和变性链球菌在硅橡胶和基托树脂表面的粘附。XTT减量法用来检测活菌数,结果显示Parylene涂敷后XTT值明显降低。扫描电镜结果显示Parylene涂敷后硅橡胶表面未见明显丝状型白色念珠菌的形成,硅橡胶A-2186和基托树脂L199经Parylene涂敷后,变形链球菌疏松粘附于其表面,有较少的胞外基质形成,细菌菌体量也明显减少。说明Parylene具有一定的抗细菌生物膜形成的能力。激光共聚焦显微镜结果显示Parylene可以减少细菌的粘附,但不具有杀菌性。
     第三部分Parylene涂敷对增强赝复硅橡胶色彩稳定性的研究
     本部分采用常见的三种清洁剂:75%酒精、0.0125%NaClO、蒸馏水和四种日常生活中常接触的四种外源性染色剂:红酒、咖啡、茶水、可乐,通过测试各试件的色度值和对实验前后色差值的对比分析,探讨在它们的作用下Parylene涂敷对两种赝复硅橡胶色彩稳定性的影响。实验结果显示:Parylene涂敷可显著降低清洁剂和外源性染色剂对硅橡胶A-2186和ZY-1造成的颜色改变,可增强其色彩稳定性。
     第四部分Parylene涂敷对改善赝复硅橡胶表面润湿性的研究
     本部分采用极性不同的四种液体(水、甘油、甲酰胺、二碘甲烷),分别测试其在两种硅橡胶表面的接触角,并根据接触角测值计算出材料表面自由能和其极性分量、非极性分量。结果显示:Parylene涂敷可显著降低四种液体在硅橡胶表面的接触角,Parylene涂敷后材料的表面自由能显著升高,且其极性分量和非极性分量均有显著升高。
     第五部分Parylene涂敷对赝复硅橡胶机械性能的影响
     本部分通过测试Parylene涂敷前后两种硅橡胶的撕裂强度、拉伸强度、扯断伸长率、永久变形率和邵氏硬度,评价Parylene涂敷对赝复硅橡胶机械性能的影响。结果显示:Parylene涂敷后两种硅橡胶的撕裂强度、拉伸强度、扯断伸长率及邵氏硬度高于涂敷前,但数值仍在理想值范围内。两种硅橡胶在Parylene涂敷前后的永久变形率无显著性差异。
     第六部分Parylene涂敷对赝复硅橡胶吸水率、溶解率的影响
     本部分通过采用称重法测试Parylene涂敷对赝复硅橡胶吸水率、溶解率的影响,结果显示:Parylene涂敷前,两种硅橡胶的吸水率随着时间增长显著增加,Parylene涂敷后,两种硅橡胶的吸水率于4周以后无显著增长。Parylene涂敷前,两种硅橡胶的溶解率随着时间增长显著增加,Parylene涂敷后,两种硅橡胶的溶解率于2周以后无显著增长。
     通过上述六个部分的实验可知,Parylene涂敷技术用于赝复硅橡胶的表面改性是可行的,可解决赝复硅橡胶易粘附细菌、色彩稳定性差、表面润湿性差、吸水率大等问题,可满足改性要求,改性后可显著提高赝复硅橡胶的整体性能,可提高赝复体的远期修复效果,具有重要的临床意义。
Silicone elastomer has been internationally recognized to be the first choice of material to repair oral and maxillofacial defects due to its excellent biocompatibility, chemical stability and good mechanical properties. There are many types of silicone elastomers at present, and the most performances close to or reach the ideal value. Bacterials stick to silicone elastomer easily because the surface of silicone elastomer is porous and it will cause denture stomatitis and other infects of patients. Silicone elastomer also has poor surface wettability, which will cause friction of mucosa and make patient discomfort. These deficiencies are all problems of silicone elastomer should be solved.
     Parylene has excellent moisture resistance, anti-mildew, anti-bacterial, bioinert, biocompatible, and without toxicity or irritant. It can be used on the surface of mental, glass, resin, plastic, rubber, ceramic, paper and many kinds of materials. It has been widely used in aviation, aerospace, defense, microelectronics, semiconductor, medical, heritage conservation and other fields. It has been considered to be the the highest standard of protective coating on electronic components, medical components, rubber products and metal parts.
     This is the first time that Parylene coating is used in surface modification of oral biomaterials. Its feasibility is evalued by various performance tests. This research provides new method to surface modification of oral biomaterial, and also provides basis to futher researchs.
     1. Type choice of Parylene which used in surface modification of silicone elastomer.
     We observe the cross-section of specimens after three types Parylene coating by SEM. It is found that the combination between Parylene N and silicone elastomer is better than Parylene C or Parylene D. Befor Parylene coating, the surface of silicone elastomer is porous. After Parylene coating, it is dense, and there are scattered globular protuberance on the surface but without any holes. We also test the roughness of silicone elastomer. Results show that the roughness of silicone elastomer after Parylene coating is lower than before Parylene coating.
     2. Research on bacterial adhesion to silicone elastomer before and after Parylene coating.
     This part is mainly about Candida albicans and Streptococcus mutans. We use several methods to test the adhesion of Candida albicans and Streptococcus mutans to silicone elastomer and resin before and after Parylene coating. Cells count assay shows that Parylene can reduce Candida albicans and Streptococcus mutans adhesion to silicone elastomer and resin. XTT reduction assay is used to quantify the viable cells in biofilm. We found that XTT absorbance readings ofsilicone elastomer and resin after Parylene coating decreased significantly compared before Parylene coating. SEM results show that hyphal forms of Candida albicans were scarcely observed on the surface of silicone elastomer after Parylene coating. Streptococcus mutans are loosely attached to the surfaces of silicone elastomers A2186 and lucitone 199 resin, with significantly decreased biomass and fewer extracellular matrixes visualized. It means that Parylene has the ability of anti-bacterial biofilm formation. CLSM results show that Parylene can reduce bacterial adhesion to the suface of material, but it is not bactericidal.
     3. Research on color stability of silicone elastomer before and after Parylene coating.
     We use three types of common cleaning: 75% alcohol, 0.0125%NaClO, distilled water and four types of exogenous dyes which is daily frequently contacted: red wine, coffee, tea, and cola. By testing and analysising the color values of specimens before and after the experiment, the color stability of silicone elastomer before and after Parylene coating with the influence of the seven liquids above is got. Results show that with the effect of three cleaing and four exogenous dyes Parylene can increase the color stability of silicone elastomer A-2186 and ZY-1.
     4. Research on suface wettability of silicone elastomer before and after Parylene coating.
     We use four liquids (water, glycerol, formamide and diiodomethane) with dfferent polar, and test their contact angles on the surface of silicone elastomer. After that the surface free energies of the specimens and their polar and disperse components were calculated from contact angle measurements. Results show that Parylene can reduce the contact angle between the four liquids and silicone elastomer. The surface free energy of silicone elastomer and their polar and disperse components all increase after Parylene coating.
     5. Research on mechanical property of silicone elastomer before and after Parylene coating.
     We test the tear strength, tensile strength, elongation, permanent deformation rate and Shore hardness of silicone elastomer before and after Parylene coating to evaluate the influence of Parylene on the mechanical property of silicone elastomer. Results show that the tear strength, tensile strength, elongation and Shore hardness of silicone elastomer increase in ideal value range after Parylene coating. The permanent deformation rate of silicone elastomer doesn’t change much after Parylene coating.
     6. Research on water absorption and solution of silicone elastomer before and after Parylene coating.
     We test the water absorption and solution of silicone elastomer before and after Parylene coating by weight method. Results show that before Parylene coating, the water absorption of silicone elastomer increases with the time passing by. After Parylene coating, the water absorption of silicone elastomer doesn’t increase much after 4 weeks. Before Parylene coating, the solution of silicone elastomer increases with the time passing by. After Parylene coating, the solution of silicone elastomer doesn’t increase much after 4 weeks.
     Through the six parts above, we can conclude that Parylene coating technique can be used in the surface modification of silicone elastomer. It can reduce bacterial adhesion to silicone elastomer and its water absorbtion. It also improves the color stability and wettability of silicone elastomer. In a word, Parylene coating can significantly improve the performance of silicone elastomer.
引文
[1] Barnhart GW. A new material and technic in the art of somato-prosthesis. J Dent Res, 1960, 39:836–844
    [2]李蓓.添加纳米二氧化钛对硅橡胶抗菌性影响的实验研究.第四军医大学硕士学位论文. 2008
    [3] Moore DJ, Glaser ZR, Togacoo MJ, et al. Evaluation of polymeric materials for facial prosthetics. J Prosthet Dent, 1977, 38:319–326
    [4]张梦葩.微波固化对ZY系列硅橡胶性能影响的研究.第四军医大学硕士学位论文. 2008
    [5]邵龙泉, SY系列复合型硅橡胶的研制及临床应用.中国人民解放军第四军医大学博士学位论文. 2003
    [6] Polyzois GL. Evaluation of a new silicon elastomer for maxillofacial prostheses. J Prosthodont, 1995, 4(1):38–42
    [7]康彪.颜面赝复体粘接剂的研制与评价.第四军医大学博士学位论文. 2008
    [8] Lai JH, Wang LL, Ko CC, DeLong RL, Hodges JS. New organosilicon maxillofacial prosthetic materials. Dent Mater. 2002, 18(3):281–286
    [9] Lai JH, Hodges JS. Effects of processing parameters on physical properties of the silicone maxillofacial prosthetic materials. Dent Mater. 1999, 15(6):450–455
    [10] Aziz T, Waters M, Jagger R. Analysis of the properties of silicone rubber maxillofacial prosthetic materials. J Dent. 2003, 31(1):67–74
    [11] Ochiai KT, Nishimura RD, Sheh EC, Pedroche D. Fabrication of a custom silicone tracheostomal prosthesis. J Proshtet Dent. 2000, 83(5):578–581
    [12]谷雄,大西正俊,塩田重利.顎顔面補綴用軟性高分子材料の細胞毒性に関する研究—培養細胞に対する溶出物質障害性につぃこ.顎顔面補綴, 1982, 5(1):22–31
    [13] Han Ying, Zhao Yin-min, Shao long-quan. Evaluation of Mechanical Properties of ZY-1 Maxillofacial Prosthetic Materials. Journal of US-China Medical Science. 2007, 4(1):30–33
    [14]冯志宏.纳米CeO_2对SY-1硅橡胶性能影响的初步研究.第四军医大学硕士学位论文. 2006
    [15] Sanchez RA, Moore DJ, Togacoo MJ. Comparison of the physical properties of two types of polymethyl siloxane for fabrication of facial prostheses. J Prosthet Dent, 1992, 67(5):679–682
    [16] Leininger RI, Mirkovitch V, Peters A, et al. Change in properties of plastics during implantation. Trans Am Soc Artif Intern Organs, 1964, 10:320–322
    [17] Ben-Hur N, Neuman Z. Siliconome—another cutaneous response to dimethyl polysiloxane. Experimental study in mice. Plast Reconstr Surg, 1965, 36(6):629–631
    [18]苏方. SY-28、SY-20系列复合型赝复硅橡胶物理机械性能的测定与评价.中国人民解放军第四军医大学硕士学位论文. 2003
    [19] Cantor R, Webber RL, Stroud L, et al. Methods for evaluating prosthetic facial materials. J Prosthet Dent, 1969, 21(3):324–332
    [20] Sweeney AB, Fischer Te, Castleberry DJ, et al. Evaluation of improved maxillofacial prosthetics materials. J Prosthet Dent, 1972, 27:297–305
    [21] Lontz JF, Schweiger JW,Burger AW. Modifying stress strain profiles of polysiloxane elastomers for improved maxillofacial conformity. J DentRes, 1974, 53
    [22] Kran A, Craig RG. Dynamic mechanical properties of maxillofacial materials. J Dent Res, 1975, 54:216–221
    [23] Yu R, Koran A, Craig RG. Physical properties of maxillofacial elastomers under conditions of accelerated aging. J Dent Res, 1980, 59:1041–1047
    [24] CraigRG, Koran A, Yu R. Elastomers for maxillofacial application biomaterials. 1980, 1:112–117
    [25] Udagama A, Drane JB. Use of medical-grade methyl triacetoxy silane cross-linked silicone for facial prostheses. J Prosthet Dent, 1982, 48:86–88
    [26] Wolfaardt JF, Chandler HD, Smith BA. Mechanical properties of a new facial prosthetic material. J Prosthet Dent, 1985, 53:228–234
    [27] Abdelnnabi MM, Moore DJ, Sakamura JS. In vitro comparison study of MDX4-4210 and polydimethyl siloxane silicone materials. J Prosthet Dent, 1984, 51:523–526
    [28] Turner GE, Fischer TE, Castleberry DJ, et al. Intrinsic color of isophorone polyurethane of maxillofacial prosthetics: PartⅠP hysical properties. J Prosthet Dent, 1984, 51:519–522
    [29] Bellamy K, Limbert G, Waters MG, et al. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials. 2003, 24(27):5061–5066
    [30] McDonel ET. in“Polymer blends”. V.2, C.19, Paul DR.(Ed). New York: AP, 1978
    [31] Corish PJ. In”Science and Technology of Rubber”. C.12, Eirich FR.(Ed). New York: AP, 1978
    [32] Farah JW, Robinson JC, Koran A, et al. Properties of a modifiedcross-lined silicone for maxillofacial prostheses. J Oral Rehabil, 1987, 14:599–605
    [33]赵信义.颌面赝复材料研究进展.国际生物医学工程杂志. 2006, 29(3): 178–183
    [34]基凯.有机硅材料.北京:中国物资出版社.1999
    [35]邵龙泉,赵铱民,赵信义. SY-1及MDX4-4210硅橡胶拉伸性能、邵氏硬度的测定.实用口腔医学杂志. 2004, 20(2):201–203
    [36]邵龙泉;赵铱民;赵信义高邵氏硬度SY复合型硅橡胶的配方筛选临床口腔医学杂志2006
    [37]邵龙泉;赵铱民;赵信义低邵氏硬度SY复合型硅橡胶的配方筛选临床口腔医学杂志2005
    [38]苏方;赵铱民;邵龙泉; SY-28、SY-20和MDX4-4210硅橡胶机械性能的对比测定口腔颌面修复学杂志2006
    [39] Polyzois GL, Hensten-Pettersen A, Kullmann A. An assessment of the physical properties and biocompatibility of three silicone elastomers. J Prosthet Dent, 1994, 71:500–504
    [40]刘文娟,郑元俐,李静.颌面赝复体用硅橡胶的性能研究进展.上海交通大学学报(医学版), 2007, 27(10):1278–1281
    [41] Moore DJ. Overview of materials for extra-oral prosthesis. The paper of the first international congress on facial prosthesis, 1994:3–27
    [42] Polyzois GL. Mechanical properties of 2 new addition-vulcanizing silicone prosthetic elastomers. Int J Prosthodont, 1999, 12(4):359–362
    [43]邵龙泉,赵铱民,赵信义. SY-1及MDX4-4210硅橡胶吸水率溶解率撕裂强度的对比测定.口腔颌面修复学杂志, 2003, 4(1):52–54
    [44]韩颖,赵铱民,谢超.表面有机改性纳米二氧化铈对硅橡胶A-2186机?械性能的影响.第四军医大学学报, 2007, 28(19):1822–1824
    [45]韩颖,赵铱民,谢超.添加表面改性纳米氧化锌对颌面赝复硅橡胶机械性能影响的研究.临床口腔医学杂志, 2007, 23(10):582–584
    [46]韩颖,赵铱民,谢超等.添加表面改性纳米二氧化钛对A-2186赝复硅橡胶机械性能的影响.实用口腔医学杂志, 2008, 24(4):478–481
    [47] Y Han, S Kiat-amnuay, JM Powers, et al. Effect of Nano-oxides on the Physical Properties of Maxillofacial Silicone A-2186. Journal of Prosthetic Dentistry. 2008, 100(6):465–473.
    [48] Lewis DH, Castleberry DJ. An assessment of recent advances in external maxillofacial materials. J Prosthet Dent, 1980, 43(4):426–423
    [49]韩影. ZY加成型系列赝复硅橡胶的研究.第四军医大学博士学位论文. 2007
    [50] Hesby RM, Haganman CR, Stanford CM. Effects of radiofrequency glow discharge on impression material surface wettability. J Prosthet Dent, 1997, 77 (4): 414–422
    [51]邹石泉.低温等离子体用于赝复硅橡胶表面改性的研究.第四军医大学博士学位论文. 2004
    [52] Yap A, Lee CM. Water sorption and solubility of resin-modified polyalkenoate cements. J Oral Rehabil, 1997, 24 (4) : 310–314.
    [53]邓本诚,纪奎江.橡胶工艺原理[M ].北京:化学工业出版社,1994.
    [54]韩影,赵铱民,逯宜.三种颌面赝复硅橡胶吸水率、溶解率的对比测定.临床口腔医学杂志, 2009, 25(01):8–10
    [55] Kimura LH, Pearsall NN. Adherence of Candida albicans to human buccal epithelial cells. Infect Immun, 1978, 21(1):64–68
    [56]姜婷.软衬材料及其临床应用.口腔颌面修复学杂志, 2001, 2(4):255–257
    [57] Nikawa H, Hamada T, Yamamoto T. Denture plaque--past and recent concerns. J Dent, 1998, 26:299–304
    [58] Beyerle MP, Hensley DM, Bradley DV, et al. Hilton TJ. Immersion disinfection of irreversible hydrocolloid impressions with sodium hypochlorite. partⅠ: Microbiology. Int J Prosthodont.1994, 7(3):234–238
    [59] Gruber RG, Lucatarto EM, Molnar EJ. Fungus growth on tissue conditioners and soft denture liners. Rev Dent Liban, 1968, 18(3):36–43
    [60] Masella RP, Dolan CT, Laney WR. The prevention of the growth of Candida on Silastic 390 soft liner for dentures. J Prosthet Dent, 1975, 33(3):250–257
    [61] Pigno MA, Goldschmidt MC, Lemon JC. The efficacy of antifungal agents incorporated into a facial prosthetic silicone elastomer. J Prosthet Dent, 1994, 71(3)1:295–300
    [62] Truhlar MR, Shay K, Sohnle P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J Prosthet Dent. J Prosthet Dent, 1994, 71(5):517–524.
    [63] Chow CK, Matear DW, Lawrence HP. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology. 1999,16(2): 110–118
    [64] Lefebvre CA, Wataha JC, Cibirka RM, et al. Effects of triclosan on the cyototoxucuty and fungal growth on a soft denture liner. J Proshtet Dent 2001,85(4):352–356
    [65]李蓓,赵铱民,杨聚才等.比较纳米载银抗菌剂与纳米二氧化钛抗菌剂抗白色念珠菌性能的实验研究.临床口腔医学杂志, 2008, 24(2):70–72
    [66]李蓓,赵铱民,杨聚才等.硅橡胶中纳米二氧化钛对白色念珠菌生长影响的初探.中华口腔医学杂志, 2008, 43(6):367–369
    [67]马千淇,添加抗菌剂后赝复硅橡胶抗菌效果的初步研究.第四军医大学硕士学位论文. 2007
    [68]马千淇,赵铱民,吴国锋等.添加抗菌剂的硅橡胶赝复材料体外抗白色念珠菌性能研究.临床口腔医学杂志, 2007, 23(2):98–99
    [69] Glass RT, Bullard JW, Conrad RS, et al. Evaluation of the sanitization effectiveness of a denture-cleaning product on dentures contaminated with known microbial flora. An in vitro study. Quintessence Int, 2004, 35(3):194–199
    [70] Handa RK, Jagger DC, Vowles RW. Denture cleansers, soft lining materials and water temperature: what is the effect? Prim Dent Care, 2008, 15(2):53–58
    [71] Jagger DC, Harrison A. Denture cleansing--the best approach. Br Dent J, 1995, 178(11):416–417
    [72] Nikawa H, Jin C, Makihira S, et al. Biofilm formation of Candida albicans on the surfaces of deteriorated soft denture lining materials caused by denture cleansers in vitro. J Oral Rehabil, 2003, 30(3):243–250
    [73] Baysan A, Whiley R, Wright PS. Use of microwave energy to disinfect a long-term soft lining material contaminated with Candida albicans or Staphylococcus aureus. J Prosthet Dent, 1998, 79:454–458
    [74] Furukawa KK, Niagro FD, Runyan DA, et al. Effectiveness of chlorine dioxide in disinfection on two soft denture liners. J Prosthet Dent, 1998, 80(6):723–729
    [75] Darouiche RO, Mansouri MD, Kojic EM. Antifungal activity ofantimicrobial-impregnated devices. Clin Microbiol Infect, 2006, 12:397–399.
    [76] Mese A. Effect of denture cleansers on the hardness of heat- or auto-cured acrylic-or silicone-based soft denture liners. Am J Dent, 2007, 20(6):411–415.
    [77] Yilmaz H, Aydin C, Bal BT, Ocak F.Effects of different disinfectants on physical properties of four temporary soft denture-liner materials. Quintessence Int, 2004, 35:826–834.
    [78] Dixon DL, Breeding LC, Faler TA. Microwave disinfection of denture base materials colonized with Candida albicans. J Prosthet Dent, 1999, 81(2):207–214
    [79] Olan-Rodriguez L, Minah GE, Driscoll CF. Candida albicans colonization of surface-sealed interim soft liners. J Prosthet Dent, 2000, 9(4):184–188
    [80] Y Shi, W Song, ZH Feng, et al. Disinfection of Maxillofacial Silicone Elastomer Using a Novel Antimicrobial Agent: Recombinant Human Beta-Defensin 3. European Journal of Clinical Microbiology & Infectious Diseases, 2009, 28:415–420
    [81]石勇,生物抗菌肽γHBD3应用于颌面赝复硅橡胶抑菌的初步研究.第四军医大学博士学位论文. 2009
    [82] Haug SP, Andres CJ, Moore BK. Color stability and colorant effect on maxillofacial elastomers. Part III: weathering effect on color. J Prosthet Dent, 1999, 81(4):431–438
    [83] Firtell DN, Bartlett SO. Maxillofacial prostheses: reproducible fabrication. J Prosthet Dent, 1969, 22(2):247–252
    [84] Ouellette JE. Spray coloring of silicone elastomer maxillofacial prostheses.J Prosthet Dent, 1969, 22(2):271–275
    [85] Schaaf NG. Color characterizing silicone rubber facial prostheses. J Prosthet Dent, 1970, 24(2):198–202
    [86] Craig RG, Koran A, Yu R, Spencer J. Color stability of elastomers for maxillofacial appliances. J Dent Res, 1978, 57(9-10):866–871
    [87] Glassman AH. Xylene-a potential danger to the maxillofacial prosthodontist. J Prosthet Dent, 1982, 48(5):571–574
    [88] Hanson MD, Shipman B, Blomfield JV, Janus CE. Commercial cosmetics and their role in the coloring of facial prostheses. J Prosthet Dent, 1983, 50(6):818–820
    [89] Haug SP, Andres CJ, Munoz CA, Bernal G. Effects of environmental factors on maxillofacial elastomers: PartⅣ—Optical properties. J Prosthet Dent, 1992, 68(5):820–823
    [90] Fine L, Robinson EJ, Barnhart GW, et al. New method for coloring facial prostheses. J Prosthet Dent, 1978, 39(6):643–649
    [91] Lemon JC, Chambers MS, Jacobsen ML, et al. Color stability of facial Prostheses. J Prosthet Dent, 1995, 74(6):613–618
    [92] Gary JJ, Smith CT. Pigments and their application in maxillofacial elastomers: a literature review. J Prosthet Dent, 1998, 80(2):204–208
    [93] Over LM, Andres CJ, Moore BK, Goodacre CJ, Munoz CA. Using a colorimeter to develop an intrinsic silicone shade guide for facial prostheses. J Prosthet Dent, 1995, 7(4):237–249
    [94]佐佐木直子. Development of a shade guide for the facial prosthesis based on color study.鄂颜面补缀, 1984, 7(2):1–26
    [95]林仲贤,彭瑞祥,孙秀如等.中国成人肤色色度的测定.科学通报, 1979,(10):475–477
    [96]邵龙泉,赵信义,赵铱民等.西安地区人群面部皮肤色度值的采集与分析.实用口腔医学杂志, 1999, 15(4):274–276
    [97]周慧峰,俞伟,杨宠莹.颜面部缺损修复体配色的色度学研究.上海口腔医学, 1995, 7(1):25–27
    [98] Winkler S, Vernon HM. Coloring acrylic denture base resins. J Prosthet Dent, 1978, 40(1):4–7
    [99] Beatty MW, Mahanna GK, Dick K, Jia W. Color changes in dry-pigmented maxillofacial elastomer resulting from ultraviolet light exposure. J Prosthet Dent, 1995, 74(5):493–498
    [100]韩长日,宋小平.颜料制造与色料应用技术.北京:科学技术文献出版社, 2001.6
    [101]苏方.颜面赝复体的计算机配色研究.第四军医大学博士学位论文. 2006
    [102] Beatty MW, Mahanna GK, Jia W. Ultraviolet radiation2induced color shifts occurring in oil-pigmented maxillofacial elastomers. J Prosthet Dent, 1999, 82 (4):441–446
    [103] Tran NH, Scarbecz M, Gary JJ. In vitro evaluation of color change in maxillofacial elastomer through the use of an ultraviolet light absorber and a hindered amine light stabilizer. J Prosthet Dent, 2004, 91(5):483–490
    [104] Kiat-Amnuay S, Johnston DA, Powers JM, et al. Color stability of dry earth pigmented maxillofacial silicone A22186 subjected to microwave energy exposure. J Prosthet Dent, 2005, 14(2):91–96
    [105]张丽仙,赵铱民,何惠明等. SY-1硅橡胶在几种外源性染色剂中色彩稳定性的研究.实用口腔医学杂志, 2004, 20(6):717–719
    [106] Bernard Ratier, Yong Seok Jeong, Andre Moliton, Pierre Audebert.Vapor deposition polymerization and reactive ionetching of poly(p-xylylene) films for waveguide applications. Optical Materials, 1999, 12: 229–233
    [107] Beach W F, Lee C, Bassett D R, et al. Xylylene polymers. Encyl of Polym Sci & Eng, 1989, 17: 990–1025
    [108] Moorman M, Hesketh P, Zheng J T, et al. A novel, micro-contact potential difference probe. Sensor and Actuators B, 2003, 94: 13–26
    [109] Gorham W F. A new general synthetic method for the preparation of linear poly-p-xylylenes. J Polym Sci, Part A-l, 1966, 4: 3027–3030
    [110] Szwarc M. Poly-para-xylylene: Its chemistry and application in coating technology. Polym Eng Sci, 1976, 16(7): 473
    [111] J.J. Senkevich, S.B. Desu, V. Simkovic. Temperature studies of optical birefringence and X-ray diffraction with poly(p-xylylene), po1y (chloro-p-xylylene) and poly(tetrafluoro-p-xylylene) CVD thin films. Polymer, 2000(41): 2379–2390
    [112]龚德才,奚三彩,王勉.派拉纶成膜技术在文物及图书保护中的应用研究[J].文物保护与考古科学, 1996, 8(l): 29–34
    [113]何轶,周皓等,吴抗震等.聚一氟对二甲苯的合成及膜性能研究[J].复巨学报(自然科学版), 2004, 43(4): 668–671
    [114] Huang Hongliang, Xu Yonggan, Low HongYee. Effects of film thickness on moisture sorption, glass transition temperature and morphology of poly(chloro-xylylene) film. Polymer, 2005, 46: 5949.
    [115] Senkevich J J, Desu S B. Morphology of poly(chloro-xylylene) CVD thin films. Polymer, 1999, 40: 5751.
    [116]王永刚.Parylene一种新型机载设备覆型防护涂层材料真空涂覆新工艺研究[J].航空精密制造技术, 2002, 38(l):16–33
    [117]浦鸿汀,孙霞容.聚对苯撑二甲基系列涂层的制备及其应用进展[J].高分子通报, 2004, 4: 78–84
    [118]电子科学研究院.电子设备三防技术手册M.北京:兵器工业出版社2000.
    [119] Blocher J M.Vapor-Depositied Materials, Chapter 1 in Vapor Deposition, 1961.
    [120]阎洪编著.金属表面处理新技术.北京:冶金工业出版社,l996
    [121]昝丽娜.对二甲苯环二体及其氯代物的制备研究.西北工业大学硕士学位论文. 2007
    [122]赵文轮.金属材料表面新技术.西安:西安交通大学出版社,1995
    [123]张著.化学气相沉积技术发展趋势·表面技术, 1996, 25(2):1–3
    [124]阎洪,化学气相沉积层的技术和应用.稀有金属与硬质合金, 1999, 136:57–62
    [125] Waters J F, Sutter J K, Meador M A. Addition curing thermosets endcapped with 4-amino[2,2] paracyclophane. J Polym Sci, Part A-1. 1991, 29: 1917–1924
    [126] Lahann J, Klee D, Hooker H. Chemical vapour deposition polymerization of substituted[2,2] paracyclophane. Macromol Rapid Commun, 1998, 19: 441–444
    [127]曹琼华. Parylene C膜光氧老化研究.中国工程物理研究院硕士学位论文. 2008
    [128] Yamagishi FG: Investigation of Plasma-Polymerized Films as Primers for Parylene-C Coatings on Neural Prosthesis Materials. Thin Solid Films. 1991; 202: 39–50
    [129] Mitu B, Bauer-Gogonea S, Leonhartsberger H, et al.: Plasma-deposited parylene-like thin films: process and material properties. Surface & Coatings Technology. 2003; 174: 124–130
    [130] Bender F, Lange K, Barie N, et al.: On-line monitoring of polymer deposition for tailoring the waveguide characteristics of love-wave biosensors. Langmuir. 2004; 20: 2315–2319
    [131] Hanssen HH, Wetzels GM, Benzina A, et al.: Metallic wires with an adherent lubricious and blood-compatible polymeric coating and their use in the manufacture of novel slippery-when-wet guidewires: possible applications related to controlled local drug delivery. J Biomed Mater Res. 1999; 48: 820–828
    [132] Hu CB, Gwon A, Lowery M, et al.: Preparation and evaluation of a lubricious treated cartridge used for implantation of intraocular lenses. Journal of Biomaterials Science-Polymer Edition. 2007; 18: 179–191
    [133] Noar JH, Wahab A, Evans RD, et al. The durability of parylene coatings on neodymium-iron-boron magnets. Eur J Orthod. 1999; 21: 685–693
    [134] Ratner BD: Surface modification of polymers for biomedical applications: Chemical, biological, and surface analytical challenges. Surface Modification of Polymeric Biomaterials. 1997: 1-9, 206
    [135] Fan YL: Polyslip(Tm) Coating-a New Hydrophilic, Lubricious Coating for Medical Devices. Abstracts of Papers of the American Chemical Society. 1993; 206: 204
    [136] Nawrocki JG, Maurer RE: A durable and lubricious polymer composite coating for medical devices. Medical Device Materials II: Proceedings from the Materials & Processes for Medical Devices Conference 2004.2005: 355–360, 414
    [137] Bienkiewicz J: Plasma-enhanced parylene coating for medical device applications. Med Device Technol. 2006; 17: 10–11
    [138] Faltermeier A, Burgers R, Rosentritt M. Bacterial adhesion of Streptococcus mutans to esthetic bracket materials. Am J Orthod Dentofacial Orthop 2008;133: 99–103
    [139] Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:53–9
    [140] Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 2004;8:37–57
    [141] Bapna MS, Murphy R, Mukherjee S. Inhibition of bacterial colonization by antimicrobial agents incorporated into dental resins. J Oral Rehabil 1988;15:405–11
    [142] Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater 2008;24:732–6
    [143] Goda T, Konno T, Takai M, Ishihara K. Photoinduced phospholipid polymer grafting on Parylene film: advanced lubrication and antibiofouling properties. Colloids Surf B Biointerfaces 2007;54:67–73
    [144] Meng E, Li P, Tai Y. A biocompatible Parylene thermal flow sensing array. Sensors and Actuators A: Physical 2008;144:18–28
    [145] Han HC, Chang YR, Hsu WL, Chen CY. Application of parylene-coated quartz crystal microbalance for on-line real-time detection of microbialpopulations. Biosens Bioelectron 2009;24:1543–1549
    [146] Seymour JP, Elkasabi YM, Chen HY, Lahann J, Kipke DR. The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 2009;30:6158–6167
    [147] Hryniewicz T, Rokicki R, Rokosz K. Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology 2009;203:1508–1515
    [148] Dasilva WJ, Seneviratne J, Parahitiyawa N, Rosa EA, Samaranayake LP, Del Bel Cury AA. I mprovement of XTT assay performance for studies involving Candida albicans biofilms. Braz Dent J 2008, 19: 364–369
    [149] Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 2003;41:506–508
    [150] Altman FP. Tetrazolium salts and formazans. Prog Histochem Cytochem 1976, 9:1–56
    [151] Berman J. Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 2006;9:595–601
    [152] Lopez-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol 2005;15: 453–455
    [153] Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell 2005;4:633–638
    [154] Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 1999;48:671–679
    [155] Sellam A, Al-Niemi T, McInnerney K, Brumfield S, Nantel A, Suci PA. ACandida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 2009;9:25
    [156] Gurappa I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Materials Characterization 2002;49:73–79
    [157] Wilson M, Kpendema H, Noar JH, Hunt N, Mordan NJ. Corrosion of intra-oral magnets in the presence and absence of biofilms of Streptococcus sanguis. Biomaterials 1997;18:53–57
    [158] Laurent F, Grosgogeat B, Reclaru L, Dalard F, Lissac M. Comparison of corrosion behaviour in presence of oral bacteria. Biomaterials 2001;22: 2273–2282
    [159] Fucio SB, Carvalho FG, Sobrinho LC, Sinhoreti MA, Puppin-Rontani RM. The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials--an in vitro study. J Dent 2008, 36: 833–839
    [160] Taylor RL, Liauw CM, Maryan C. The effect of resin/crosslinker ratio on the mechanical properties and fungal deterioration of a maxillofacial silicone elastomer. J Mater Sci Mater Med. 2003, 14:497–502
    [161] Holmes AR, van der Wielen P, Cannon RD, Ruske D, Dawes P. Candida albicans binds to saliva proteins selectively adsorbed to silicone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006, 102:488–494
    [162] Demirel MC. Emergent properties of spatially organized poly(p-xylylene) films fabricated by vapor deposition. Colloids Surf A Physicochem Eng Aspects. 2008, 321:121–124
    [163] Biggerstaff JP, Le Puil M, Weidow BL, Prater J, Glass K, Radosevich M,et al. New methodology for viability testing in environmental samples. Mol Cell Probes. 2006; 20:141–146
    [164] Takenaka S, Iwaku M, Hoshino E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. J Infect Chemother. 2001, 7:87–93
    [165] Nikawa H, Hamada T, Yamashiro H, Murata H, Subiwahjudi A. The effect of saliva or serum on Streptococcus mutans and Candida albicans colonization of hydroxylapatite beads. J Dent. 1998, 26:31–37
    [166] Akintoye SO, Dasso M, Hay DI, Ganeshkumar N, Spielman AI. Partial characterization of a human submandibular/sublingual salivary adhesion- promoting protein. Arch Oral Biol. 2002, 47:337–345
    [167] Morgan TD, Wilson M. The effects of surface roughness and type of denture acrylic on biofilm formation by Streptococcus oralis in constant depth film fermentor. J Appl Microbiol. 2001, 91:47–53
    [168] Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997, 13:258–269
    [169] Quirynen M, Bollen CM, Papaioannou W, Van Eldere J, van Steenberghe D. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants. 1996, 11:169–178
    [170] Bollen CM, Papaioannou W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res. 1996, 7:201–211
    [171] Kuhar M, Funduk N. Effects of polishing techniques on the surface roughness of acrylic denture base resins. J Prosthet Dent. 2005, 93:76–85
    [172] Quirynen M, Bollen CM. The influence of surface roughness and surfacefree energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol. 1995, 22: 1–14
    [173] Vincze A, Jakabovi? J, Srnánek R, ?atka A, Ková? jr J, Ková? J. Surface and interface properties of thin pentacene and parylene layers. Cent Eur J Phys 2009, 7:270–278
    [174] Juneja JS, Wang P-I, Karabacak T, Li T-M. Dielectric barriers, pore sealing, and metallization. Thin Solid Films. 2006, 504:239–242
    [175] Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric asse-ssments of small colordifferences on translucent dental porcelain. J Dent Res, 1989, 68(l2):1760
    [176]吴效民,宋世卿. Vita比色板色度分析.中华口腔医学杂志, 1996, 31(4): 227–229
    [177] Douglas RD, Brewer JD. Acceptability of shade differences in mental ceramic crowns. J Prosthet Dent, 1998, 79(3): 253–260
    [178] Fruits TJ, Duncanson MG, Miranda FJ. Weathering of selecte direct esthetic restorative materials. Quintessence Int, 1997, 28(6):409
    [179] Koran A, Powers JM, Lepeak PJ, et al. Stain resistance of maxillofacial materials. J Dent Res, 1979, 58(5):1455–1460
    [180] Garcia D, Sanchez L, Fenollar O, Lopez R, Balart R. Modification of polypropylene surface by CH4–O2 low-pressure plasma to improve wettability. J Mater Sci 2008, 43(3):466–473.
    [181] Pratten DH, Craig RG. Wettability of a hydrophilic addition siliconeimpression material. J Prosthet Dent 1989;61:197–202.
    [182] Waters MG, Jagger RG, Winter RW. Water absorption of (RTV) silicone denture soft lining material. J Dent 1996;24:105–8.
    [183] American National Standards ASTM No. 412. Philadelphia: American Society for Testing and Materials; 1981. (Pt 37).
    [184] American National Standards ASTM No. 624. Philadelphia: American Society for Testing and Materials; 1981. (Pt 37).
    [185] American National Standards ASTM No. 2240. Philadelphia: American Society for Testing and Materials; 1981. (Pt 37).
    [186]李晓娜.硅橡胶与丙烯酸树脂粘结的系列研究.第四军医大学博士学位论文. 2007
    [187]李晓娜,赵铱民.不同固化方式对硅橡胶机械性能的影响.口腔颌面修复学杂志. 2008, 9(2):138–140
    [188] Mckelvey JM. Polymer Processing. NewYork: John Wiley, 1962. Chap 10, 23–129
    [189] Waters M, Jagger R, Polyzois G, et al. Dynamic mechanical thermal analysis of maxillofacial elastomers. J Prosthet Dent, 1997, 78(5):501–505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700