苯与丙烯烷基化分子筛催化剂织构特性设计与性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以苯与丙烯烷基化反应的MCM-22分子筛催化剂为重点研究对象,首先利用计算机模拟技术,较为深入地研究了苯与丙烯在不同织构特性分子筛MCM-22、β和ZSM-5上的行为特性后,利用MCM-22分子筛相对优越的特点,着重对其作为催化剂的微观和宏观织构特性设计及其性能控制进行了较为系统的研究,从不同层面上对其结构进行优化,调整催化剂本征性能,并结合人工智能技术构建了关联催化剂结构性能、反应工艺条件和催化反应性能的人工神经网络模型。
     利用分子模拟中巨正则蒙特卡罗和分子动力学两种经典的计算方法,对MCM-22,β和ZSM-5分子筛上苯与丙烯分子的吸附和扩散行为进行模拟计算,借此研究比较不同织构特性分子筛中的不同孔道内分子行为的差异,对三种分子筛用于催化烷基化反应不同的结果进行分析和预测。结果表明,苯和丙烯分子同时在分子筛上吸附时,存在着竞争吸附行为,其在不同的孔道内扩散速率差异很大。苯与丙烯在分子筛上发生反应时,由于β分子筛具有较大的孔道尺寸,其产物异丙苯可以较快的发生扩散,减少了异丙苯与丙烯发生深度烷基化反应的机会,可以提高目标产物异丙苯的选择性,但其过强的酸性也使其失活较快。ZSM-5分子筛具有的10MR孔道更小,更加不利于反应的发生。MCM-22分子筛具有更大的12MR超笼,但由于笼间由10MR窗口相连,苯分子在其中扩散较困难,而且也不利于苯与丙烯反应的发生,所以反应主要发生在层间半圆环口袋的酸性位。如果能够使更多的酸性位暴露在表层,可以使MCM-22分子筛的催化性能大大提高。
     采用动态水热合成法,通过添加不同用量有机辅助助剂丙三醇的方式合成了一系列用于苯与丙烯烷基化反应的MCM-22分子筛催化剂,在表征分析和实验评价的基础上,详细考察了丙三醇的加入对分子筛物理织构特性(比表面积、孔容和表面形貌等)及其催化性能的影响。结果表明,适量有机辅助助剂丙三醇的添加,可以起到分散模板剂,提高模板剂溶解性的作用,更好发挥其模板导向作用,提高分子筛的结晶度。丙三醇的加入还可以合成较大孔容以及较高比表面积的MCM-22分子筛,比表面积可以提高至489 m~2/g,孔容可以增加到0.55 cm~3/g。所获得的分子筛样品在焙烧过程中,由于丙三醇存在较多的醇羟基可以改变层间的T-OH之间的相互作用,使层与层的T-OH之间不易脱水形成T-O-T键,使焙烧后的分子筛具有较小的晶体尺寸以及较薄的层厚度,使更多的半圆环口袋暴露在外层表面,即使较多的酸性位暴露在外层表面,从而提高其催化活性;丙三醇的加入使分子筛层间距加大,晶粒分散,在催化苯与丙烯烷基化反应过程中,目的产物异丙苯较容易扩散,这就减少了异丙苯与丙烯进一步深度烷基化生成多异丙苯的几率,使异丙苯的选择性可以提高5%以上。
     分子筛催化剂的宏观特性调控主要是对粉体分子筛加工成工业粒级催化剂过程中的工艺条件进行研究,基于正交实验设计系统考察了挤条成型过程中各类助剂,如粘合剂、胶溶剂、扩孔剂和水粉比等对分子筛催化剂物理化学特性和催化性能的影响。结果表明,成型过程中,适宜的助剂加入,可以调节催化剂的本征性能,包括比表面积、孔径分布和酸性。SB粉主要调节催化剂颗粒强度,PEG20000主要调变孔径分布以及孔容,硝酸对分子筛可以产生骨架脱铝效应,调节骨架铝含量,进而可以调节催化剂的酸性。这样可以调控催化剂的本征性能使之与烷基化反应过程以及扩散过程达到相互匹配,达到有机结合。以异丙苯选择性为目标函数确定的最佳工艺条件为SB粉用量25%,硝酸用量20%,PEG20000用量10%,水粉比0.9。采用微观和宏观织构特性联合调控技术所制备的催化剂,其整体性能得到较好的提高,在相对苛刻的评价条件下,丙烯转化率提高大约2%,目标产物异丙苯选择性提高约3%。
     在实验完成了分子筛催化剂微观和宏观层次织构特性调控后,通过构建人工神经网络模型来关联催化剂织构特性,反应条件和催化性能的关系,更好的服务于催化剂设计。构建的网络模型表明,无论单输出还是多输出网络,预测值和实验值两者之间的平均相对误差较小并且具有较高的相关系数,说明所建立的BP神经网络模型可以较准确的预测苯与丙烯烷基化反应性能,得到较好的预测结果。然而,单输出网络由于其针对性较强,较多输出网络具有更加精确的预测能力。该神经网络不仅具备了预测苯与丙烯烷基化反应性能的功能,为实际生产提供理论指导,而且该网络模型的开发还可以反向应用于催化剂的设计与开发,确定适用于反应的催化剂织构特性和反应条件,增强实际催化剂制备的目的性,减少催化剂开发过程中繁琐的实验过程。
Zeolite MCM-22 had been used as the catalyst for alkylation of benzene and propylene.The dissertation used the cyber-simulation technology to study the action of benzene and propylene in the zeolite MCM-22,βand ZSM-5 with different textural,providing the theories of benzene alkylation with propylene on zeolites.Then the technology of catalyst design engineering to optimize the configuration of the MCM-22 zeolite catalyst from micromechanism to macromechanism,improving the performance of the catalyst.Moreover,the BP neural network model had been established to predict the reaction results according to the catalyst properties and reaction condition.
     The diffusion and adsorption behaviors of benzene and propylene in the zeolite MCM-22,βand ZSM-5 had been studied by Molecular Dynamics(MD) and Grand Canonical Monte Carlo(GCMC) simulations. The diffusion coefficients of benzene and propylene in the MFI,MWW and BEA zeolites were calculated by simulating the mean-square displacements(MSD).The competitive adsorption was taken place when benzene and propylene adsorbed on zeolites.In the alkylation reaction, because of the large channels inβ,cumene molecule could diffuse quickly;the cumene and propylene could react and create multipropylbenzene not easily,so the selectivity of cumene was higher than MCM-22 and ZSM-5.MCM-22 has supercages which sizes are larger than the 12MR channels ofβ,but the locations of the 10MR windows in the supercages are perpendicular to the direction of the motion,which could hinder the alkylation reaction to occur.So,for MCM-22,the alkylation happened on the cavities at the top and bottom surface,which had the advantages to improve the catalytic performance for the benzene alkylation with propylene.The sizes of channels in ZSM-5 were smaller than the others which were the disadvantages for alkylation.
     We used the auxiliary chemicals—glycerin under hydrothermal conditions to obtain the MCM-22 zeolite with various morphologies, including the specific areas and the platelets size.The alkylation of benzene with propylene under liquid-phase reaction conditions catalyzed by the prepared MCM-22 zeolites was also carried out to investigate the catalytic performances of the modified zeolites.A conceivable formation mechanism and the reason of catalytic performance improvement in the presence of glycerin as an auxiliary chemical had been suggested that adding appropriate amount of glycerin when MCM-22 synthesis,not only could increase the solubility of hydrophobes and improve the crystallinity, but also could increase the difficulty of forming T-O-T bonding.During calcinations,glycerin molecules enhanced the hindrance of two double-layers and led them to form T-O-T uneasily,and make the platelets thinner and smaller.On these zeolites,cumene could not be further alkylated to form di-isopropylbenzene or tri- iso- propylbenzene easily and the selectivity of cumene could be improved about 5%.
     The catalyst macroscopical properties were controlled through molding progresss.The influences on the textural properties and catalytic performance were studied by adding different amount of SB powder, HNO_3,PEG20000 and water.The results showed that in the molding progress,adding the suitable amount auxiliary materials could adjust the properties of catalyst,including the surface areas,pore size and acidity. So the properties and alkylation reaction-diffusion were matching each other,which could improve the performance of catalyst.Taking the selectivity of cumene as the objective variable,the optimum technology was followed:15%SB powder:20%HNO3:10%PEG20000:90%H2O. Base on the optimization of microscopical and macroscopical configuration,the conversion of propylene was improve about 2%,and the selectivity of cumene was improved about 3%.
     Because the alkylation process was very complex and the model of mechanism was established difficultly,The BP neural network was used to predict the results of benzene alkylation with propylene.The average relative deviations of determination showed a good correlation between estimated and experimental data sets.There were high correlations between experimental and estimated data curves,which were another proof that the high performance of ANN for estimation of the product distributions of alkylation reaction.Moreover,the network could be applied to direct the catalysis design,confirming the optimized configurations and reaction conditions and improving the efficiency of experiments on catalysis research.
引文
[1]Perego C,Lngallina P.Recent advances in the industrial alkylation of aromatics:new catalysts and new processes[J].Catal.Today,2002,73:3-22
    [2]Sridevi U,Bokade V V,Satyanarayana C V V,Rao B S,Pradhan N C,Pao B K B.Kinetics of propylation of benzene over H-beta and SAPO-5 catalysts:a comparison[J].J.Mol.Catal.A:Chemical,2002,181:257-262
    [3]杜泽学,闵恩泽,异丙苯生产技术进展[J].石油化工,1999,28(8):562-564
    [4]Girotti G,Cappellazzo O,Bencini E,Pazzuconi G,Perego P.Catalytic composition and process for the alkylation and\or transalkylation of atomatic components.European patent[P],1997,EP 0 847.802A1
    [5]高辉,史建公,曹钢,卢冠忠.异丙苯合成工艺进展[J].化学工业与工程技术,2003,24(6):36-38
    [6]吴通好,许宁.MCM-22族分子筛的结构及催化性能[J].化学通报,2004,67(102):1-21
    [7]Leonowicz M E,Lawton J A et al.A molecular sieve with two independent multidimensional channel systems[J].Science,1994,264:1910-1913
    [8]Lawton S L,Leonowicz M E,Partridge R,Chu P,Rubin M K.Twelve-ring pockets on the external surface of MCM-22 crystals[J].Micro.Meso.Mater.,1998,23(1-2):109
    [9]Meloni D,Laforge S,Martin D,Guisnet M,Rombi E,Solinas V.Acidic and catalytic properties of H-MCM-22 zeolites:1.Characterization of the acidity by pyridine adsorption[J].Appl.Catal.A,2001,215(1-2):55-61
    [10]Okumura K,Hashimoto M,Mimura T,Niwa M.Acid Properties and Catalysis of MCM-22with Different Al Concentrations[J].J.Catal.,2002,206(1):23-28
    [11]Onida B,Geobaldo F,Testa F,et al.FTIR investigation of the interaction at 77 K of diatomic molecular probes on MCM-22 zeolite[J].Micro.Mes.Mater.,1999,30:119-127
    [12]李英霞,陈标华,孟伟娟,李成岳,王文兴,曹钢.MCM-22沸石的孔结构和酸分布特性对苯与丙烯烷基化反应产物分布的影响[J].催化学报,2003,24(7):494-498
    [13]Guisnet M,Ayrault P,Datka J.Acid properties of dealuminated mordenites studied by ir spectroscopy:1.accessibility of acid sites and their interaction with adsorbed molecules[J].Pol.J.Chem.,1997,71(10):1445-1454
    [14]彭建彪,谢素娟,徐龙伢,王清遐.MCM-22分子筛的结构、性质及合成和应用前景天然气化工[J].2001,26:42-46
    [15]Hegedus L L主编.彭少逸,郭燮贤,闵恩泽等译.催化剂设计—进展与展望[M].北京:烃加工出版社,1989:1-10,216-232
    [16]Trimm D L著.金性勇,曹美藻译.工业催化剂的设计[M].北京:化学工业出版社,1984:4-9
    [17]Aris R.The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts[J].London:Oxford_Ely,1975:18-20,37-54,123
    [18]Chen N Y,Weize P B.Chem.Eng.Progr.Symp.Ser.1967,67:86-92
    [19]Forment G F,Bischoff K B著.邹仁鋆等译.反应器分析与设计[M].北京:化学工业出版社,1985:183-194,494-495
    [20]徐卡秋,王建华,江礼科等.车轮形催化剂上甲烷水蒸汽转化反应宏观动力学的研究[J].化工学报,1988,39(1):98-105
    [21]Keil F J.Modelling of phenomena within catalyst particles[J].Chem.Eng.Sci.,1996,51(10):1543-1567
    [22]Krishna R.Problems and pitfulls in the use of the Fick formulation for intraparticle diffusion[J].Chem.Eng.Sci.,1993,48(5):845-861
    [23]Weise P B,Hicks J S.The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects[J].Chem.Eng.Sci.,1962,17:265-275
    [24]Feng C,Steward W E.Practical Models for Isothermal Diffusion and Flow of Gases in Porous Solids[J].Ind.Eng.Chem.Fundam,1973,12(2):143-147
    [25]Reddy K V,Murty C V S.A Methodology for the a Priori Selection of Catalyst Particle Models[J].Ind.Eng.Chem.Res.,1995,34(2):468-473
    [26]Mason E A,Malinauskas A P,Evans P B.Flow and Diffu- sion of Gases in Porous Media[J].J.Chem.Phy.,1967,46(8):3199-3217
    [27]Veldsink J W,Van Damme R M J,et al.The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media[J].Chem.Eng.J.Bio.Eng.J.,1995,57(2):115-125
    [28]Wakao N,Smith J M.Effect of Surface Active Agents on the Stability of Falling Liquid Films[J].Ind.Eng.Chem.Fundam.1964,3:132-142
    [29]Smith J M.Chemical Engineering Kinetics[M].3rd Edition.New York:McGraw -Hill,1981:548,465-467
    [30]Schneider P,Gelbin D.Direct transport parameters measurement versus their estimation from mercury penetration in porous solids[J].Chem.Eng.Sci.,1985,40(7):1093-1099
    [31]Hollewand M P,Gladden L F.Representation of porous catalysts using random pore networks[J].Chem.Eng.Sci.,1992,47(9-11):2757-2762
    [32]Hollewand M P,Gladden L F.Modelling of diffusion and reaction in porous catalysts using a random three-dimensional network model[J].Chem.Eng.Sci.,1992,47(7):1761-1770
    [33]Mandelbort B B.The Fractal Geometry of Nature[M].Freeman,San Francisco,1980
    [34]Reys S,Jensen K F.Estimation of effective transport coefficients in porous solids based on percolation concepts[J].Chem.Eng.Sci.,1985,40(9):1723-1734
    [35]Suman K,Jana,Reiichi Nishida,Kazuya Shindo,Tsuyoshi Kugita,Seitaro Namba.Pore size control of mesoporous molecular sieves using different organic auxiliary chemicals[J].Micro.Meso.Mater.2004,68(1-3):133-142
    [36]屈玲,佟大明,刘永梅,吉向飞,窦涛.介孔分子筛孔径调变技术[J].化工进展,2002,21(11):855-859
    [37]谢永贤,陈文,徐庆,麦立强,柯满竹,刘晓芳.辅助剂对氧化硅MCM-41分子筛孔结构的影响[J].硅酸盐学报,2002,30:45-48
    [38]Yong-Geun L,Chul O,Sang-Ki Y,Sang-Man K,Seong-Geun O.New approach for the control of size and surface characteristics of mesoporous silica particles by using mixed surfactants in W/O emulsion[J].Micro.Meso.Mater.,2005,86(1-3):134-144
    [39]Zhu H Y,Gao X P,Song D Y,et al.Manipulating the size and morphology of aluminum hydrous oxide nanoparticles by soft-chemistry approaches[J].Micro.Meso.Mater.,2005,85(3):226-233
    [40]Young Kyu Hwang,Kashinath Rangu Patil,Sung Hwa Jhun,et al.Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent[J].Micro.Meso.Mater.2005,78(2-3):245-253
    [41]Zhao D,Huo Q,Feng J,Chmelka B F,Stucky G D,Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable,Mesoporous Silica Structures[J].J.Am.Chem.Soc.1998,120(24):6024-6036
    [42]Zhao D,Feng J,Huo Q,Melosh N,Fredrickson G H,Chmelka B F,Stucky G D,Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J].Science,1998(279):548-552
    [43]Yao Xi,Zhang Liangying,Wang Sasa.Pore size and pore-size distribution control of porous silica[J].Sensor and Actuators B,1995,25(1-3):347-352
    [44]Kimura T,Sugahara Y,Kuroda K.Synthesis of mesoporous aluminophosphates and their adsorption properties[J].Micro.Meso.Mater.,1998,22(1-3):115-126
    [45]Blin J L,Herrier G,Otjacques C,et al.Pore size engineering of mesoporous silica using decane as expander[J].Langmuir,2000,16(4):4229-4236
    [46]Abdelhamid Sayri,Yong Yang.Expanding the Pore Size of MCM-41 Silicas:Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures[J].J.Phys.Chem.B,1999,103(3),18:3651-3658
    [47]Marc-Olivier C,Jihong S,Thomas M.Synthesis of hierarchical porous silicas with a controlled pore size distribution at various length scales[J].Catal.Today,2001,69(1-4):331-335
    [48]Beck J S,Vartuli J C,Roth W J.A new family of mesoporous molecular sieves prepared with liquid crystal templates[J].J.Am.Chem.Soc.,1992,114(27):10834-10843
    [49]Kresge C T,Leonowicz M E,Roth W J,et al.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359(5):710-712
    [50]Huo Q S,Margolese D I,Cisla C.Gene ized synthesis of periodic surfaeatant composite materials[J].Nature,1994,368:317-321
    [51]Monnier A,Schuth F,Huo Q S.Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures[J].Science,1993,261:1299-1303
    [52]朱洪法.催化剂成型[M].北京:中国石化出版社,1992:1-3
    [53]Song C S,et al.Effect of pore structure of nickel-molybdenum/alumina catalysts in hydrocracking of coal-derived and oil sand derived asphaltenes[J].Ind.Eng.Chem.Res.,1991,30(8):1726-1734
    [54]Pio.Forzatti,Daniele Ballardini,Lorenzo Sighicelli.The selective oxidation of propane on Mo-V-Te-Nb-O catalysts:The influence of Te-precursor[J].Catal.Today,2003,81(2):87-94
    [55]Girotti G,Cappellazzo O,Bencini E,Pazzuconi G,Perego P.European patent[P].1997,EP 0847,802A1
    [56]Nielsen A.Process for the preparation of ammonia and ammonia synthesis catalyst[P].US Patent 3243386.1966
    [57]Hegedus L L.Pellet type oxidation catalyst.US Patent 4119571.1978
    [58]Hanika J,Sporka K.Catalyst particle shape and dimension effects on gas oil hydrodesulphurization[J].Chem.Eng.Sci.,1992,47(9-11):2739-2744
    [59]丁春华,傅吉全.添加扩孔剂对β沸石催化剂性能的影响[J].北京服装学院(自然科学版),2002,22(2):25-28
    [60]魏秀萍,李军,崔凤霞,曾广俊,张立群.影响沸石分子筛催化剂强度因素的探讨[J].精细石油化工.2000,(4):36-38
    [61]周成光,白雪峰,李占双等.Hβ型分子筛挤出成型条件对其强度的影响[J].化学与粘合,2001,(6):252-261
    [62]孙新,查庆芳,吴明铂等.碳分子筛孔结构的控制[J].石油学报(石油加工),2004,20(3):43-48
    [63]余少兵,李永红,陈洪钫.合成及改性对β分子筛孔结构的影响[J].石油化工,2004,33(1):33-36
    [64]魏文德.主编.有机化工原料大全[M].北京:化学工业出版社.1998:118
    [65]高滋,何鸣元,戴逸云.沸石催化与分离技术[M].中国石化出版社,1999:301
    [66]Bellussi G,Pazzuconi G,Perego C,Girotti G,Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed by β-Zeolites[J].J.Catal.,1995,157(1):227-234
    [67]Geatti A,Lenarda M,Storaro L,Ganzerla R,Perissinotto M.Solid acid catalysts from clays: Cumene synthesis by benzene alkylation with propene catalyzed by cation exchanged aluminum pillared clays[J].J.Mol.Catal.A,1997,121(1):111-118
    [68]Venuto P B,Hamilton L A.Landis P S.Organic reactions catalyzed by crystalline aluminosilicates:Ⅱ.Alkylation reactions:Mechanistic and aging considerations[J].J.Catal.1966,5(3):484-493
    [69]Weitkamp J.Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst[J].Ind.Eng.Chem.Prod.Res.Dev.1982,21(4):550-558
    [70]Becker K A,Karge H G,Streubel W D.Benzene alkylation with ethylene and propylene over H-mordenite as catalyst[J].J.Catal.1973,28(3):403-413
    [71]Holmann V.Brand,Antonio Redondo,Jeffrey Hay P.Theoretical studies of CO adsorption on H-ZSM-5 and hydrothermally treated H-ZSM-5[J].1997,121(1):45-62
    [72]Mirth G,Lercher J A.In Situ IR spectroscopic study of the surface species during methylation of toluene over HZSM-5[J].J.Catal.1991,132(1):244-252
    [73]Rakoczy J,Sulikowski B.Alkylation of toluene with methanol on zeolites:Evidence for Rideal type mechanism[J].React.Kinet.Catal.Lett.1988,36(1):241-246
    [74]Sotelo J L,Uguina M A,et al.Kinetics of toluene alkylation with methanol over magnesium-modified ZSM-5[J].Ind.Eng.Chem.Res.1993,32(11):2548-2554
    [75]Corma A,Martinez-Soria V,Schnoeveld.Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism[J].J.Catal.2000,192(1):163-173
    [76]Panagiotis G.Smirniotis,Eli Ruckenstein.Alkylation of Benzene or Toluene with MeOH or C2H4 over ZSM-5 or beta Zeolite:Effect of the Zeolite Pore Openings and of the Hydrocarbons Involved on the Mechanism of Alkylation[J].Ind.Eng.Chem.Res.,1995(34):1517-1528
    [77]Rao B S,Balakrishnan I,Chumbhale V R,et al.Proceedings of the 1st Tokyo Conference on Advanced Catalyst Science and Technology[C].1990,1 and 56:361-370
    [78]Pradhan A R,Rao B S.Transalkylation of di-isopropylbenzenes over large pore zeolites[J].Appl Catal A:Gen,1993,106:143-157
    [79]Perego C,Amarilli S,et al.Experimental and computational study of beta,ZSM-12,Y,mordenite and ERB-1 in cumene synthesis[J].Micro.Mater.,1996,6(5-6):395-404
    [80]Chen J C,Degnan T F,Beck J S,et al.Science and Technology in catalysis.Tokyo:Kalansha Ltd,1999.53-55
    [81]孟伟娟,陈标华,李英霞等.BETA和MCM-22沸石在丙烯与苯烷基化反应中的催化性能[J].石油学报,2003,19(5):47-52
    [82]李英霞,陈标华,孟伟娟等.MCM-22沸石的孔结构和酸分布特性对苯与丙烯炕基化反应产物分布的影响[J].催化学报,2003,24(7):494-498
    [83]魏秀萍,李军,崔凤霞等.影响沸石分子筛催化剂强度因素的探讨精细[J].石油化工,2000,(4):36-38
    [84]卢焕章.石油化工基础数据手册[M].北京.化学工业出版社,1984:205
    [85]Sastre N,Raj C R A,Catlow R,Roque M,Corma A.Selective Diffusion of C8 Aromatics in a 10 and 12 MR Zeolite.A Molecular Dynamics Study J.Phys.Chem.B,1998,102(17):3198-3209
    [86]Corma A,Catlow C R A and Sastre G.Diffusion of Linear and Branched C7 Paraffins in ITQ-1Zeolite.A Molecular Dynamics Study[J].J.Phys.Chem.B,1998,102(37):7085-7090
    Venuto P B,Landis P S.Organic Catalysis over Crystalline Aluminosilicates[J].Adv.Catal.,1968,18:259-371
    [87]Treacy M M J and Higgins J B.Collection of Simulated XRD Powder Patterns for Zeolite,Amsterdam:ELSEVIER,2001
    [88]Lowenstein W.The distributionof aluminum in the tetrahedra of silicates and aluminates[J].American Mineralogist,1954,39:39
    [89]Materils Studio 4.0 User Reference,Accelrys Software Inc.2005
    [90]Hou T J,Zhu L L,Li Y.Y,Xu X J.Adsorption of benzene in MCM-22 zeolite by grand canonical monte carlo simulation[J].ACTA CHIMICA AINICA.2000,58(10),1216-1220
    [91]Hou T J,Zhu L L,Li Y Y,Xu X J.The localization and adsorption of benzene and propylene in ITQ-1 zeolite:grand canonical Monte Carlo simulations[J].J.Mol.Struct.:Theochem.2001,535:9-23
    [92]Allen M P,Tildesley D.Molecular Simulation of Liquids[M].Oxford University Press:Oxford,U.K.,1980
    [93]Smit B,and Maesen T L M.Commensuratefreezing'of alkanes in the channels of a zeolite[J].Nature,1995,374:42-44
    [94]Vlugt T J H,Krishna R,Smit B.Molecular Simulations of Adsorption Isotherms for Linear and Branched Alkanes and Their Mixtures in Silicalite[J].J.Phys.Chem.B,1999,103(7):1102-1118
    [95]Coma A,Corell A,Perez-Pariente J,Guil J M,Guil- Lopez R,Nicolopoulus S,Gonzalez-Calbet J,Vallet-Regi M,Zeolites,1996,17(1-2):7-11
    [96]Leonowicz M E,Lawton J A,Lawton S L,Rubin M K,MCM-22:A Molecular Sieve with Two Independent Multidimensional Channel Systems[J].Science,1994,264(5167):1910-1913
    [97]Meier W M,Olson D H,Baerlocher Ch,Atlas of Zeolite Structure Types[M],4th ed.;Elsevier:Amsterdam,1996.
    [98]Roque-Malherbe R,Wendelbo R,Mifsud A,Corma A,Diffusion of aromatic hydrocarbons in H-ZSM-5,H-Beta,and H-MCM-22 zeolites[J].J.Phys.Chem.,1995,99(38):14064-14071
    [99]Corma A,Sorption,diffusion and catalytic properties of zeolites containing 10- and 12-member ring pores in the same structure[J].Micro.Meso.Mater.,1998,21(4-6):487-495
    [100]Satish Kumar G,Saravanamurugan S,Martin H,Palanichamy M,Murugesan V.Synthesis,characterisation and catalytic performance of HMCM-22 of different silica to alumina ratios[J].J.Mol.Catal.A:Chem.,2007,272:38-44
    [101]Frontera P,Testa F,Aiello R,Candamano S,Nagy J B.Transformation of MCM-22(P) into ITQ-2:The role of framework aluminium[J].Micro.Meso.Mater.,2007,106:107-114
    [102]Venuto P B,Landis P S.Organic Catalysis over Crystalline Aluminosilicates[J].Adv.Catal.,1968,18:259-371
    [103]Coughlan B.Keane MA.Benzene ethylation and cumene dealkylation over nickel-loaded Y zeolites[J].J.Catal.,1992,138:164-178
    [104]Stober W,Fink A,Bohn E.Production of monodisperse colloidal silica spheres:Effect of temperature[J].J.Colloid Interf.Sci.,1987,118:290-293
    [105]Renzo Di,Testa F,Chen F,Cambon J D,Galarneau H A,Plee D,Fajula F.Textural control of micelle-templated mesoporous silicates:the effects of co-surfactants and alkalinity[J].Micro.Meso.Mater.,1999,28:437-446
    [106]Young K H,Kashinath R P,Sung H J,Jong S C,Young J K,Sang E P.Control of pore size and condensation rate of cubic mesoporous silica thin films using a swelling agent[J].Micro.Meso.Mater.,2005,78:245-253
    [107]Shang-Hua F,Guo-Fang H,Jian-Quan D,Yan-Fei L.Synthesis of Mesoporous Molecular Sieve MCM-41 in Nonaqueous Medium[J].Acta Chim.Sinica,2007,65:566-570
    [108]Yao X,Zhang L Y,Wang S.Pore size and pore-size distribution control of porous silica[J].Sensor and Actuators B:Chem.,1995,25:347-352
    [109]Yoldas B E.Hydrolytic polycondensation of Si(OC2H5)4 and effect of reaction parameters[J].J.Non-Cryst.Solid,1986,83:375-390
    [110]Bozhi T,Xiaoying L,Zhendong Z Bo T,Dongyuan Z.Syntheses of High-Quality Mesoporous Materials Directed by Blends of Nonionic Amphiphiles under Nonaqueous Conditions[J].J.Solid State Chem.,2002,167:324-329
    [111]Corma A,Martinez-Soria V,Schnoeveld E.Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite:Catalytic Behaviour and Kinetic Mechanism[J].J.Catal.,2000,192:163-173
    [112]Perego C.Amarilli S,Millinni R,Bellussi G,Girotti G,Terzoni G.Experimental and computational study of beta,ZSM-12,Y,mordenite and ERB-1 in cumene synthesis[J].Micro.Mater.,1996,6:395-404
    [113]Sastre G,Catlow C R A,Corma A.Diffusion of Benzene and Propylene in MCM-22 Zeolite.A Molecular Dynamics Study[J].J.Phys.Chem.B,1999,103:5187-5196
    [114]李建伟,张庆华,李英霞等.醋酸胶溶剂对Hβ分子筛催化剂性能的影响[J].化学反应工程与工艺,2005,21(2):162-165
    [115]史建文,李大东,薛用芳等.挤出成型过程中的各种因素对氧化铝载体物性的影响[J].石油化工,1985,14(6):323-328
    [116]余少兵,李永红,陈洪钫.改性对β分子筛酸性的影响[J].化工学报,2004,55(6):913-918
    [117]Thomas E Q,Liu Y A.人工智能在化学工程中的应用[M].北京:中国石化出版社,1994,448-499
    [118]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2005,16-39
    [119]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000,10-26
    [120]Torrecilla J S,Otero L,Sanz P D.A Neural Network Approach for Thermal/pressure Food Processing[J].J.Food Eng.2004,62,89-95
    [121]Bas D,Boyacl I H.Modeling and optimization Ⅱ:Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction[J].J.Food Eng.2007,78,846-854
    [122]Bas D,Dudak,F C,Boyacl I H.Modeling and optimization Ⅲ:Reaction rate estimation using artificial neural network(ANN) without a kinetic model[J].J.Food Eng.2007,79,622-628
    [123]Tatlier M.,Cigizoglu H K,Ayse E S.Artificial neural network methods for the estimation of zeolite molar compositions that form from different reaction mixtures[J].Comput.Chem.Eng.2005,30,137-139
    [124]Istadia I,Amin N A S.Modelling and optimization of catalytic-dielectric barrier discharge plasma reactor for methane and carbon dioxide conversion using hybrid artificial neural network-genetic algorithm technique[J].Chem.Eng.Sci.2007,62,6568-6581
    [125]Filho A C,Filho R M.Concurrent engineering reactor design[J].Comput.Aided Chem.Eng.,2005,20,559-582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700