系列烷基甲基萘磺酸盐表面活性剂的合成、性能及环境友好催化甲基萘的长链烷基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内油田矿场试验表面活性剂主要靠进口,价格非常昂贵;国内对驱油剂的研究也主要集中在石油磺酸盐、重烷基苯磺酸盐等混合物上,产品质量极不稳定,难以达到稳定高效驱油的要求。因此开发原料组分清楚、产品稳定的廉价高效的驱油用表面活性剂具有重要的应用价值和现实意义。
     本文从分子设计的角度,以廉价的甲基萘为原料,合成系列烷基甲基萘磺酸盐表面活性剂。通过反应条件进行优化,找到了甲基萘与长链溴代烷烷基化的较佳反应条件:催化剂用量为2%,β-甲基萘与溴代烷摩尔比为3:1,溶剂环己烷与β-甲基萘摩尔比3:1,在80℃条件下,反应120-240 min。在优化反应条件下,合成了系列长链烷基甲基萘,纯度在97.6%以上。采用发烟硫酸对系列长链烷基甲基萘中间体进行磺化。采用适当浓度盐酸溶液洗涤法,直接对单、双磺酸进行分离。找到了分离不同链长的烷基甲基萘单、双磺酸所需的较佳酸浓度,有效地实现了烷基甲基萘单、双磺酸的分离。采用上述分离提纯方法,得到了系列烷基甲基萘磺酸盐表面活性剂,纯度在95.6%以上。采用HPLC、ESI/MS、IR、UV对系列产品进行表征。
     研究了系列长链烷基甲基萘磺酸盐表面活性剂水溶液表面张力行为。结果表明所合成表面活性剂具有很高的降低水溶液表面张力的能力和效率。本文测定了己基、辛基、癸基、十二烷基和十四烷基甲基萘磺酸盐表面活性剂驱油体系与胜利油田和大庆四厂原油间的动态界面张力。研究了强碱、弱碱和无碱驱油体系的界面张力行为。详细考察了表面活性剂侧链长度、浓度及碱度、盐度对界面张力行为的影响。结果表明,动态界面张力在合适的条件下可以在较长时间维持超低,可以实现弱碱、甚至无碱;动态界面张力最小值在最佳条件下甚至可达10~(-6)mN.m~(-1)。烷基甲基萘磺酸盐表面活性剂、碱和无机盐之间在降低油水界面张力方面存在明显的协同和对抗效应。亲油性小的表面活性剂,协同效应占优势;亲油性大的表面活性剂,对抗效应占优势;基于这些规律,可以根据实际需要,给出所需的驱油体系。
     研究了离子液体催化甲基萘与长链烯烃的烷基化,考察了反应条件对烷基化反应的影响。结果表明,在适宜的反应条件下,烯烃转化率可达90%以上。对于α-甲基萘的烷基化,反应无需有机溶剂;β-甲基萘烷基化,仅需少量溶剂(相对AlCl_3催化),目标产物选择性约100%。基于离子液体的可调变性,合成了含有不同阴阳离子的离子液体,研究了离子液体组成和催化性能的关系。结果表明,离子液体的阴离子(包括三氯化铝摩尔分数的变化)对离子液体催化性能和物理性能影响显著;阳离子主要对离子液体的物理性能有一定影响,对催化性能影响较小。丁基吡啶氯铝酸离子液体具有较好的催化性能,经7%Cu~(2+)修饰,催化活性有所改善。离子液体催化剂与反应混合物易于分离,产品后处理简单。催化剂可通过简单的倾析方法分离出来,可以循环使用。
At present, the surfactants for domestic oil field lease test mainly depend on import, cost is very high. Many researches mainly focus on some mixed surfactants, petroleum sulphonates and heavy alkyl benzene sulphonates. It's difficult to satisfy the request for stable and high efficient enhanced oil recovery, now that these products are extremely uncertain. Therefore, to explore the low price and high efficient surfactants for enhanced oil recovery, which are prepared from distinguish clearly materials, has important using value and realistic meaning.In this paper, a series of various chain-length alkyl methylnaphthalene surfonate surfactants have been synthesized on the basis of "tailoring technology". The reaction conditions for alkylation of methylnaphthalene with n-bromoalkanes are optimized, and the optimal reaction conditions are: 3:1 for methylnaphthalene to bromoalkane, and 3:1 for cyclohexane to methylnaphthalene in the presence of 2% of anhydrous aluminum chloride at 80 ℃ for 2-4 hours. The series of high purity (more than 98%, obtained by GC) of various length side-chain alkyl methylnaphthalene (AMN) intermediates have been obtained. The synthesized AMN intermediates are sulfonated by using 20% oleum as sulfonating agent. Here the appropriate concentration of hydrochloride lavation method has been adopted to separate the mono- and di- sulfonic acids directly. The optimal hydrochloride concentrations are found to separate various chain-length alkyl methylnaphthalene mono- and di- sulfonic acids, and the satisfactory separation efficiency is obtained. The separated alkyl methylnaphthalene monosulfonic acids are neutralized, eliminated salts by anhydrous ethanol and decolored by activated carbon, the series of high purity (more than 95.6%, by HPLC) of sulfonate (AMNS) surfactants are achieved, and characterized by HPLC, ESI/MS, IR and UV.The surface tensions of a series of AMNS surfactant aqueous solutions are measured with a ring method. It's found that the synthesized surfactants possess high capacity and efficiency of lowering surface tension. The dynamic interfacial tensions (DIT) between crude oil, offered from Shengli and Daqing Oilfields, and series of AMNS surfactants, including hexyl, octyl, decyl, dodecyl, tetradecyl methylnaphthalene sulfonates, flooding systems have been measured. The flooding systems with strong alkaline, buffered alkaline and without alkaline are studied. Effects of chain-length and concentration of AMNS surfactants, alkalinity and salinity on the DIT behaviors are investigated. It's found that, under the seemly conditions, DIT can reach and maintain ultralow at a long time, and even to reach 10-6 mN.m-1 at the optimum conditions. Results show that there exists obvious synergism and antagonism among salt, alkaline and surfactant. For the less lipophilic surfactants, the synergism is dominating, but for stronger lipophilic surfactants, antagonism is leading. The optimal surfactant concentration, alkalinity and salinity for lowering the dynamic interfacial tension to ultralow value are relative. On the basis of these results, the
引文
[1] 刘方,高正松,缪鑫才.表面活性剂在石油开采中的应用.精细化工,2000,17(12):696-699.
    [2] 韩大匡,杨普华.发展三次采油为主的提高采收率新技术.油气采收率技术,1994,1(1):12-18.
    [3] 胡明刚,邓启刚.表面活性剂在大庆油田复合驱中的应用研究.齐齐哈尔大学学报,2003,19(2):6-8.
    [4] 卡斯特T P,索默尔顿W H,凯利J F.杨普华译.化学驱提高石油采收率.北京:石油工业出版社,1988.
    [5] 惠晓霞.表面活性剂驱油.油田化学,1984,1(1):22-38.
    [6] 刘木辛,徐桂英,李干佐等.油酸-油酸钠水溶液/原油间的瞬时界面张力.物理化学学报,1995.11(11):1040-1043.
    [7] Faubl H, Chu D T. Preparation of piper-azinyl quinolone carboxylate sasanti bacterials. EP350950.1990.
    [8] 郭东红,张雅琴,崔晓东等.三次采油用重烷基苯磺酸盐表面活性剂的协同效应.应用化学,2003,20(1):86-88.
    [9] 张路,罗澜,赵濉等.表面活性剂亲水-亲油能力对动态界面张力的影响.物理化学学报,2001,17(1):62-65.
    [10] 田燕春,杨林,杨振宁等.表面活性剂同系物体系对原油界面张力的影响.日用化学品科学,2000,23(增刊1):116-119.
    [11] Naser-El-Din H A, Taylor K C. Dynamic interfacial tension of crude oil/aldkali/surfactan tsystems. Colloids and Surfaces, 1992, 66(1): 23-27.
    [12] Bansal V K, Chan K S, Mccallough R, Shah D O. Effect of caustic concentration on interfacial charge, Interfacial tension and droplet size: A simple test for optimum caustic concentration for crude oils. The Journal of Canadian Petroleum, 1978, 17(1):69-72.
    [13] Rudin J, Wasan D T. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH. SPE Reservoir Engineering (Society of Petroleum Engineers), 1993, 8(4): 275-280.
    [14] Ramakrishnan T S, Wasan D T. Model for interracial activity of acdic crude oil/caustic systems for alkaline flooding. Society of Petroleum Engineers Journal, 1983, 23(4): 602-612.
    [15] Cayias J L, Schechter R S, Wade W H. The utilization of petroleuom sulfonates for producing low interracial tinsions between hydrocarbons and water. J. Colloi. Inter. Sci., 1977, 59(1); 31-38.
    [16] Rudin J, Wasan D T. Mechanisms for lowering of interracial tension in alkali/acidic oil systems. Effects of added surfactant. Industrial and Engineering Chemistry Research, 1992, 31 (8): 1899-1906.
    [17] 崔正刚,张天林,邹文华等.重烷基苯磺酸盐的合成及其在提高石油采收率中的应用研究.第王届国际表面活性剂/洗涤剂研讨会论文集.太原:山西经济出版社,2002:95-102.
    [18] 李华斌,高树棠,杨振宇等.碱/表面活性剂/聚合物三元复合驱方案的设计与优化.油田化学,1996,13(3):277-283.
    [19] Krumrine P H, Falcone J S. Rock dissolution and consumption phenomena in an alkali recovery systems. SPE Reservoir Engineering, 1988, 3(1): 62-68.
    [20] Burk J H. Comparison of sodium carbonate, sodium hydroxide and orthosilicate for EOR. SPE Reservoir Engineering, 1987, 2(1): 9-16.
    [21] Hawkins B F, Taylor K C, Nasr-E1-Din H A. Mechanisms of surfactant and polymer enhanced alkaline flooding: application to David Lloydminster and Wainwright sparky fields. J. Can. Pet. Technol., 1994, 33(4): 52-63.
    [22] 杨普华,杨承志,化学驱提高石油采收率.北京:石油工业出版社,1988
    [23] Neale G, Homof V, Chiwetelu C. Importance of Lignosulfonates in Petroleum Recovery Operations. Can. J. Chem., 1981, 59 (13): 1938-1943.
    [24] Chiwetelu C, Neale G, Homof V. Improving The Oil Enhanced Recovery Efficacy of Lignosulfonates Solutions. Can.J. Chem. Techol., 1980, 20(3): 91-99.
    [25] 张路,赵濉,罗澜等.碱/表面活性剂复合驱油体系与胜利孤东原油间协同效应的研究.油田化学,1998,15(1):348-353.
    [26] Morrow L R. Enhanced Oil Recovery Using Alkylated, Sulfonated, Oxidized Lignin Surfactants. US5094295.1992.
    [27] 吴文祥,张洪亮,胡靖邦等.A-S-P三元复合体系与大庆原油间界面张力等值图.大庆石油学院学报,1995,19(1):115-118.
    [28] 吴文祥,张洪亮,侯吉瑞等.A-S-P三元复合体系/大庆原油间的动态界面张力特性.大庆石油学院学报,1995,19(1):119-122.
    [29] 袁红,杨承志.表面活性剂-碱-聚合物联合驱替与羧酸及盐类表面活性剂在EOR中的应用.油田化学,1990,7(4):373-379.
    [30] 赵国玺.表面活性剂物理化学(修订版).北京:北京大学出版社,1991.
    [31] Taylor K C, Hawkins B F, Islam M R. Dynamic interfacial tension in surfactant enhanced alkaline flooding. Journal of Canadian Petroleum Technology, 1990, 29(1): 50-55.
    [32] Borwankar R P, Wasan D T. Dynamic interfacial tensions in acidic crude oil/caustic systems. Part Ⅰ: A chemical diffusion-kinetic model. AIChE Journal, 1986, 32(3): 455-466.
    [33] Borwankar R P, Wasan D T. Dynamic interfacial tensions in acidic crude oil/caustic systems. Part Ⅱ: Role of dynamic effects in alkaline flooding for enhanced oil recovery. A IChE Journal, 1986, 32(3): 467-476.
    [34] 王业飞.高矿化度条件下应用的表面活性剂驱油体系.油气地质与采收率,2001,8(2):67-69.
    [35] Taylor K C, Schramm L L. Measurement of short-term low dynamic interfacial tensions: application to surfactant enhanced alkaline flooding in enhanced oil recovery. Colloids and Surfaces, 1990, 47(1): 245-253.
    [36] Taylor K C, Hawkins B F, Islam M R. Dynamic interfacial tension in surfactant enhanced alkaline flooding. Journal of Canadian Petroleum Technology, 1990, 29(1): 50-55.
    [37] Touhami Y, Homof V, Neale G H. Dynamic interfacial tension behavior of acidified oil/surfactant enhanced alkaline systems 1. Experimental studies. Colloids and Surface A: Physicochemical and Engineering Aspects, 1998, 132: 61-74.
    [38] Taylor K C, Nasr-El-Din H A. The effect of synthetic surfactants on the interfacial behavior of crude oil/alkali/polymer systems. Colloids and Surface A: Physicochemical and Engineering Aspects, 1996, 108: 49-72.
    [39] Almalik M S, Attia A M, Jang L K. Effects of alkaline flooding on the recovery of Safaniya crude oil of Saudi Arabia. Journal of Petroleum Science & Engineering, 1997, 17(3-4): 367-372.
    [40] Li G Z, Mu J H, Li Y, et al. An experimental study on alkaline/surfactant/polymer flooding systems using nature mixed carboxylate. Colloids and Surface A: Physicochemical and Engineering Aspects, 2000, 173: 219-229.
    [41] Zhang L, Luo L, Zhao S, et al. Studies of synergism/antagonism for lowering dynamic interfacial tension in surfactant/alkali/acidic oil systems 3. Synergism/antagonism in surfactant/alkali/aeidic model oil systems. Journal of Colloid and Interface Science, 2003, 260: 398-403.
    [42] Qiao W H, Dong L J, Zhao Z K, et al. Interfacial behavior of pure surfactants for enhanced oil recovery-Part 1: A study on the adsorption and distribution of cetylbenzene sulfonate. 2003, 40(2): 87-89.
    [43] Zhang S B, Qiao W H, Li Z S, et al. 1-Phenylalkane sulfonates for studying interfacial tensions. Petroleum Science and Technology, 2003, 21 (7-8): 1043-1054.
    [44] Zhang L, Luo L, Zhao S, et al. Effect of different acidic fractions in crude oil on dynamic interfacial tensions in surfactant/alkali/model oil systems. Journal of Petroleum Science and Engineering, 2004, 41(1-3): 189-198.
    [45] Huang Y D, Yang P H. A study on the dynamic interfacial tension of Acidic Crude Oil/Alkali (Alkali-Polymer) systems. SITU, 1989, 13(4): 259-274.
    [46] Manji K H, Stasiuk B W. Design considerations for Dome's David Alkali/Polymer flooding. Journal of Canadian Petroleum Technology, 1988, 27(3): 49-65.
    [47] 李殿文.前苏联表面活性剂稀体系驱油.油田化学,1993,10(2):188-194.
    [48] 李干佐,林元,王秀文等.Tween 80表面活性剂复合驱油体系研究.油田化学.1994.11(2):152-156.
    [49] 陈茂淘,刘斌丽,刘崃颖等.烷基酚聚氧乙烯醚在油砂上的吸附损失.油田化学,1991,8(3):240-244.
    [50] 王桂芝,赵成才.在降膜式连续磺化反应器中合成中当量石油磺酸盐.油田化学,1992,9(3):253-258.
    [51] Gale W W, Sandvick E I. Tertiary surfactant flooding petroleum sulfonate composition efficacy Studies. Soc. Petrol. Eng. J. August, 1973, 191-199.
    [52] 张树彪.三次采油用表面活性剂的合成及其界面张力性能的研究:(大连理工大学硕士论文).大连:大连理工大学,2000.
    [53] 崔正刚,孙静梅,张天林等.重烷基苯磺酸钠微乳体系和超低界面张力性质研究.无锡轻工大学 学报,1998,17(2):50-55.
    [54] 崔正刚,邹文华,张天林等.重烷基苯磺酸盐的合成及其在提高石油采收率中的应用.华东理工大学学报,1999,25(4):339-345.
    [55] 娆蒙正,程侣伯,王家儒.精细化工合成原理.北京:中国石化出版社,1992.
    [56] 张铸勇.精细有机合成单元反应.上海:华东理工大学出版社,2003.
    [57] Akhmedova R A, Ramazmnova A. Alkylation and cycloalkylation of methylnaphthalenes. Uch. Zap. -minist. Vyssh. sredn, spets, obraz. Az. SSR. Ser. Khim. Nauk., 1975, (1): 39-41.
    [58] Ermishina A M, Gluzman L D. Alkylation of naphthalene derivatives with olefin. Sb. Nauch. Tr. Ukr. Nauch-ssled. Uglekhim. Inst., 1971, (23): 178-183.
    [59] Taiskeki K, Hirohisa K. Chlorinsted petroleum. V. Synthesis of detergents from monochlorokerosine and methyl naphthalene. J. Chem. Soc. Japan, Ind. Chem. Sect., 1954, 57: 728-731.
    [60] 朱步瑶,赵振国.界面化学基础.北京:化学工业出版社,2001.
    [61] 黄亚铎,杨普华.碱水驱油研究中测定界面张力要注意的问题.油田化学,1988,5(1):34-38.
    [62] Kacal J A. Detergent alkylation process using a fluorided silica-alumina. US5196574. 1993.
    [63] Chitnis S R, Sharma M M. Alkylation of diphenylamine with α-methylstyrene and diisobutylene using acid-treated clay catalysts. J. Catal., 1996, 160(1): 84-94.
    [64] Chitnis S R, Sharma M M. Alkylation of aniline with α-methylstyrene and separation of close boiling aromatic amines through reaction with α-methylstyrene, using acid-treated clay catalysts. Reactive and Functional Polymers, 1997, 33(1): 1-12.
    [65] Bellussi G, Pazzuconi G, Perego C, et al. Liquid-Phase alkylation of benzene with light olefins catalyzed by β-Zeolites. Journal of Catalysis, 1995, 157(1): 227-234.
    [66] Wieland W S, Davis R J, Garces J M. Side-chain alkylation of toluene with methanol over alkali-exchanged zeolites X, Y, L, and β. Journal of Catalysis, 1998, 173(2): 490-500.
    [67] Yoo K, Smirniotis P G. The deactivation pathway of one-dimensional zeolites, LTL and ZSM-12, for alkylation of isobutane with 2-butene. Applied Catalysis A: General, 2003, 246(2): 243-251.
    [68] Kadgaonkar M D, Laha S C, Pandey R K, et al. Cerium-containing MCM-41 materials as selective acylation and alkylation catalysts. Catalysis Today, 2004, 97(4): 225-231.
    [69] 王月梅,沈健.苯与长链烯烃烷基化反应催化剂的研究进展.广州化工.2004.32(2):4-31.
    [70] Devassy B M, Shanbhag G V, Lefebvre F, et al. Alkylation of p-cresol with tert-butanol catalyzed by heteropoly acid supported on zirconia catalyst. Journal of Molecular Catalysis A: Chemical, 2004, 210(1-2): 125-130.
    [71] Kozhevnikov I V, Tsyganok A I, Timofeeva M N, et al. Alkylation of p-substituted phenols by heteropoly acids. Reaction Kinetics and Catalysis Letters, 1992, 46(1): 17-23.
    [72] Welton T. Ionic liquids in catalysis. Coordination Chemistry Reviews, 2004, 248(21-24): 2459-2477.
    [73] Wilkes J S. Properties of ionic liquid solvents for catalysis. Journal of Molecular Catalysis A: Chemical, 2004, 214(1): 11-17.
    [74] Sheldon R. Catalytic reactions in ionic liquids. Chem. Commun, 2001, 2399-2407.
    [75] 顾彦龙,彭家建,乔琨等.室温离子液体及其在催化和有机合成中的应用.化学进展,2003,15(3):222-241.
    [76] 李艳伟,白雪峰.离子液体在烷基化反应中的应用.化学与粘合,2004,(6):358-361.
    [77] 陈治明,李存雄,余大坤.离子液体超酸清洁催化苯的烷基化反应.有机化学,2004,24(10):1307-1309.
    [78] 何绍群,赵锁奇,沈重振等.离子液体在烷基化反应中的应用.天津化工,2004,18(2):18-20.
    [79] 何玲玲,王新,石中亮等.窒温离子液体在催化及有机反应中的应用.当代化工.2004,33(2):99-104.
    [80] Olivier H. Recent developments in the use of non aqueous ionic liquids for two-phase catalysis. J. Mol. Catal., 1999, 146: 285-289.
    [81] Earle M J, Seddon K R. Ionic liquids green solvents for the future. Pure Appl. Chem., 2000, 72(7): 1391-1398.
    [82] Helene O B, Lionel M. Ionic liquids: perspectives for organic and catalytic reactions. J. Molecul Catal A., 2002, 182-183: 419-437.
    [83] 黄崇品,刘植昌,徐春明.用Et_3NHCl-AlCl_3离子液体催化异丁烷-丁烯的烷基化反应.石油炼制与化工,2002,33(11):11-13.
    [84] Sherif F G, Shyu L J, Talma A G. Low temperature ionic liquids. US 5731101. 1998.
    [85] Trulove R, Sukumaran D K, Osteryoung R A. protons in acidic ambient temperature chloroaluminate molten salts: hydrogendeuterium exchange between the imidazolium cation and hydrogen chloride. J. Phys. Chem., 1994, 98: 141-146.
    [86] Sherif F G, Shyu L J, Greco C C. Linear alxylbenzene formation using low temperature ionic liquids. US5824832. 1998.
    [87] Fannia A A, Floreani D A, King L A. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids, 2. phase transitions, densities electrical conductivities, and viscosities. J. Phys. Chem., 1984, 88:2614-2617.
    [88] John S W, Joseph A L, Robert A W. Dialkylimidazolium chloroalunminate melts a new class of room temperature ionic liquids for electrochemistry, spatroscopy, and symehesis. Inorg. Chem., 1982, 21: 1263-1264.
    [89] Fuller .I, Carlin R T, Delong H C. Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate: model for room temperature molten salts. Chem. Commun., 1994, 299-201.
    [90] Abdul-Sada A K, Ambler P W, Seddon K R. ionic liquids. WO95/21871. 1995.
    [91] Maciej G, Viola I B. Oligomerization of low molecular weight olefins in ambient temperature molten salts. Ind. Eng. Chem. Res., 1993, 32: 1795-1797.
    [92] Ellis B. Ionic liquids. WO96/18459. 1996.
    [93] Gale R J, Gilbert B, Osteryoung R A. Raman spectra of molten aluminum chloride: 1- butylpyridinium chloride systems at ambient temperatures. Inorg. Chem., 1978, 17(10): 2728-2729.
    [94] Yoshizawa M, Hirao M, Ito-Akita K, et al. Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem., 2001, 11: 1057-1062.
    [95] Cole A C, Jensen J L, Ntai I, et al. Novel Bransted acidic ionic liquids and their use as dual solvent- catalystsJ. AM. CHEM. SOC, 2002, 124: 5962-5963.
    [96] Forbes D C, Weaver K.J. Bransted acidic ionic liquids: the dependence on water of the Fischer esterification of acetic acid and ethanol. Journal of Molecular Catalysis A: Chemical, 2004, 214:129-132.
    [97] Gu Y, Shi F, Deng Y. Esterification of aliphatic acids with olefin promoted by Bransted acidic ionic liquids. Journal of Molecular Catalysis A: Chemical, 2004, 212: 71-75.
    [98] Yoshizawa M, Ohno H. Synthesis of molten salt-type polymer brush and effect of brush structure on the ionic conductivity. Electrochimica Acta, 2001, 46: 1723-1728.
    [99] Wasserschied P, Keim W. Ionic liquids—new "solutions" for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39: 3772-3789.
    [100]Bonhote P, Dias A P. Papageorgiou N, et al. Hodrophobic, highly conductive ambient - temperature molten salts. Inorg. Chem., 1996, 35: 1168-1172.
    [101]Stegemann H, Rhode A, Reiche A. Room temperature molten polyiodides. Electrochim.Acta.,1992,37:379-384.
    [102] Boon J A, Levisky J A, Pflug J L. Friedel-Crafts reactions in ambient-temperature molten salts. J.Org.Chem., 1986, 51: 480-483.
    [103]Quormby I C, Mant R A, Goldenberg L M, et al. Stoichiometry of latent acidity in buffered chloroaluminate ionic liquids. Anal. Chem., 1994, 66: 3558-3561.
    [104]Quormby I C, Osteryoung R A. Latent acidity in buffered chloroaluminate ionic liquids. J. Am. Chem. Soc, 1994, 116: 2649-2650.
    [105]Carlin R T, Fullor J. Ionic liquid - polymer gel catalytic membrane. Chem. Common., 1997, 1345-1346.
    [106] Campbell L E, Johnson K E. Speciation of the proton in ambient-temperature molten salts. Inorg. Chem., 1993,32:3809-3815.
    [107]Smith G P, Dworkin A S, Pagni R M, Bronsted superacidity of HC1 in liquid chloroaluminate. A1C1-, -1- ethyl -3- methyl -1H- imidazolium chloride. J. Am. Chem. Soc, 1989, 111, 525-530.
    [108] Abdul-Sada A K, Ambler P W, Seddon K.R. Alkylation process. WO95/21806. 1995.
    [109]Surette JKD, Green L, Singer R D. l-Ethyl-3-methylimidazoIium halogeno aluminate melts as reaction media for the Friedel-Crafts acylation of ferrocene. Chem. Commun., 1996, 2753-2754.
    [110]Elaiwi A, Hitchcock P B, Seddon K R. Hydrogen bonding in imidazolium salts and its implication for ambient temperature halogenoaluminate (III) ionic liquids. J. Chem. Soc. Dalton. Trans., 1995, 3467-3472.
    [111]Dzyuba S V, Bartsch R A. Efficient systhesis of 1- alkyl (aralkyl)- 3- methyl (ethyl) imidazolium
     halides: precursors for room-temperature ionic liquids. J. Heterocyclic. Chem., 2001, 38: 265-268.
    [112] Yeung K S, Farkas M E, Qiu Z. FriedeI-Crfts acylation of indoles in acidic imidazolium chloroaluminate ionic liquid at room temperature. Tetrahedron Letters, 2002, 43: 5793-5795.
    [113] 赵东滨,寇元.室温离子液体:合成、性质及应用.大学化学,2002,17(1):42-46.
    [114] Decastro C, Sauvage E, Valkenberg M H, et al. Immobilised ionic liquids as lewis acid catalysts for the alkylation of aromatic compounds with dodecene. J. Catal., 2000, 196: 86-94.
    [115] Sherif F G, Shyu L J. Alkylation reaction using supported ionic liquid catalyst composition. WO 99/03163. 1999.
    [116] Valkenberg M H, Decastro C, Holderich W F. Fridel-Crafts acylation of aromatics catalysed by supported ionic liquids. Applied Catalysis A: General, 2001, 215: 185-190.
    [117] Smith G P, Dworkin A G, Pagni P M. Quantitative study of the acidity of HCI in a molten chloroaluminate system (AlCl_3/1-ethyl-3-methyl-1H-imidazolium chloride) as a function of HCl pressure and melt composition(51.0-66.4% AlCl_3). J. Am. Chem. Soc., 1989, 111: 5075-5077.
    [118] Wicelinski S P, Gale R.J. Fast atom bombardment mass spectrometry of low temperature chloroaluminate and chlorogallate melts. Anal. Chem., 1988, 60: 2228-2232.
    [119] Koch V R, Miller L L, Osteryoung R A. Electroinitinated Friedel-Crafts transalkylations in a room-temperature molten-salt medium. J. Am. Chem. Soc., 1976, 98: 5277-5284.
    [120] Steichcn D S. Shyu L J. In-situ formation of ionic liquid catalyst for an ionic liquid catalyzed chemical reaction. WO98/50153. 1998.
    [121] Sherif F G.采用低温离子液体和长链烷基化试剂形成直链烷基苯.CN 1225617A.1999.
    [122] Keim W. Ionic liquids. World Patant, WO 00/16902. 2000.
    [123] Song C E, Shim W H, Roh E J. Scandium (Ⅲ) triflate immobilized in ionic liquids: a novel and recyclable catalytic system for FriedeI-Crafts alkylation compounds with alkenes. Chem. Commun., 2000, 1695-1696.
    [124] 董群,翟爱霞,于景波等.用离子液体催化剂合成直链烷基苯.大庆石油学院学报,2004,28(5):34-36.
    [125] Qiao C Z, Zhang Y F, Zhang J C, et al. Activity and stability investigation of [BMIM][AlCl_4] ionic liquid as catalyst for alkylation of benzene with 1-dodecene. Applied Catalysis A: General, 2004, 276: 61-66.
    [126] Xiao Y, Malhotra S.V. Friedel-Crafts alkylation reactions in pyridinium-based ionic liquids. Journal of Molecular Catalysis A: Chemical, 2005, 230: 129-133.
    [127] 孙学文,赵锁奇,王仁安.离子液体催化苯与己烯的烷基化反应.石油化工,2003:32(7):570-572.
    [128] 张彦红,刘植昌,黄崇品等.离子液体结构组成及其C4烃类烷基化催化性能研究.石油化工,2003,32(增刊):268-270.
    [129] 杨雅立,王晓化,寇元.离子液体的酸性测定及其催化的异丁烷丁烯烷基化反应.石油化工,22003,32(增刊):262-264.
    [130] 朴玲钰,付晓,杨雅立等.离子液体催化二苯醚与十二烯烷基化反应.石油化工,2003,32(增刊):259-261.
    [131] 吴越.取代硫酸、氢氟酸等液体酸催化剂的途径.化学进展,1998,10(2):158-170.
    [132] 耿英杰.烷基化生产工艺与技术.北京:中国石化出版社,1993.
    [133] Boucher H A, Cody I A. Alkylation of aromatic molecules using a silica-alumina catalyst derived from zeolite. US 4570027. 1986.
    [134] 许艺,黄日信,吴沛成.烯烃与苯烷基化固体酸催化剂.CN 1072353A.1993.
    [135] Berna T J L, Moreno D A. Alkylation of aromatic hydrocarbons. US 5157158. 1992.
    [136] 陈卫,梁五更,金涌等.分子筛催化剂作用下的长链烯烃-苯烷基化过程.石油化工.1996.25(3):164-167.
    [137] 韩宾兵,王卉,韩社教等.分子筛催化下苯与长直链烯烃的烷基化反应研究.化学反应工程与工艺,1997,13(2):190-193.
    [138] 高文艺,李志禹,黄光辉等.水对苯与长链烯烃烷基化反应中催化剂的影响.辽宁石油化工大学学报,2004,24(1):47-50.
    [139] 佟惠娟,李工.不同分子筛的结构和酸性对苯与1-十二烯烷基化反应的影响.抚顺石油学院学报,2003,23(4):7-11.
    [140] 朱海欧,王军,张伟军等.不同沸石催化剂上苯与1-十二烯烷基化.南京工业大学学报,2002,24(2):20-24.
    [141] 王兴,徐龙伢,王清遐等.苯长链烯烃烷基化制直链烷基苯Ⅰ含氟Y型分子筛催化剂的研究.石油化工,1998,27(4):231-235.
    [142] Wang B, Lee C W, Cai T X, et al. Benzene alkylation with 1-dodecene over H-mordenite zeolite. Catalysis Letters, 2001, 76(1-2): 99-103.
    [143] Liang W, Jin Y, Yu Z, et al. Alkylation of benzene with dodecene over HY zeolite: Deactivation, regeneration, and product distribution. Zeolite, 1996, 17: 297-303.
    [144] Deshmukh A R A S, Gumaste V K, Bhawal B M. Alkylation of benzene with long chain (C8-C18) linear primary alcohols over zeolite-Y. Catalysis Letters, 2000, 64: 247-250.
    [145] 袁兴东,金英杰,沈键等.长链烯烃与苯烷基化反应动力学的研究.石油与天然气化工,2001,30(3):105-107.
    [146] 袁兴东,金英杰,沈键等.分子筛上苯与烯烃烷基化失活动力学研究.燃料化学学报,2000,28(3):253-256.
    [147] 李晓冰,周成光,白雪峰等.H β沸石催化2-甲基萘甲醇烷基化的研究.化学与粘合,2003,(3):124-125.
    [148] Srinivas N, Singh A P, Ramaswamy A V, et al. Shape selective alkylation of 2-methoxy naphthalene with tert-butanol over large pore zeolites. Catal. Lett., 2002, 80(3-4): 181-186.
    [149] 魏长平,张武阳,张亮等.在H型分子筛上萘与正己醇的烷基化反应.高等学校化学学报,2003,24(10):1873-1875.
    [150] 郭海涛,梁燕,乔卫红等.HY分子筛催化合成长链烷基萘.石油化工,2003,32(3):182-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700