钌基氨合成催化剂的成型及机械强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
催化剂的机械强度是固体催化剂的一项重要的性能指标。一种成功的工业催化剂,除具有足够的活性、选择性和耐热性外,还必须具有足够的机械强度,以便抵抗在使用过程中的各种应力。催化剂机械强度对于工业装置的正常运转具有十分重要的地位。而催化剂的成型不仅是催化剂制备过程的重要步骤,也是影响催化剂机械强度的主要因素。因此,对一种工业催化剂而言,选择适当的成型方法与工艺条件,并进行机械强度的标准化测定,这是使其具备足够的机械强度,满足工业正常运行的保证。
     本论文从钌基氨合成催化剂载体活性炭的成型以及机械强度研究入手,运用磨损强度和堆积压碎强度两种测定方法,对钌基催化剂的机械强度进行了较详细的考察,为实现钌催化剂的工业化提供借鉴。研究中得到以下主要结果:
     (1) 粉末活性炭不能直接成型。以粒度为100-200目椰壳活性炭粉末为原料,在添加粘结剂(15%羧甲基纤维素)以及40MPa压力的条件下,可以得到一定形状和强度的成型活性炭。但由该活性炭为载体制备的催化剂活性下降。
     (2) 讨论了成型压力、成型时间、酸处理、粘结剂以及水粉比等成型条件对成型活性炭强度的影响。无论选择什么添加剂,活性炭的强度都随着成型压力的增大而增大。活性炭的强度随着成型时间的增加有一定的增大。添加粘结剂后,活性炭的强度都有所增加,在选择的几种粘结剂中,羧甲基纤维素的使用效果最好。水分含量对活性炭成型也有影响,水粉比约为0.6时比较适宜。活性炭经硝酸处理,强度降低。
     (3) 测定了原粒度活性炭的堆积压碎强度和磨耗强度。不同种类的商业活性炭堆积压碎强度和磨耗强度显著不同。其中,产地为海南和上海的活性炭的堆积压碎强度和磨耗强度较高。
     (4) 研究了钌催化剂机械强度与载体活性炭的关系,探讨了催化剂制备过程中,载体活性炭的预处理对钌催化剂机械强度的影响。活性炭预处理包括硝酸处理、氢气处理、高温石墨化处理等。其中,硝酸处理使活性炭的堆积压碎
Mechanical strength is one of the key parameters for industrial application of a solid catalyst. A successful technical catalyst is required not only to have high activity, selectivity and heat-resistance, but also enough high mechanical strength in order to resist some mechanical stresses. Therefore, the whole manipulation of catalyst bed could be well done in the case that the catalyst has enough high mechanical strength. Forming of catalysts is an important step during the process of preparation, and also it has a strong influence on the mechanical strength of catalyst. Therefore, as for a technical catalyst, it is important to select the appropriate forming method and technical condition and to determine the strength scientifically for the industrial equipment in order working.Our group has successfully developed Ruthenium-based catalyst supported on active carbon, which has high catalyst activity at low pressure and low temperature. At present, pilot and commercial scale researches have been carrying on. The determination methods of abrasion and bulk crushing strength (BCS) are applied in this thesis. The forming methods and mechanical-strength researches of activated carbon are firstly started with. Then the forming and the mechanical strength of Ruthenium-based catalyst have been investigated, which gives some references for the commercial practice of Ruthenium-based catalyst. The main results are as the following:1. The formed activated carbon cannot be directly prepared form activated carbon powder. Activated carbon derived from coal is better than activated carbon derived from coconut shell as raw material of preparing formed activated carbon, but
    it is not appropriate for the carrier of ammonia synthesis catalysts. The formed activated carbons derived from coconut shell are prepared through orthogonal test design under the pressure 40 MPa, which are cylindrical tablets with the diameter of 20 mm and the thickness of 6-8 mm, and have high radial mechanical strength. However, the Ru-based catalyst prepared from formed activated carbon has low activity.2. The influences of forming conditions are investigated. It is found that the mechanical strength of formed activated carbon increased mixing with binder; Carboxyl methyl cellulose (CMC) is the best one of three binders. And formed activated carbon has high strength increasing with the forming pressure, whatever binder is selected. The content of water also has strong influence on the strength, and the appropriate ratio between water and powder is 0.6. The formed activated carbon has low strength, which is prepared from activated carbon modified with nitric acid.3. The bulk crushing strength and abrasion strength of activated carbon are determined. The bulk crushing strength and Abrasion strength are evidently different with the category of activated carbon.4. The influences on mechanical strength of activated carbon after pretreatment are studied. The fine particle percentage and abrasion loss declined markedly under nitric acid treatment. After high temperature treatment, bulk crushing strength was increased. But it was depressed with the increasing of treatment temperature.5. The influences of infusing and drying methods during the preparation process are investigated. The bulk crushing strength and abrasion strength were depressed after infusing. The infrared drying had less influence on the mechanical strength among the three drying methods.6. The bulk crushing strength and abrasion strength of Ruthenium-based catalyst are determined. Under the pressure of 2 MPa, the fine particle percentage of Ru-based catalyst with granularity of 1.0-1.4 mm is 2.5%. Its abrasion strength is 3.5%. The bulk crushing strength and abrasion strength of Ru-based catalyst are increased to some degree with granularity.7. The mechanical reliability of the catalyst is investigated. It is found that the
引文
[1] Andrew, S. P. S. Theory and practice of the formulation of heterogeneous catalysts. Chemical Engineering Science, 1981, 36(9), 1431-1445
    [2] Denny, P. J., & Twigg, M. V. Factor determining the life of industrial heterogeneous catalysts. Studies in Surface Science and Catalysis (Catalyst Deactivation), 1980, 6, 589-591
    [3] Fulton, J. W. Testing the catalyst. Chemical Engineering, 1986, 93(19), 71-77
    [4] Gallei, E., & Schwab, E. Development of technical catalysts. Catalysis Today, 1999, 51, 535-546
    [5] 李书新.高变触媒压差探讨.第1版.北京:烃加工出版社,1986
    [6] Adams, C. R., Sartor, A. F., & Welch, J. G. Some practical problems in achieving standardization of catalyst testing. In S. W. Weller (Ed.), AIChE symposium series 143, Standardization of catalyst methods, Vol. 70 (p.49). New York: AIChE. 1974
    [7] Adams, C. R., Sartor, A. F., & Welch, J. G. Problems in standardizing catalyst tests, Chemical Engineering Progress, 1975, 71 (1), 35-37
    [8] Beaver, E. R. Mechanical testing of extruded, tableted, and ring-formed catalysts. In S. W. Weller (Ed.), AIChE symposium series 143, Standardization of catalyst methods, Vol. 70(p. 1). New York: AIChE. 1974
    [9] Beaver, E. R. Mechanical testing of catalysts. Chemical Engineering Progress, 1975, 71(1), 44-45
    [10] Dart, J. C. Mechanical tests to determine strength and abrasion resistance of catalysts. In S. W. Weller (Ed.), AIChE symposium series 143, Standardization of catalyst test methods, Vol. 70 (p. 5). New York, AIChE. 1974
    [11] Dart, J. C. Catalyst strength and abrasion resistance. Chemical Engineering Progress, 1975, 71 (1), 4647
    [12] Weller, S. W. Standardization of catalyst methods, Vol. 70(p. 49). New York: AIChE. 1974
    [13] ASTM Committee D-32 (2000), D4179-88a(1994) Standard test method for single pellet crush strength of formed catalyst shapes
    [14] ASTM Committee D-32 (2000), D6175-98 Standard test method for radial crush strength of extruded catalyst particles
    [15] ASTM CommitteeD-32(2000). D5757-95 Standard test method for determination of Abrasion and abrasion of powdered catalysts by air jets
    [16] GB3635-83化肥催化剂、分子筛、吸附剂颗粒抗压碎强度测定方法
    [17] GB10505.1-893A分子筛抗压碎强度测定方法
    [18] GB3636-83化肥催化剂、分子筛、吸附剂磨损率测定方法
    [19] GB10505.2-893A分子筛磨损率测定方法
    [20] HG/T 2976-1999化肥催化剂磨耗强度测定方法
    [21] 刘希尧.工业催化剂分析测试表征.第1版.北京:烃加工出版社,1990,34
    [22] Fulton, J. W. Selecting the catalyst configuration. Chemical Engineering, 1986, 93(9), 97
    [23] 徐世林,刘期崇,夏代宽,王建华.鸵轮形烃类蒸汽转化催化剂结构分析与设计.化肥与催化,1990,2,14-21
    [24] 徐守民,刘期崇,夏代宽,王建华.薄壁鸵轮形甲烷蒸汽转化催化剂研究.化肥与催化,1988,2,1-8
    [25] 王尚弟,孙俊全.催化剂工程导论.第1版.北京:化学工业出版社,2001
    [26] Richardson, J. T. Principles of catalyst development, .1989, (p. 143). New York: Plenum Press
    [27] 刘希尧.催化剂的宏观物性测定(上),石油化工,1999,12,850-857
    [28] 朱洪法.催化剂成型.第1版.北京:中国石化出版社,1992
    [29] 赵九生,时其昌,马福善,康慧敏,催化剂生产原理.第1版.北京:科学出版社,1986
    [30] P.A.布亚诺夫,催化剂生产科学原理.第1版.北京:中国石化出版社,1991
    [31] 黄仲涛,林维民,王乐夫,工业催化剂设计与开发.第1版.广州:华南理工大学出版社,1991
    [32] Gupta, P. K., Chabbra, D. S., & Sengupta, A. C. Fertilizer Technol. 1981, 18, 193
    [33] 李大东,史建文,石亚华.催化剂挤出成型技术发展.石油化工,1987,16(2),127-133
    [34] 史建文,李大东,薛用芳,张希智,田敏.挤出成型过程中的各种因素对氧化 铝载体物性的影响.石油化工,1985,14(6),322-328
    [35] 赵野,骆傲阳,于开容,韩志波,陈广文.影响分子筛催化剂强度因素的探讨.石油炼制与化工,1995,26(3),26-29
    [36] Vlaev, L., Ivanev, I. D., & Damyamov, D. P. Effect of peptization of pseudoboehmite by nitric acid on the porosity and mechanical properties of y-AI_2O_3. Kinet. Katal., 1993, 34(1), 165
    [37] 王桂茹,韩翠英,王祥生,催化剂成型条件对催化剂性能的影响.辽宁化工,1990,2,6-9
    [38] Ovsyannikova, I. A., Goldenberg, G. I., Korayabkina, N. A., Shkrabina, R. A., & Isma gilov, Z. R. Study of structural and mechanical properties of granulated alumi na supports using X-ray microprobe. Applied Catalysis, 1989, 55, 75-80
    [39] Ismagilov, Z. R., Koryabkina, N. A., Rudina, N. A., et al. Research on catalysts and catalytic combustion. Kinet. Katal., 1991, 32(2), 439
    [40] Furen, E. L., Gernbet, D. V., & Semenova, T. A. Kinet. Katal., 1975, 13, 107
    [41] Brasoveanu, I., Blejoin, S. I., Szabo, A., etal. Revue Roumaine de Chime, 1980, 25(8), 1159
    [42] 周成光,白雪峰,李占双,夏远亮,刘文彬,刘宁生,H_β型分子筛挤出成型条件对其强度的影响.化学与粘合,2001(6),252-253
    [43] 葛冬梅,中油型加氢裂化催化剂强度影响因素的研究.天津化工,2002(5),29-30
    [44] Li Y D, Zhao J S, & Chang L. Factors analysis for mechanical strength in pelleting process of Fe-based high temperature shift catalyst. Studies in Surface Science and Catalysis, 1991, 63, 145-153
    [45] 李永丹.高温变化催化剂的机械强度研究[学位论文].天津:天津大学化学工程系,1988
    [46] 王曾辉,高晋生,碳素材料.第1版.上海:华东化工学院出版社,1991
    [47] J. A. F. MacDonald, D. E Quinn, Carbon adsorbents for natural gas storage, Fuel, 1998, 77 (1), 61-64
    [48] Chen X S, McEnaney B, Mays T J, et al, Theoretical and experimental studies of methane adsorption on microporous carbons. Carbon, 1997, 35(9), 1251-1258
    [49] 宋燕,凌立成,李开喜等,成型活性炭对甲烷吸附性能研究,新型炭材料,2000,15,(4),13-16
    [50] Q Wenming, Yozo K, Isao M, Yuuichi H, Takeshi M, Preparation of activated carbon form. Ⅱ. Roles of activated carbons on the strength of activated carbon form using a thermoplastic as binder, New carbon materials, 2001, 16(2), 1-7
    [51] Q Wenming, Yozo K, Isao M, Yuuichi H, Takeshi M, Preparation of activated carbon artifact: factors influencing strength when using a thermoplastic polymer as binder, Carbon, 2001, 39, 355-2668
    [52] 周建斌,高尚愚,胡成文等,气相吸附用活性炭成型物的研究,南京林业大学学报,1999,23(6),43-46
    [53] 孟庆函,刘玲,宋怀河,凌立成,超级电容器用复合炭极板电极的电化学性能,电源技术,2004,28(7),405-407
    [54] 钱慧娟,国外用磷酸活化法制木质成型活性炭的研究,林产化工通讯,1997(4),23-24
    [55] 胡福昌,潘美形,陈顺伟,林产化学与工业,2002,22(2),7-11
    [56] 龚维荣等,木质柱状颗粒活性炭的研制,林产化工通讯,2000,34(3),25-26
    [57] 蒋煜,张跃,刘宝山,大同煤生产柱状活性炭的工艺探讨,洁净煤技术,2002,8,(2),26-29
    [58] 葛晓东,利用烟煤制造柱状活性炭,山西煤炭,2004,20(2),56
    [59] 张永刚,王成扬,石油沥青基球形活性炭的制备,天津大学学报,2003,36(1),10-13
    [60] 杨骏兵,凌立成,刘朗,酚醛树脂基球形炭活化特性的研究,新型炭材料,1999,14(4),11-16
    [61] 吉建斌等,含碳添加剂对大同烟煤压块活性炭性能的影响,煤炭转化,2004,27(1),49-53
    [62] 宋继富等,褐煤成型的研究,化学与粘合,1994,2,84-87
    [63] 钟海云,李荐,姜翠玲等,双电层电容器的研制,电子元件与材料,2001,20,(5),3-5
    [64] 刘铁岭,陈进富,刘晓君,天然气吸附剂的开发及其储气性能的研究Ⅴ,吸附剂成型与型炭甲烷储存特性研究,天然气工业,2004,24(8),99-101
    [65] Knudson, F. P. Journal of the American Ceramic Society, 1959, 42, 376
    [66] Le Page, J. E, & Miquel, J. Determining mechanical properties of industrial catalysts: correlations with their morphological and physical-chemical properties. In B. Delmon, P. A, Jacobs, & G. Poncelet (Ed), Preparation of catalysts. Scientific bases for the preparation of heterogeneous catalysts, 1976
    [67] Kapur, P. C., & Fuerstenau, D. W. Dry strength of palletized spheres. Journal of the American Ceramic Society, 1967, 50(1), 14-18
    [68] Bika, D. G., Gentzler, M., & Michaels, J. N. Mechanical properties of agglomerates. Powder Technology, 2001, 117, 98-112
    [69] Subero, J., Ghadiri, M. Breakage pattern of agglomerates. Powder Technology, 2001, 120, 232-243
    [70] Zwan, J. V. D., & Siskens, C. A. M. The compaction and mechanical properties of agglomerated materials. Powder Technology, 1982, 33, 43-54
    [71] Lu, G., Lu, G. Q., & Xiao, Z. M. Mechanical properties of porous materials. Journal of Porous Materials, 6, 1999, 359-368
    [72] Fayed, M. E., & Otten, L. Handbook of powder science and technology, 1984, 231
    [73] Hamaker, H. C. Physica, 1937, 4, 1058
    [74] Krupp, H. Advances Colloid Interface Science, 1967, 1 (2), 8
    [75] Pietsch, W. Chem. Tech, 1967, 19 (5), 259
    [76] H. Rumpf, Agglomeration, Ed. by W. A. Knepper, Interscience Publishers, New York. 1962
    [77] 李永丹,张鎏,李洲.圆柱状氧化物催化剂强度的测试方法及可靠性分析.天津大学学报,1989,3,9-17
    [78] 李永丹,张鎏,张继炎,李玉敏,王日杰.升温还原中高温变换催化剂强度的影响因素分析.天然气化工,1990,15(4),14-20
    [79] Li Y D, Wang R J, Yu J, Zhang J Y, & Chang L. Effect of abnormal treatment on the mechanical strength of iron-based high-temperature shift catalyst. Applied Catalysis A: General, 1995, 33(2), 293-304
    [80] Li Y D, & Chang L, Optimizing the mechanical strength of Fe-based commercial high-temperature water-gas shift catalyst in a reduction process. Industrial and Engineering Chemistry Research, 35(11), 1996, 4050-4057
    [81] Li Y D, Li X M, Chang L, Wu D F, Z P, & Shi Y H. Understandings on the scattering property of the mechanical strength data of solid catalysts. A statistical analysis of iron-based high-temperature water-gas shift catalysis. Catalysis Today, 1999, 51(1), 73-84
    [82] 吴东方,李永丹,张鎏.固体催化剂力学性能研究.化学工业与工程,2001,18(6),378-383
    [83] Li Y D, Wang R J, Zhang J Y, Chang L, The possibility of increasing the mechanical strength of Fe-based commercial WGS catalysts. Factors analysis in the calcinations process, Catalysis Today, 1996, 30, 49-57
    [84] Li Y D, Wu D F, Chang L, et al, A model for the bulk crushing strength of spherical catalysts. Industrial & Engineering Chemistry Research, 1999, 38(5), 1911-1916
    [85] Li Y D, Wu D F, Zhang J P, et al, Extension of a model for bulk crushing strength of spheres to solid catalysts of different shapes, Industrial Engineering Chemical Research, 2000, 39, 838-842
    [86] Wu D F, Li Y D, Zhang J P, et al, Effects of the number of testing specimens and the estimation methods on the Weibull parameters of solid catalysts, Chemical Engineering Science, 2001, 56, 7035-7044
    [87] Li Y D, Wu D F, Zhang J P, et al, Measurement and statistics of single pellet mechanical strength of differently shaped catalysts, Powder. Technology, 2000, 113 (1-2), 176-184
    [88] 关振铎,张中太,焦金生.无机材料物理性能.第1版.北京:清华大学出版社,1992
    [89] Criffith, A. A. The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, A, 1920, 221, 163
    [90] Lawn,B.R.,& Wilshaw, T. R.脆性固体断裂力学,尹祥础等译.第1版.北京:地震出版社,1985
    [91] 杨广里.断裂力学及应用.第1版.北京:中国铁道出版社,1990
    [92] 中国科学院上海硅酸研究所(译).陶瓷的力学性质.第1版.上海:上海科 学技术文献出版社,1981
    [93] 张清纯.陶瓷材料的力学性能.第1版.北京:科学出版社,1987
    [94] Schneider, T., Greil, E, & Schober, G.. Strength modeling of brittle materials with two and three dimensional pore structures. Computation Materials Science, 1999, 16, 98-103
    [95] Mukhopadhyay, A. K., & Phani, K. K. Young's modulus-porosity relations: an analysis based on a minimum cintact area model. Journal of Materials Science, 1998, 33, 69-72
    [96] 韦洪基.铁络中温变化催化剂热处理条件的研究.化肥与催化,1985(2),1
    [97] Fedorov, B. M., Nekhoroshev, V. I., Zhukov, I. A., et al. Support for catalysts inorganic synthesis Ⅲ. Strength characteristics of aluminum oxides obtained by high-temperature treatment of y-Al_2O_3. Kinet. Katal, 1992, 33(1), 157
    [98] 洪才兴,洪传庆.铁-络物料的焙烧条件和中变催化剂的强度关系.化肥与催化,1980,3,1-5
    [99] 赵延昌,应用微波能煅烧CO中变催化剂及机理探讨.江苏省化学化工年会论文,1981,16-23
    [100] 施燕飞,石金莲,钒催化剂生产过程中微波煅烧实验与性能研究,化学工业与工程技术.2001,22(4),10-11
    [101] 盐见弘,可靠性工程基础,彭乃学等译,1983
    [102] 朱伟勇,段晓东,唐明,傅连魁,最优设计在工业中的应用.第1版.沈阳:辽宁科学技术出版社,1993.
    [103] 方开泰,马长兴,正交与均匀试验设计.第1版.北京:科学出版社,2001
    [104] 王英,陈碧辉,李金铸等,正交设计在电刷研制中的应用,炭素,2000(3),1-5
    [105] 刘洪波,张红波,伍恢和等,石油焦基高比表面积活性炭的制备,炭素技术,1997(4),15-19
    [106] 袁文辉,叶振华,高吸附性能油焦活性炭的制备和性能研究,离子交换与吸附,1998,14(3),256-260
    [107] 詹亮,李开喜,朱星明等,高硫焦制备超级活性炭的正交实验研究,石油学报(石油加工),2002.18(1),89-92
    [108] 詹亮,李开喜,吕春祥,朱星明,宋燕,凌立成,超级活性炭的制备及其储氢性能初步研究,新型炭材料,2001,16(4),31-35
    [109] 王明慈,沈恒范,概率论与数理统计.第1版.北京:高等教育出版社,1999
    [110] 峁诗松,周纪芗,概率论与数理统计应用.第1版.北京:高等教育出版社,2004
    [111] 曾秋成,技术数理统计方法.第1版.合肥:安徽科学技术出版社,1982
    [112] Weibull W. A statistical distribution function of wide applicability, Journal of Applied Mechanics, 1951, 18, 293-297
    [113] G D L Puente, J A Menendez. On the distribution of oxygen-containing surface groups in carbons and their influence on the preparation of carbon-supported molydenum catalysts, Solid State Ionics, 1998, 112, 103-111
    [114] 高尚愚,陈维译,活性炭基础与应用.炭素材学会编,中国林业出版社,1984
    [115] 王增义,张双全,王晓歌,工艺条件与活性炭性能河北煤炭建筑工程学院学报,1996,3,10
    [116] 姜浩锡,王日杰等,Fe-Cr高变催化剂的模压成型和机械强度的动态,化工学报,2004,55(4),653-658
    [117] 赵波,活性炭结构和表面性质及其负载钌基氨合成催化剂的研究[学位论文],杭州,浙江工业大学,2004
    [118] Zhihua Zhong, Ken-ichi Aika, Effect of hydrogen treatment of active carbon as a support for promoted Ruthenium catalysts for ammonia synthesis, Chem. Commun., 1997, 1223-1224
    [119] Zhi-hua Zhong, Ken-ichi Aika, Effect of ruthenium precursor on hydrogen-treated active carbon supported ruthenium catalysts for ammonia synthesis, Inorganica Chimica Acta, 1998, 280, 183-188
    [120] A I Foster, P G James, J J Mccarroll, S R Tennison, U. S. Patent: 4163775, 1979
    [121] 刘军利,古可隆,高温处理对活性炭孔隙结构的影响,林产化学与工业,1999,19(3),37-40
    [122] (澳)安德森等著,庞礼等译,催化剂表征与测试,第1版,北京:中国石化出版社,1989.7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700