广西罗城不同土地利用方式与林地碳储量的变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2浓度增加引起的温室效应和气候变暖正威胁着全球经济、社会、生态环境和人类生存,气候变化适应与减缓成为各国政府和科学家关注的热点问题。森林作为陆地最大的碳库,其碳储量分配的动态变化影响着全球碳循环的平衡,而土地利用方式变化对生态系统碳储量的分配具有重要的影响,仅次于化石燃料燃烧使大气CO2浓度增加的最主要的人为活动。评价不同土地利用方式下生态系统的碳汇贡献率不仅可以为生态系统碳循环的研究提供基础资料,而且对制定森林生态系统的管理策略和森林的可持续发展都具有重要的意义。本文研究和评价了人工林、神山和荒山三种不同的土地利用方式下其生态系统碳汇的贡献率及其影响因素,探讨少数民族的生态伦理思想在保护森林、维持生态平衡和增加碳汇方面的作用,对传承和弘扬少数民族传统文化和恢复生态都具有重要的意义。
     本研究以广西罗城仫佬族自治县人工林、神山和荒山为研究对象,通过设立样地对生态系统各组分的生物量、含碳率和碳储量的分配进行了深入的分析和讨论,同时通过访谈形式对神山进行了民族志调查,主要结论如下:
     1.植被组成与结构
     样地调查共记录人工林林下植被物种数为64种,隶属于42科63属;其中桉树(Eucalyptus sp.)人工林植物有37种,马尾松(Pinus massoniana)人工林植物有34种,杉木(Cunninghamia lanceolata)人工林植物有34种。神山植被物种数为35,隶属于20科34属;荒山植被物种数为32,隶属于21科32属。植被丰富度计算结果表明,荒山最大,其次为神山和马尾松人工林。
     三种类型的生态系统人工林植被的垂直结构较为明显,从上到下依次表现为:乔木冠层、灌木层、草本层和地被层。人工林植被生活型的构成以高位芽为主。
     2.人工林生态系统的碳储量
     广西罗城马尾松、杉木和桉树人工林生态系统的碳储量分别为135.61t·hm-2、144.3t·hm-2和87.54t·hm-2。三种人工林生态系统碳储量的平均值均低于我国森林生态系统的平均碳储量(258.83t·hm~-2)
     乔木层是人工林生态系统中重要的碳库。广西罗城县马尾松、杉木和桉树人工林的乔木层碳储量均表现为随着林龄的增加而增大的趋势。其中马尾松林乔木层的碳储量为0.45~106.47t·hm-2,杉木林为0.18~87.44t·hm-2,桉树林为2.68~31.62t·hm-2。乔木层碳储量大小依次为马尾松林>杉木林>桉树林。除了幼龄林乔木层的碳储量较低外,其他林龄的乔木层在人工林生态系统总碳储量中的贡献率较高,占其生态系统总碳储量的比例为28.22%~62.43%。
     马尾松、杉木和桉树人工林林下植被的碳储量分别为0.39~1.67t·hm-2、1.34~3.14t·hm-2和0.83~3.93t·hm-2,占其生态系统总碳储量的0.23%-3.73%。马尾松、杉木和桉树人工林枯落物的碳储量分别为1.5~2.55t·hm-2、1.95~16.04t·hm-2和0.85~2.36t·hm~-2,占其总碳储量的0.85%-10.86%。在林下植被层和地被层中,杉木枯落物碳储量最高,马尾松林下植被碳储量最低。与乔木层和土壤相比较,林下植被和枯落物的碳汇贡献率较小。
     马尾松、杉木和桉树人工林的土壤碳储量分别为74.13t·hm-286.48t·hm-2和62.95t·hm-2,占其生态系统总碳储量的60.6%-76.96%,在0-60cm深度范围内均随着土壤土层深度的增加而降低,三者0-20cm土层的土壤碳储量占其土壤总碳储量的41.24%~62.54%,可见土壤碳储量是人工林生态系统的重要碳库,表层土碳储量是土壤碳库的重要组成部分。马尾松、杉木和桉树人工林土壤碳储量的比例均表现为随着林龄的增加而减小的趋势。
     3.神山生态系统的碳储量
     广西罗城神山生态系统的总碳储量为137.06t·hm~-2。其中乔木层的碳储量为35.41t·hm-2,占生态系统碳储量的25.83%;灌草和枯落物碳储量分别为2.81t·hm-2和2.24t·hm-2,占总生态系统碳储量的2.05%和1.63%;0-20cm土层土壤碳储量为41.01~88.92t·hm-2,20~40cm土壤碳储量为33.19~47.4t·hm-2,土壤总碳储量占其生态系统碳储量的70.48%。
     神山生态系统土壤和乔木层是神山森林生态系统碳储量主要的碳库,其中土壤碳储量是乔木层的2.73倍。
     4.荒山生态系统的碳储量
     广西罗城荒山生态系统包括荒山灌草地生态系统和荒山草地生态系统,其中荒山灌草地生态系统的总碳储量为126.53t·hm-2,荒山草地生态系统为60.93t·hm-2。
     荒山灌草地灌草和枯落物的碳储量分别为8.43和0.32t·hm~-2,草地为1.86和0.44t·hm~-2。荒山灌草地和荒山草地的土壤碳储量分别为117.78和58.63t·hm-2,占其生态系统碳储量的93.08%和96.23%。
     荒山生态系统的碳储量主要集中在土壤,灌草地和草地土壤碳储量分别是其地上植被碳储量的13.15和25.49倍。
     5.人工林、神山和荒山生态系统碳储量的比较
     马尾松和杉木人工林乔木层的碳储量分别高于神山,神山和荒山灌草和枯落物碳储量则分别高于马尾松、杉木和桉树人工林,神山土壤碳储量高于荒山、马尾松和桉树人工林,但低于杉木林。杉木和马尾松人工林多数林分(杉木中龄林、近熟林、成熟林、过熟林和马尾松近熟林)生态系统的碳储量均高于神山,由于其幼龄林的存在,马尾松人工林生态系统的平均碳储量略低于神山。马尾松和杉木人工林生态系统碳储量均高于荒山。桉树人工林生态系统碳储量分别低于荒山和神山,归因于其树龄小导致的乔木层碳储量低。
     6.神山保护的民族生态学调查
     通过查阅文献、半结构访谈和关键人物访谈,结果表明广西罗城四堡村的村民通过长期形成的传统文化,万物有灵的朴素意识来保护神山的自然植被,使处于喀斯特地貌环境下的神山森林生态系统得以很好的保存至今,这对村社水平的森林植被保护具有重要参考价值和研究意义。同时国家政策也影响着神山森林生态系统的发展,采取国家生态补偿机制和与气候变化相关的碳汇项目与村民保护神山的传统文化结合起来将会是保护神山森林生态系统的同时又使村民受益的好方法。
The potential effects of global warming are threatening the global economy, society, the ecological environment and even human survival. These threats have caused governments and scientists to examine and research as a top priority methods and policies regarding the adaptation and mitigation of climate change. Since forests contain the world's largest terrestrial carbon pool, activities that change the carbon dynamics of forests can affects the balance of the global carbon cycle. Land use change is one such activity that has great potential to change the carbon storage, sinks and sources of these ecosystems. Subsequently, terrestrial carbon emissions resulting from land use change has the potential to be only second to the carbon emitted from the combustion of fossil fuels. Therefore, evaluating ecosystem carbon stocks and dynamics within the context of different land use patterns not only provides basic data for ecosystem carbon cycle research, but also important knowledge necessary for development of strategies for forest ecosystem management and sustainable forestry.
     The carbon storage contribution of forest ecosystems in plantations, Karst holly hill and barren hill forests, and factors influencing this storage were studied in this dissertation. Also studying the ecological ethics of minority groups in regard to forest protection, and maintaining ecological balance and sequestered carbon is important in regard to future land use changes. The status of their traditional cultures and land inheritance in the future has the potential to impact future land use. Accordingly, a summary of the main conclusions of this research are as follows:
     1. The Composition and structure of vegetation measured in this study
     A total number of66species, belonging to21families and representing35genera, were recorded in the plantation forests, with37species of eucalyptus (Eucalyptus sp.),34species of Masson pine (Pinus massoniana) and34Species of Chinese fir (Cunninghamia lanceolata). In the Karst holly hill ecosystem a total of35species belonging to20families and representing34genera were recorded. This was comparable to the Karst barren hill ecosystem where a total of32species, belonging to21families and representing32genera, were recorded. The species richness of Karst barren hill vegetation was the highest, followed by the Karst holly ecosystem and the Masson pine plantation in descending order.
     Evident vertical structure in three plantation ecosystems are as follows from top to botton:tree layer, shrub, herb and litter. Macrophanerophytes dominated the vegetation communities in all three ecosystems.
     2. The carbon storage of plantation ecosystem
     The carbon storage of Masson pine, Chinese fir and eucalyptus plantation ecosystems are135.61t·hm-2,144.3t·hm-2and87.54t·hm-2respectively. The mean carbon stocks in these ecosystems are lower than average carbon stock reported for all of China's forest ecosystems (258.83t·hm-2).
     Tree layers were the important carbon pools in plantation ecosystems, the carbon stored in the tree layer of these plantations ranged from0.45~106.47t·hm-2,0.18~87.44t·hm-2, and2.68~31.62t·hm-2for Masson pine, Chinese fir, and eucalyptus, respectively, and increased with age. The average tree carbon storage of these plantations displayed a relationship of Masson pine> Chinese fir> eucalyptus. Except for young plantations, the tree carbon stocks contribute a significant portion to the total ecosystem, accounting for28.22%-62.43%of total ecosystem carbon storage.
     The understory carbon storage of Masson pine, Chinese fir and eucalyptus ranged from0.39~1.67t·hm-2,1.34~3.14t·hm-2and0.83~3.93t·hm-2respectively, accounting for0.23%-3.73%of total ecosystem carbon. The litter carbon stocks of Masson pine, Chinese fir and eucalyptus ranged from1.5~2.55t·hm-2,1.95~16.04t·hm-2and0.85~2.36t·hm-2respectively, accounting for0.85%~10.86%of the total ecosystem carbon.
     The soil carbon storage of Masson pine, Chinese fir and eucalyptus plantations are74.13,86.48and62.95t·hm-2respectively, accounting for60.6%~76.96%of total ecosystem carbon storage. The soil carbon sequestered within0-60cm depth decreases as soil depth increases. Carbon sequestered within0-20cm depth accounts for41.24%-62.54%of total soil carbon, and contributes the most to the total soil carbon pool. The carbon stored in the soil component of these plantation forests accounts for the highest carbon pool within these ecosystems. The total soil carbon stocks in all plantations decreases as plantations become older.
     3. The carbon storage of Karst holly hill ecosystem
     It was determined that the total carbon stock within the Karst holly hill ecosystem was137.06t·hm-2. The tree carbon storage was35.41t·hm-2, accounting for25.83%of total ecosystem carbon. The carbon stored in the understory and litter layers is2.81t·hm-2and2.24t·hm-2, accounting for2.05%and1.63%of total ecosystem carbon, respectively. The carbon storage within the soil layers at depths of0-20cm and20-40cm ranged from41.01~88.92t·hm-2and33.19~47.4t·hm-2, respectively. The total soil carbon storage accounted for70.48%of total Karst holly hill ecosystem. The carbon stored in the tree and soil layers combined comprised the majority of the carbon stored in Karst holly hill ecosystem. The soil carbon layer contained2.73times more carbon than what was found in the tree layer.
     4. The carbon storage of Karst barren hill
     The Karst barren hill vegetation was divided into two successional stages for the purpose of this study, represented by the herb community and the herb-shrub community. Each stage was separated into three layers for carbon analysis-the vegetation layer, the litter layer, and the soil layer. The total ecosystem carbon storage within the herb-shrub community was determined to be126.53t·hm-2, compared to60.93t·hm-2found in the herb community.
     Within the herb community, the carbon stock in the vegetation and litter layers was determined to be1.86t·hm-2and0.44t·hm-2, respectively. The carbon stock in the vegetation and litter layers within the herb-shrub community were determined to be8.43t·hm-2and0.32t·hm-2, respectively. The soil carbon stocks in the herb-shrub community and the herb community are117.78t·hm-2and58.63t·hm-2, accounting for 93.08%and96.23%of the total carbon within each of ecosystem, respectively. The carbon stored in the soil accounted for the majority of the carbon stock in the barren hill ecosystem.
     5. The comparsion of ecosystem of carbon storage in plantation, Karst holly hill and Karst barren hill
     The amount of tree carbon stored in Masson pine and Chinese fir plantations was higher than the tree carbon stored in the Karst holly hill forests, with Masson pine forests displaying the highest of the three forests. However, the carbon stored in the vegetation and litter layers of the Karst holly hill and barren hill ecosystems was found to be higher than the understory layers in all the plantation forests. The carbon stored in the soil of the Karst holly hill was higher than that of the barren hill ecosystem, and the Masson pine and eucalyptus plantations, respectively, but lower than Chinese fir. The total carbon stocks found in middle-aged to over-mature Chinese fir and middle-aged to near mature Masson pine plantations were higher than the total carbon stocks found in the Karst holly hill ecosystem. The average value of carbon stored in the Masson pine ecosystem is lower than carbon found in the Karst holly hill ecosystem due to the number of young Masson pine plantations that were sampled. The total eucalyptus ecosystem carbon stocks were lower than what was found in the Karst holly hill and barren hill ecosystems due to the fact that young eucalyptus plantations were sampled in this study.
     6. Ethnography of protection of holly hill
     Through literature review, semi-structured and key informant interviews, this study revealed that the traditional culture of animism has been formed in Sibao village over a long period of time. During this long period of time the vegetation of Karst holly hill ecosystem was well protected under their simple ecological ethic in this harsh Karst environment. This has played a significant role in protecting the vegetation of this ecosystem at the village level. Meanwhile, national policy has also affected the development of the Karst holly hill forest ecosystem. The combination of a national ecological compensation mechanisms and development of carbon sequestration projects to mitigate climate change will provide a better way to not only protect the Karst ecosystems but also improve living conditions of local villagers.
引文
[1]温景蒿,朱珍华,黄伟夫.气候变化2010,评IPCC二氧化碳变暖说.北京:冶金工业出版社,2010.1-203.
    [2]IPCC,2007. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_cn.pdf.
    [3]唐国利,任国玉.近百年中国地表气温变化趋势的再分析.气候与环境研究,2005,10(4):791-798.
    [4]张志强,曲建升.温室气体排放科学评价与减排政策.北京:科学出版社,2009.23-31.
    [5]姜冬梅,张孟衡,陆根法.应对气候变化.北京:中国环境科学出版社,2007.24-47.
    [6]《气候变化国家评估报告》编写委员会编著.气候变化国家评估报告.北京:科学出版社,2007.177-294.
    [7]Brown S, Hall C A S, Knabe W, et al. Tropical forests:Their past, present, and potential future role in the terrestrial carbon budget-Water, Air, & Soil Pollution,1993,70 (1-4):71-94.
    [8]黄从德,张国庆.人工林碳储量影响因素.世界林业研究,2009,22(2):34-38.
    [9]周广胜,王玉辉,蒋廷玲,等.陆地生态系统类型转变与碳循环.植物生态学报,2002,26(2):250-254.
    [10]吴建国,张小金,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报,2004,15(4):593-599.
    [11]周剑芬,管东生.森林土地利用变化及其对碳循环的影响.生态环境,2004,13(4):674-676.
    [12]Houghton R A, Hackler J L, Lawrence K T-The US carbon budget:contribution from land use change. Science,1999,285(5427):574-578.
    [13]Detwiler R P. Land use change and the global carbon cycle:the role of tropical soils. Biogeochemistry,1986,2(1):67-93.
    [14]Schlesinger W H, et al. Change in soil carbon storage and associated properties with disturbance and recovery. In:Trabaklka J R, Reichle D E, eds. The change carbon cycle:A global analysis. New York:Spring-Verlag,1986.194-220.
    [15]Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science,1994,263(5144):185-190.
    [16]曾伟生,张会儒,唐守正.立木生物量建模方法.北京:中国旅游出版社,2011.1-8.
    [17]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社,1999.1-3.
    [18]Oslon J S. Primary productivity:temperate forest, especially American deciduous. In: Productivity of forest ecosystems. Symp P B and Duvingneaud P, eds. Ecol. And Cons. UNESCO, Paris,1971,4:235-258.
    [19]Maclean D A, Wein R W. Biomass of jack pine and mixed hardwood stands in southern New Brunswich. Can. J. For. Res,1976,6:441-447.
    [20]Whittaker R H, Cohen N, Olson J S. Net production relations of three species at Oak Ridge, TN. Ecology,1963,44:806-810.
    [21]Whittaker R H. Forest dimension and production in the Great Smoky Mountains. J. Ecol,1966, 47:103-121.
    [22]Wittaker, R H and Woodwell G M. Dimension and production relations of trees and shrubs in the Brookhaven forest, New York. Journal of ecology,1968,56:1-25.
    [23]Ovinghton J D. Organic production, Turnover and mineral cycling in woodlands. Biol. Rev, 1965,40:295-336.
    [24]Marchenko A I, Karlov Y M. Mineral exchange in spruce forests of the Northern Taiga and the foresttunfra ofthe Arkangel Provingce. Sov. Soil Sci,1962,722-734.
    [25]Satoo T-A synthesis of studies by the harvest method:primary production relations in the temperate deciduous ofrests of Japan. In:Analysis of temperate forest ecosystems. Ecol. Stud, 1970,1:55-72.
    [26]Andersson F. Ecological studies in Scandian woodland and meadow area, Southern Sweden, Plant biomass, Primary Production and turnover of organic matter. Bot-Notiser,1971,123: 8-51.
    [27]Jordan C F. Amazon rain forest-Am. Sci,1982,70:394-401.
    [28]Ogawa H, Yoda K, Kira T-Comprattive ecologicalstudies on three main types of forests vegetation in Thailand:II, Plant biomass. Nature life southeast Asia (kyoto),1965,1:49-80.
    [29]潘维俦,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布.中南林业科技,1979,4:1-15.
    [30]冯宗炜,张家武,邓仕坚.杉木人工林生物产量的研究,桃源综合考察报告集.湖南科学技术出版社,1980,322-332.
    [31]李文华.邓坤枚.李飞.长白山主要生态系统生物生产量的研究.森林生态系统研究,1981,2:34-50.
    [32]冯宗炜,陈楚莹,张家武,等.湖南会同地区马尾松林生物量的测定.林业科学,1982,18(2):127-134.
    [33]刘世荣,柴一新,蔡体久,等.兴安落叶松人工林群落生物量及净初级生产力的研究.东北林业大学学报,1990,18(2):40-46.
    [34]陈章和,王伯荪,张宏达.广东黑石顶南亚热带常绿阔叶林树木生长研究.植物生态学报,1999,23(5):441-450.
    [35]陈启瑺,沈琪.浙江次生青冈林林木层的生物量模型及其分析.植物生态学与地植物学学报,1993,17(1):38-47.
    [36]党承林,吴兆录.季风常绿阔叶林短刺拷群落的生物量研究.云南大学学报(自然科学版),1992,14(2):95-107.
    [37]Chen H J. Biomass and nutrient distribution in a Chinese-fir plantation chronosequence in Southwest Hunan, China. Forest ecology and management,1998,105(1-3):209-216.
    [38]钟晓青,张宏达,方炜.广东封开黑石顶一种亚热带常绿阔叶林群落演替动态研究.林业科学,1996,32(4):305-310.
    [39]王祥荣,宋永昌.浙江天童国家森林公园常绿阔叶林种间相关的研究.应用生态学报,1994,5(2):113-119.
    [40]廖克服.高海拔地区火炬松人工林生长与生物量研究.福建林学院学报,1996,16(4):375-377.
    [41]黄清麟,郑群瑞,阮学瑞.福建青冈萌芽林分结构及生产力的研究.福建林学院学报,1995,15(2):107-111.
    [42]郑燕明.青钩栲人工林生物量及其分配的初步研究.福建林学院学报,1996,16(2):114-118.
    [43]温远光,梁宏温,蒋海平.广西杉木人工林生物量及分配规律的研究.广西农业大学学报,1995,14(1):55-64.
    [44]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497-508.
    [45]Zhao M, Zhou G S. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest ecology and management,2005,207 (3):295-313.
    [46]李海奎,雷渊才.中国森林植被生物量和碳储量评估.北京:中国林业出版,2010.1-60.
    [47]Peng S L, Hou Y P, Chen B M. Vegetation Restoration and Its Effects on Carbon Balance in Guangdong Province, China. Restoration Ecology,2008,17(4):487-494.
    [48]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报,2005,16(12):2248-2252.
    [49]张德全,桑卫国,李日峰,等.山东省森林有机碳储量及其动态的研究.植物生态学报,2002,26(增刊):93-97.
    [50]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究,2002,21(5):551-560.
    [51]光增云.河南森林植被的碳储量研究.地域研究与开发,2007,26(1):76-79.
    [52]王兵,魏文俊.江西省森林碳储量与碳密度研究.江西科学,2007,25(6):681-687.
    [53]王雪军,黄国胜,孙玉军,等.近20年辽宁省森林碳储量及其动态变化.生态学报,2008,28(10):4757-4764.
    [54]黄从德,张健一,杨万勤,等.四川森林植被碳储量的时空变化.应用生态学报,2007,18(12):2687-2692.
    [55]焦秀梅,项文化,田大伦.湖南省森林植被碳储量及地理分布规律.中南林学院学报,2005,25(1):4-8.
    [56]王磊,丁晶晶,季永华,等.江苏省森林碳储量动态变化及其经济价值评价.南京林业大学学报(自然科学版),2010,34(2):1-5.
    [57]Lal R. Forest soils and carbon sequestration. Forest Ecology and Management,2005,220(1-3): 242-258.
    [58]王效科,冯宗炜.欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13-16.
    [59]Mckinley D, Ryan, M G, Birdsey, R. A. A synthesis of current knowledge on forests and carbon storage in the United States. Ecological Applications,2011,21(6):1902-1924.
    [60]Krankina 0 N, HarmonM E, W injum J K. Carbon sto rage and sequestration in Russian fo rest secto. Ambio,1996,25 (4):284-288.
    [61]Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests:methods to estimate sto rage andgeograph ical distribution. Water, air and soil pollution,1995,82: 271-282.
    [62]Kurz W A, Apps M J, Webb T M, et al. The carbon budget of the Canadian forest sector: Phase I, Forestry Canada. Edmonton, Alberta, Canada,1992.1-93.
    [63]Birdsey R, Pregitzer K, Lucier A. Forest carbon management in the United States:1600-2100. J. Environ. Qual,2006,35(4):1461-1469.
    [64]Birdsey R A, Haynes R W, Heath L S, et al. Carbon changes in U.S. forests. In:Joyce L A, eds. Productivity of America's forests and climate change. Fort Collins:USDA For. Serv, Rocky Mountain Res. Stn,1995.56-70.
    [65]Birdsey R A. Carbon storage for major forest types and regions in the conterminous U.S. In: Sampson R N and Hair D, eds. Forests and global change. Vol.2:Forest management opportunities. Washington, DC:American Forests,1996.23-39.
    [66]Birdsey R A, Alig R, Adams D. Mitigation activities in the forest sector to reduce emissions and enhance sinks of greenhouse gases. In:Joyce L A and Birdsey R A, eds. The impact of climate change on America's forests:A technical document supporting the 2000 USDA Forest Service RPA assessment-Fort Collins:USDA For. Serv.Rocky Mountain Res. Stn,2000. 112-131.
    [67]Goodale C L, Apps M J, Birdsey R A, et al. Forest carbon sinks in the northern hemisphere. Ecol. Appl,2002,12(3):891-899
    [68]Heath L S, Birdsey R A. Carbon trends of productive temperate forests of the conterminous United States. Water air soil pollut,1993,70:279-293.
    [69]Hoover C M. Assessing seven decades of carbon accumulation in two U.S. northern hardwood forests. Forests,2011,2:730-740.
    [70]Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the U.S.forest sector from 1990 to 2010. Forest Ecology and Management,2007,241:14-27.
    [71]Sheikh M A, Kumar M, Bussmann R W, et al. Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance and Management,2011,6:15.
    [72]Roxburgh S H, Wood S W, Mackey B G,et al. Assessing the carbon sequestration potential of managed forests:a case study from temperate Australia. Journal of Applied Ecology,2006, 43(6):1149-1159.
    [73]Alexeyev V A, Birdsey R A. Carbon storage in forests and peatlands of Russia. General technical report-Delaware:U.S Dept-of Agriculture, Forest Servie, Northeastern Resarch Station.1998.1-137.
    [74]Kurbanov E. Carbon in pine forest ecosystems of middle Zavolgie, Russia.European Forest Institute internal report,2000.2:1-68.
    [75]Dieter M and Elsasser P. Carbon stocks and carbon stock changes in the tree biomass of Germany's forest-Forstwissenschaftliches Centralblatt,2002,121(4):195-210.
    [76]Lai R, Suleimenov M, Stewart B A, et al. Climate change and terrestrial carbon sequestration in Central Asia. London:Taylor&Francis Group,2007.3-483.
    [77]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报,2000,20(5):733-740.
    [78]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报,2001,43(9):967-973.
    [79]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学,2004,24(1):50-54.
    [80]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展,2007,26(6):5-7.
    [81]周玉荣,余振良,赵士洞.我国主要森林生态系统碳储量和碳平衡.植物生态学报,2000,24(5):518-522.
    [82]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展,1999,18(3):238-244.
    [83]李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学,2003,33(1):72-80.
    [84]Gong P, Chen J, Xu M. A Preliminary study on the carbon dynamics of China's forest ecosystems in the past 20 years. In:Shiyomi M,Kawahata H,Hiroshi K, et al,eds. Global environmental change in the ocean and on land. Terrapub,2004.401-410.
    [85]杨昆,管东生,周春华.潭江流域森林碳储量及其动态变化.应用生态学报,2006,17(9):1579-1582.
    [86]方运霆,莫江明.鼎湖山马尾松林生态系统碳素分配和贮量的研究.广西植物,2002,22(4):305-310.
    [87]王鹏程,邢乐杰,肖文发,等.三峡库区森林生态系统有机碳密度及碳储量.生态学报,2009,29(1):97-107.
    [88]方晰,田大伦,项文化,等.第二代杉木中幼林生态系统碳动态与平衡.中南林学院学报,2002,22(1):1-6.
    [89]田大伦,方晰.湖南会同杉木人工林生态系统的碳素含量.中南林学院学报,2004,
    24(2):1-5.
    [90]Kang B, Liu S R, Zhang G J, et al. Carbon accumulation and distribution in Pinus massoniana and Cunninghamia lanceolata mixed forest ecosystem in Daqingshan, Guangxi, China. Acta Ecologica Sinica,2006,26(5):1320-1329.
    [91]肖复明,范少辉,汪思龙等.毛竹、杉木人工林生态系统碳平衡估算.林业科学,2010,46(11):59-65.
    [92]Zhang X Q, Kirschbaumb M U F, Hou Z H, et al. Carbon stock changes in successive rotations of Chinese fir(Cunninghamia lanceolata (lamb) hook) plantations. Forest ecology and management,2004,202 (1-3):131-147.
    [93]吴鹏飞,朱波,刘世荣等.不同林龄桤-柏混交林生态系统的碳储量及其分配.应用生态学报,2008,19(7):1419-1424.
    [94]李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量.生态学报,2007,27(2):693-704.
    [95]胡建忠.黄河上游退耕地人工林的碳储量研究.北京林业大学学报,2005,27(6):1-8.
    [96]程堂仁,冯菁,马饮彦,等.甘肃小陇山森林植被碳库及其分配特征.生态学报,2008,28(1):33-44.
    [97]胡会峰,王志恒,刘国华,等.中国主要灌丛植被碳储量.植物生态学报,2006,30(4):539-544.
    [98]Eswaran H, Berg E V D, Rrich P. Organic carbon in soils of the world. Soil Science Society of America Journal,1993,57(1):192-194.
    [99]Post W M,Emanuel W R,Zinke P J, et al. Soil carbon pools and world life zones.Nature,1982, 298(5870):156-159.
    [100]Gardi C and Sconosciuto F. Evaluation of carbon stock variation in Northern Italian soils over the last 70 years. Sustainability Science,2007,2 (2):237-243.
    [101]Schlesinger W H. Evidence from chronosequence studies for a low carbon storage potential of soils. Nature,1990,348(15):232-234.
    [102]Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry,2000,48 (1):21-51.
    [103]Lal R. Forest soils and carbon sequestration. Forest Ecology and Management,2005,220 (1-3):242-258.
    [104]苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展.中国沙漠,2002,22(3):220-228.
    [105]Houghton J T-IPCC Climate Change 2001:The sciencetific basis. Contribution of Working Group I to the third assessment report of the IPCC 2001. Cambridge:Cambridge University Press,2001.
    [106]刘允芬.农业生态系统碳循环研究.自然资源学报,1995,10(1):1-8.
    [107]Houghton, R.A., J.A. Hobbie, J.M. Melillo et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980:A net release of CO2 to the atmosphere. Ecological Monographs,1983,53(3):235-262.
    [108]Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta analysis. Global Change Biology,2002,8 (4):345-360.
    [109]Conen F, Zerva A, Arrouays D, et al. The carbon balance of forest soils:detectability of changes in soil carbon stocks in temperate and boreal forests. In:Griffiths H and Jarvis P, eds. Southampton, UK: The carbon balance of forest biomes. Garland science/BIOS scientific publishers,2004.233-247.
    [110]Schlesinger W H. An overview of the carbon cycle. In:Lai R, Kimble J M, Levine E, et al, eds. Soils and global change advances in soil science. Boca Raton: Lewis Polishers, 1995. 9-25.
    [111]IPCC. Summary for Policymakers In:Solomon S Q, Qin D,Manning M, et al. Climate Change 2007:The physical science basis contribution of Working Group I to the fourth A ssessment report of the intergoverrnental panel on climate change. Cambrige:Cambrige University Press, United Kingdom and New York, NY, USA, 2007.
    [112]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析.应用生态学报,2003,14(5):797-802.
    [113]刘留辉,邢世和,高承芳.土壤碳储量研究方法及其影响因素.武夷科学,2007,23:219-226.
    [114]Kern J S. Spatial patterns of soil organic carbon in the contiguous United States. Soil Science Society of America Journal,1994,58(2):439-455.
    [115]甘海华,吴顺辉,范秀丹.广东土壤有机碳储量及空间分布特征.应用生态学报,2003,14(9):1499-1502.
    [116]解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报,2004,41(11):35-43.
    [117]于贵瑞.全球变化与陆地生态系统碳循环与碳蓄积.北京:气象出版社,2003.119-123.
    [118]李甜甜,季宏兵,孙嫒嫒,等.我国土壤有机碳储量及影响因素研究进展.首都师范大学学报(自然科学版),2007,28(1):93-97.
    [119]Baties N H, Sombroek W G. Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biol,1997, (3):161-173.
    [120]Shimel D S. Terrestrial ecosystem and the carbon cycle. Global Change Biology,1995,1(1): 77-91.
    [121]Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004,304(5677):1623-1627.
    [122]Liski J, Perruchoud D, Karjalainen T-Increasing carbon stocks in the forest soils of Western Europe. Forest Ecology and Management,2002,169(1-2):159-175.
    [123]Bird M, SantriickovaH, Lloyd J, et al. The isotopic composition of soil organic carbon on a nort-south transect in western Canada. European Journal of Soil Science,2002,53 (3): 393-403.
    [124]Bird M I, Santruckova H, Arneth A, et al. Soil carbon inventories and carbon on a latitude transect in Siberia. Tellus Series B-Chemical and Physical Meteorology,2002,54(5): 631-641.
    [125]Resh S C, Binkley D, Parrotta J A. Greater soil carbon sequestration under nitrogen-fixing trees compared with eucalyptus species. Ecosystems,2002,5:217-231.
    [126]Callesen I, Liski J, Raulund-Rasmussen K, et al. Soil carbon stores in Nordic welldrained forest soils relationships with climate and texture class. Global Change Biology,2003,9(3): 358-370.
    [127]Berger T, Neubauer C, Glatzel G. Factors controlling soil carbon andnitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management,2002,159(1-2):3-14.
    [128]Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration? Geoderma,2007,137 (3-4):253-268.
    [129]李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环.北京:气象出版社,2002.1-3.
    [130]王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356.
    [131]吴雅琼,刘国华,傅伯杰,等.中国森林生态系统土壤CO2释放分布规律及其影响因素.生态学报,2007,27(5):2126-2135.
    [132]宋满珍,刘琪绿,吴自荣,等.江西省森林土壤有机碳储量研究.南京林业大学学报(自然科学版),2010,34(2):6-10.
    [133]黄从德,张健,杨万勤,等.四川森林土壤有机碳储量的空间分布特征.生态学报,2009,29(3):1217-1225.
    [134]陈仕栋,方晰.湖南省土壤有机碳库及其空间分布格局.中南林业科技大学学报,2011,31(5):146-151.
    [135]林培松,高全洲.粤东北山区几种森林土壤有机碳储量及其垂直分配特征.水土保持学报,2009,23(5):243-247.
    [136]Zhang J, Wang S L, Feng Z L, et al. Stability of soil organic carbon changes in successive rotations of Chinese fir(Cunninghamia lanceolata (Lamb.) Hook) plantations. Journal of Environmental Science,2009,21(3):352-359.
    [137]倪九派,袁道先,谢德体,等.重庆岩溶区土壤有机碳库的估算及其空间分布特征,生态学报,2009,29(11):6292-9301.
    [138]李家永,袁小华.红壤丘陵区不同土地资源利用方式下有机碳储量的比较研究.资源科学,2001,23(5):73-76.
    [139]方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO2的贡献.水土保持学报,2003,17(3):9-20.
    [140]马少杰,李正才,周本智,等.北亚热带天然次生林群落演替对土壤有机碳的影响.林业科学研究,2010,23(6):845-849.
    [141]邹绿柳,刀志灵,龙春林.滇东南壮族社区森林资源管理分析.植物资源与环境学报,2009,18(1):67-73.
    [142]周鸿,赵德光,吕汇慧.神山森林文化传统的生态伦理学意义.生态学杂志,2002,21(4):60-64.
    [143]刘爱忠,裴盛基,陈三阳.云南楚雄彝族的“神树林”与生物多样性保护.应用生态学报,2000,11(4):489-492.
    [144]GadgiI M and Vartak V D. The sacred groves of western ghats in India. Econ Bet,1974, 30(2):152-160.
    [145]赵德光,周鸿.云南彝族撒尼人密枝林的社会生态学研究.思想战线,2004,(30):243-245.
    [146]戴波,吕汇慧,周鸿.喀斯特地区撒尼密枝林原生态文化的生态价值研究.中央民族大学学报(自然科学版),2005,14(2):130-135.
    [147]王建华,许建初,裴盛基.西双版纳勐宋哈尼族的传统文化与生态系统多样性管理.生态学杂志,2000,19(2):36-41.
    [148]丹真多杰,旦正加.浅谈藏族神山崇拜与生态保护.甘肃民族研究,2010,1:85-88.
    [149]薛达元.民族地区生物多样性相关传统知识的保护战略.中央民族大学学报(自然科学版),2008,17(4):10-16.
    [150]艾怀森,周鸿.云南高黎贡山神山森林及其在自然保护中的作用.生态学杂志,2003,22(2):92-96.
    [151]Helms J A. The Dictionary of Forestry. The Society of American Foresters and CABI Publishing, Bethesda and Wallingford,1998.1-224.
    [152]The Trust for Public Land,the Northern Forest Center,the Quebec-Labrador Foundation, Atlantic Center for the Environment-Community investment strategy, Community Forest Collaborative,2007.1-89.
    [153]White A, Martin A, Forest trends. Strategies for strengthening community property rights over forests:Lessons and opportunities for practitioners. Forest trends,2002.1-54.
    [154]Ellsworth L. A place in the world:Tenure security and community livelihoods.New York: Ford Foundation,2002.1-30.
    [155]Emtage N F. Stakeholder's roles and responsibilities in the community-based forest man agelnent program of the Philippines. Small-scale forest economies. Management and Policy, 2004,3 (3):319-336.
    [156]Tucker C M. Private versus common property forests:forest con-ditions and tenure in a Honduran community. Human Ecology,1999,27 (2):201-230.
    [157]Alemmeren J S and Pandey H N. Vascular plant diversity in the sacred groves of Jaintia hills in northeast India. Biodiversity and Conservation,2003,12(7):1497-1510.
    [158]Balasubramanyan K and Induchoodan N C. Plant diversity in sacred groves of Kerala. Evergreen,1996,36:3-4.
    [159]Subedi, B. P. Linking plant-based enterprises and local communities to biodiversity conservation in Nepal Himalaya. New Delhi:Adroit Publishers,2006.1-244.
    [160]Banjade, M. R. Community forestry and biodiversity conservation in Nepal:A critical analysis (in Nepali). In Biodiversity and livelihoods (in Nepali), H. Dhungana and J. Adhikari. eds.Chautari, Kathmandu, Nepal:Martin Chautari,2008.
    [161]Acharya U, Petheram R, Reid R. Concepts and perceptions of biodiversity in community forestry, Nepal. Small-Scale Forestry,2004,3 (3):401-410.
    [162]Wadley R L, Colfer C J P. Sacred forest, hunting and con-servation in West Kalimantan, Indonesia. Human Ecology,2004,32 (3):313-338.
    [163]Ojha H, Persha L and Chhatre A.Community forest in Nepa,a policy invovation for livelihood. International Food Policy Research Institute (IFPRI) Discussion Paper 00913, 2009.1-44.
    [164]Adhikari B, Williams F, Lovett J C. Local benefits from community forests in the middle hills of Nepal. Forest Policy and Economics,2007,9:464-478.
    [165]Pagdee A, Kim Y S, Daugherty P J. What makes community forest management successful: a meta-study from community forests throughout the world. Society and Natural Resources, 2006,19(1):33-52.
    [166]William D. S. Community forestry and poverty alleviation in Cambodia, Lao-PDR,and Vietnam:An agenda for research. Jakarta:Center for International Forestry Research, 2004.1-32.
    [167]Fisher R, Prabhu R, McDougall C, et al. Adaptive collaborative management of community forests in Asia:experiences from Nepal, Indonesia and the Philippines. Bogor, Indonesia: Center for International Forestry Research (CIFOR),2007.1-242.
    [168]Murdiyarso D, Skutsch M, Skutsch M. Promoting Carbon Benefits from community forest management-In:Murdiyarso D and Skutsch M, eds. Community forest management as a carbon mitigation option, Bogor Barat:Center for International Forestry Research,2006.1-7.
    [169]Ellsworth L. A Place in the World:Tenure Security and Community Livelihoods. New York: Forest trends/Ford Foundation,2002.1-30.
    [170]Bromley D W. Property relations and economic development:The other land reform. World Development,1989,17(6):867-877.
    [171]Fisher R, Prabhu R, MacDougall C, et al. People, forests and the need for adaptation,In: Fisher R, Prabhu R, McDougal C, eds. adaptive collaborative management of community forests in Asia.experiences from Nepal, Indonesia and the Philippines, Indonesia. Center for International Forestry Research,2007.1-15.
    [172]曾以禹,张晓静,林琳编译.适应性公共管理系统是应对气候变化的辅助工具.林业经济,2010,7:102-107.
    [173]刘爱忠,裴盛基,陈三阳.云南楚雄彝族的“神树林”与生物多样性保护,应用生态学报2000,11(4):489-492.
    [174]龙春林,张方玉,裴盛基,等.云南紫溪山彝族传统文化对生物多样性的影响.生物多样性,1999,7(3):245-249.
    [175]吴兆录.西双版纳勐养自然保护区布朗族龙山传统的生态研究.生态学杂志,1997,16(3):45-49.
    [176]李先琨,苏宗明.广西岩溶地区“神山”的社会生态经济效益.植物资源与环境,1995,4(3):38-44.
    [177]施晓春,周鸿.神山森林传统的传承与社区生态教育初探.思想战线,2003,29(1):51-54.
    [178]蔡秀珍,刘克明,龙春林.野生芋属植物干叶片DNA的提取及PCR扩增.中国野生植物资源,2008,27(1):51-57.
    [179]刘怡涛,龙春林,刀志灵.云南思茅端午节食用药根的民族植物学调查,植物资源与环境学报,2003,12(2):33-38.
    [180]郑征,刘宏茂,刘伦辉.西双版纳原始热带季节雨林生物量研究.广西植物,1999,19(4):309-314.
    [181]于贵瑞,温发全,王秋凤,等.全球气候变化与陆地生态系统碳循环.见:于贵瑞编.全球变化与陆地生态系统碳循环.北京:气象出版社,2003.43-90.
    [182]何英.森林固碳估算方法综述.世界林业研究,2005,18(1):22-27.
    [183]Clausen R M and Gholz H L. Carbon and forest management-Gainesville:School of Forest Resources and Conservation University of Florida,2002.1-73.
    [184]沈文清,马钦彦,刘允芬.森林生态系统碳收支状况研究进展.江西农业大学学报,2006,28(2):312-317.
    [185]王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展.世界林业研究,2008,21(5):24-29.
    [186]杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较.应用生态学报,2005,16(7):1195-1199.
    [187]罗辑,杨忠,杨清伟.贡嘎山森林生物量生产力的研究.植物生态学报,2000,24(2):191-196.
    [188]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报(自然科学版),2005,41(2):172-177.
    [189]Fang J Y, Liu G H, Zhu B, et al. Carbon budgets of three temperate forest ecosystems in Dongling Mt, Beijing, China. Science in China series D:Earth Science,2007,50(1):92-101.
    [190]薛立,杨鹏.森林生物量研究综述.福建林学院学报,2004,24(3):283-288.
    [191]曹吉鑫,田赞,王小平等.森林碳汇的估算方法及其发展趋势.生态环境学报,2009,18(5):2001-2005.
    [192]Brown S, Lugo A E. Biomass oftropical forests:a new estimate based on forest volumes. Science,1984,223(4642):1290-1293.
    [193]Isaev A, Komvin G, Zamolod D, et al. Carbon stock and deposition in phytomass of the Russian forests. Water Air Soil Poll,1995,82(1-2):247-256.
    [194]Brown S and Lugo A E. Abevegroand biomass estimates for tropical moist forests of Brazilian Anmzon. Nterciencia,1992,17(1):8-18.
    [195]Brown S, Gilhspie J R, Lugo A E. Biomas estimation methods for tropical forests with application to forest inventory data. Forest Science,1989,36(4):881-902.
    [196]Turner D P, Koepper G J, Harmon M E, et al. A carbon budget for forests of the conterminous United States. Ecological Applications,1995,5(2):421-436.
    [197]Birdesy R A, Plantinga A J, Heath L S. Past and prospective carbon storage in United States forests. Forest Ecology and Management,1993,58(1-2):33-40.
    [198]Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China,1981-2000. Science in China(Series D:Earth Sciences),2007,50 (7):1341-1250.
    [199]Birdsey, R.A. Carbon storage and accumulation in United States Forest ecosystems. General Technical Report WO-59.WashingtonDC:USDAForest Service,1992.1-55.
    [200]Pearson T R H, Brown S L, Richard A. Birdsey R A. Measurement guidelines for the sequestration of forest carbon. General Technical Report NRS-18, USDA Forest Service, 2007.1-47.
    [201]Smith J E, Heath L S, Skog K E. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen. Tech. Rep. NE-343, Newtown Square, PA:U.S. Department of Agriculture, Forest Service,
    Northeastern Research Station.2006,216p.
    [202]Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science,2001,292(5525):2320-2322.
    [203]Shvidenko AZ, Niisson S, Rojikov VA, et al. Carbon budget of the Russian boreal forests:A systems analysis approach to uncertainty. In:Apps M J and Price D T, eds. Forest ecosystems, Forest management and the global carbon cycle. Berlin:Springer Verlag,1996.145-162.
    [204]马钦彦,谢征鸣.中国油松林碳储量基本估计.北京林业大学学报,1996,18(3):31-34.
    [205]Tao Y H, Williams A R. Fuel loading and the potential for carbon emissions from fire following two shelterwood harvest treatments in southern Ohio. Genomics and Applied Biology,2010,29(4):1-11.
    [206]Richardson A D, Dohna H Z. Predicitng root biomass from branching patterns of Douglas-fir root systems. Oikos,2003,100(1):96-104.
    [207]李怒云,吕佳编译.林业碳汇计量.北京:中国林业出版社,2009.1-319.
    [208]程鹏飞,王金亮,王雪梅,等.森林生态系统碳储量估算方法研究进展.林业调查规划,2009,34(6):39-44.
    [209]Hoover C M, Birdsey R A, Heath L S, et al. How to estimate carbon sequestration on small forest tracts. Journal of Forestry,2000,98 (9):13-19.
    [210]Yu G R, Li X R, Wang Q F. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J Resour Ecol.2010,1(2):97-109.
    [211]Aubient M, Grelle A, Ibrom A, et al. Estimates of the annual net Carbon and water exchange of forests:The Euro-Flux M ethod ology. Advances in Ecological Research,2000, 30:113-175.
    [212]殷鸣放,杨琳,殷炜达,等.森林固碳领域的研究方法及最新进展.浙江林业科技,2010,30(6):78-86.
    [213]于贵瑞,孙晓敏.陆地生态系统通量观测的原理与方法.北京:高等教育出版社,2006.1-508.
    [214]Sehulze E D, Lloyd J, Kelliher F M, et al. Productivity of forests in the Eurosiberia boreal region and their potential to act as a carbon sink-a synthesis. Global Change Biol,1999,5(6): 703-722.
    [215]仫佬族自治县县志编纂委员会.罗城仫佬族自治县县志.南宁:广西人民出版社,1993.30-61.
    [216]杨元合,饶胜,胡会峰,等.青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系.生物多样性,2004,12(1):200-205.
    [217]刘庆.青海湖北岸环境梯度上植物群落的生物量与物种多样性及其相互关系.西北植物学报,2000,20(2):259-267.
    [218]陈婷,温远光,孙永萍,等.连栽桉树人工林生物量和生产力的初步研究.广西林业科学,2005,34(1):8-12.
    [219]张林,黄永,罗天祥,等.林分各器官生物量随林龄的变化规律,以杉木、马尾松人工林为例.中国科学院研究生院学报,2005,22(2):170-178.
    [220]朱守谦,魏鲁明,陈正仁,等.贵州茂兰喀斯特森林生物量构成初步研究.植物生态学报,1995,19(4):358-367.
    [221]戚剑飞,唐建维.西双版纳石灰山季雨林的生物量及其分配规律.生态学杂志,2008,27(2):167-177.
    [222]屠玉麟,杨军.贵州中部喀斯特灌丛生物量研究.中国岩溶,1995,14(3):199-208.
    [223]王献溥,蒋高明.广西马尾松林分类、分布和演替的研究.植物研究,2002,22(2):151-155.
    [224]俞新妥.杉木栽培学.福州:福建科技出版社,1997.1-519.
    [225]迟健.马尾松和杉木生态习性的比较.福建林业科技,1992,19(2):31-35.
    [226]潘志剐,游应天.中国主要外来树种引种栽培.北京:北京科学技术出版社,1994.27:1-758.
    [227]潘辉.不同林地清理方式对巨尾桉林地生产力的影响.福建林学院学报,2003,23(4):312-316.
    [228]Wen Y G, Chen F, Liu S R,et al. Relationship between species diversity and biomass ofeucalyptus plantation in Guangxi, south China. Front-For. China,2009,4(2):146-152.
    [229]陈宏伟,李江,孟梦,等.云南热带山地三种阔叶人工林群落林下植物生活型谱比较.亚热带植物科学,2004,33(4):42-44.
    [230]陈彩虹.长沙市四种人工林林下植被生物量及分布格局研究.林业资源管理,2010,3:49-53.
    [231]方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程中碳的释放率.中南林学院学报,2005,25(6):12-16.
    [232]许雯,胡海波,周长海.皖东地区马尾松林生物量结构及其分布特征.中南林业科技大学学报,2011,31(6):111-115.
    [233]方晰,田大伦,胥灿辉.马尾松人工林生产与碳素动态.中南林学院学报,2003,23(2):11-15.
    [234]林挺秀.不同经营措施马尾松林生物量和土壤性质研究.江西林业科技,2010,5:11-13.
    [235]刘红梅,王祖华,关庆伟,等.间伐对杉木和马尾松人工林生长及植物多样性的影响.林业科技开发,2010,24(3):33-37.
    [236]赵金龙,梁宏温,温远光,等.马尾松与红锥混交异龄林生物量分配格局.中南林业科技大学学报,2011,31(2):60-64.
    [237]李志辉.湘南地区马尾松人工林间伐效果的分析研究.中南林业科技大学学报,2010,30(4):1-6.
    [238]陈美高.不同年龄马尾松人工林生物量结构特征.福建林学院学报,2006,26(4):332-335.
    [239]樊后保,李燕燕,苏兵强,等.马尾松、阔叶树混交异龄林生物量与生产力分配格局.生态学报,2006,26(8):2463-2473.
    [240]林思祖,杨梅,曹子林,等.不同强度人为干扰对马尾松地上部分生物量及生产力的影响.西北植物学报,2004,24(3):516-522.
    [241]丁贵杰,王鹏程.马尾松人工林生物量及生产力变化规律研究,不同林龄生物量及生产力.林业科学研究,2001,15(1):54-60.
    [242]项文化,田大伦,闰文德,等.中低强度间伐对杆材阶段马尾松林生物量的影响.中南林学院学报,2001,21(1):10-13.
    [243]刘茜.不同龄组马尾松人工林生物量及生产力的研究.中南林学院学报,1996,16(4):47-51.
    [244]谢伟东,叶绍明,杨梅,等.桂东南丘陵地马尾松人工林群落生物量及分布格局.北华大学学报(自然科学版),2009,10(1):68-71.
    [245]Pretzsch H. Diversity and productivity in forests:evidence from longterm experimental plots. In:Scberer-Lorenzen M,KOrner C, Schulze E,Eds.Forest diversity and function:temperate and boreal systems. Ecological Studies. Berlin,Spnnger, Heidelberg,New York,2005.41-64.
    [246]王献溥,郭柯,田新智,等.广西杉木林的分类、分布和演替.植物资源与环境学报,2004,13(1):43-47.
    [247]康冰,刘世荣,蔡道雄,等.南亚热带杉木生态系统生物量和碳素积累及其空间分布特征.林业科学,2009,45(8):147-153.
    [248]黄志宏,田大伦,康文星等.湖南会同第1代杉木人工林生物量分配动态.中南林业科技大学学报,2011,3(5):37-43.
    [249]温远光.杉木林生产力与森林结构关系的研究.福建林学院学报,1997,17(3):246-250.
    [250]汪家社.杉木生态系统生物量与固碳能力的分析与评价.福建林业科技,2008,35(2):1-4.
    [251]温远光,元昌安,刘世荣.广西杉木林气候生产力模型及分布的研究.自然资源,1994,6:63-70.
    [252]温远光.杉木物候期地理变化规律及其与生产力关系的研究.林业科学,1994,30(4):313-319.
    [253]罗天祥,温远光.广西杉木人工林生产力水热优化模型.自然资源学报,1996,11(1):56-65.
    [254]潘维俦,李利村,高正衡,等.杉木人工林生态系统中的生物产量及其生产力的研究.湖南林业科技,1978,5:2-14.
    [255]惠刚盈,童书振,刘景芳,等.杉木造林密度试验研究,Ⅰ.密度对幼林生物量的影响.林业科学研究,1988,1(4):413-417.
    [256]韩斐扬,周群英,陈少雄,等.2种桉树不同林龄生物量与能量的研究.林业科学研究,2010,23(5):690-696.
    [257]温远光,梁宏温,招礼军,等.尾叶桉人工林生物量和生产力的研究.热带亚热带植物报,2000,8(2):123-127.
    [258]李志辉,陈少雄,谢耀坚,等.林分密度对尾巨桉生物量及生产力的影响.中南林业科技大学学报,2008,28(4):49-54.
    [259]梁宏温,温远光,吴国喜,等.连栽对尾巨桉短轮伐期人工林生长量和生产力动态的影响.福建林业科技,2008,35(3):14-18.
    [260]徐存宝,张伟,宋国华,等.小兴安岭阔叶红松林下草本植物分布特点分析.林业科技,2000,25(5):4-6.
    [261]李少青.22年生马尾松林生物量空间分布格局研究.福建林业科技,2007,4:76-77.
    [262]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    [263]梁宏温,罗宏,温远光,等.桉树林取代马尾松林对森林生态系统碳贮量的影响.江西农业大学学报,2010,32(6):1168-1174.
    [264]张小全,武曙红,何英,等.森林、林业活动与温室气体的减排增汇.林业科学,2005,41(6):150-156.
    [265]林培松,高全洲.粤东北山区几种森林土壤有机碳储量及其垂直分配特征.水土保持学报,2009,23(5):243-247.
    [266]方晰,田大伦,项文化,等.杉木人工林土壤有机碳的垂直分布特征.浙江林学院学报,2004,21(4):18-42.
    [267]李跃林,胡成志,张云,等.几种人工林土壤碳储量研究.福建林业科技,2004,31(4):4-7.
    [268]李克让,陈育蜂,刘世荣,等.减缓用适应全球气候变化的中国林业对策.地理学报,1996,51(增刊):109-119.
    [269]林培松,高全洲.韩江流域典型区几种森林土壤有机碳储量和养分库分析.热带地理,2009,29(4):229-334.
    [270]文娟,金大刚,莫祝平,等.不同造林模式人工林碳贮量的预估及比较分析—以广西西北部地区退化土地再造林项目为例.广西林业科学,2009,38(1):35-38.
    [271]朱宇林,温远光,曹福亮,等.短周期尾巨桉连栽林分生产力的研究.江西农业大学学报,2006,28(1):90-94;
    [272]梁宏温,温远光,吴国喜,等.连栽对尾巨桉短轮伐期人工林生长量和生产力动态的影响.福建业科技,2008,35(3):14-18.
    [273]郭乐东,周毅,钟锡均,等.西江流域桉树生态系统碳贮量与碳汇功能经济价值评价.广东林业科技,2009,25(6):6-13.
    [274]刘刚,朱剑云,叶永昌,等.东莞主要森林群落凋落物碳储量及其空间分布.山地学报,2010,28(1):69-75.
    [275]陈进宁,汪思龙.杉木人工林土壤碳库动态研究现状及展望.广西林业科学,2007,36(3):147-151.
    [276]宁世江,赵天林,唐润琴,等.木论喀斯特林区翠柏群落学特征的初步研究.广西植物,1997,17(4):321-330.
    [277]张永夏,陈红锋,秦新生,等.深圳大鹏半岛“风水林”香蒲桃群落特征及物种多样性研究.广西植物,2007,27(4):596-603.
    [278]董安强,曾庆文,韦强,等.极危植物焕镛木的群落学特征及其保护.热带亚热带植物学报,2009,17(2):105-113.
    [279]夏焕柏.茂兰喀斯特植被不同演替阶段的生物量和净初级生产力估算.贵州林业科技,2010,38(2):1-7.
    [280]刘长成,魏雅芬,刘玉国,等.贵州普定喀斯特次生林乔灌层地上生物量.植物生态学报,2009,33(4):698-705.
    [281]田大伦,王新凯,方晰,等.喀斯特地区不同植被恢复模式幼林生态系统碳储量及其空间分布.林业科学,2011,47(9):7-14.
    [282]杨汉奎,程仕泽.贵州茂兰喀斯特森林群落生物量研究.生态学报,1991,11(4):307-312.
    [283]Whittaker R H and Woodwell G M. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecology,1968,56 (1):1-25.
    [284]孙儒泳等译Fundanmentals of Ecology.北京:人民教育出版社,1981.1-370.
    [285]于维莲,董丹,倪健.中国西南山地喀斯特与非喀斯特森林的生物量与生产力比较.亚热带资源与环境学报,2010,5(2):25-30.
    [286]陈章和,张宏达,王伯荪,等.广东黑石顶常绿阔叶林生物量及其分配的研究.植物生态学与地植物学学报,1993,17(4):289-298.
    [287]杨同辉,宋坤,达良俊,等.中国东部木荷-米槠林的生物量和地上净初级生产力.中国科学,2010,40(7):610-619.
    [288]张咏梅,周国逸,温达志,等.南亚热带季风常绿阔叶林锥栗-荷木-黄果-厚壳桂群落发展趋势探讨,植物生态学报,2003,27(2):256-262.
    [289]沈燕,田大伦,项文化,等.天然次生檫木枫香混交林生物量及生产力研究.中南林业科技大学学报,2011,31(5):27-30.
    [290]陈辉.福建三明33 a生格氏栲人工林生长与生物量,亚热带资源与环境学报,2009,4(3):22-25.
    [291]刘涛泽,刘丛强,张伟.植被恢复中坡地土壤颗粒有机碳分布特征和δ13C值组成.生态环境,2008,17(5):2031-2036.
    [292]袁海伟,苏以荣,郑华,等.喀斯特峰丛洼地不同土地利用类型土壤有机碳和氮素分布特征.生态学杂志,2007,26(10):1579-1584.
    [293]王百群,苏以荣,吴金水.开垦草地对土壤有机碳库构成与来源的效应.核农学报,2007,21(6):618-622.
    [294]张伟,陈洪松,王克林,等.种植方式和裸岩率对喀斯特洼地土壤养分空间分异特征的影响.应用生态学报,2007,18(7):1459-1463.
    [295]李孝良,陈效民,周炼川,等.西南喀斯特石漠化过程中土壤有机质组分及其影响因素.山地学报,2010,28(1):56-62.
    [296]李孝良,陈效民,周炼川,等.喀斯特石漠化地区土壤Fe组成及其发生学意义.地质通报,2010,29(5):745-751.
    [297]胡忠良,潘根兴,李恋卿,等.贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性.生态学报,2009,29(8):4187-4195.
    [298]谢添,李恋卿,潘根兴,等.不同退化程度喀斯特生态系统根际土壤的养分分布特征.生态环境学报,2011,20(2):276-280.
    [299]司彬,姚小华,任华东,等.黔中喀斯特植被恢复演替过程中土壤理化性质研究.江西农业大学学报,2008,30(6):1123-1125.
    [300]廖洪凯,龙健,李娟,等.喀斯特地区不同植被下小生境土壤矿物组成及有机碳含量空间异质性初步研究.中国岩溶,2010,29(4):343-439.
    [301]周文龙,熊康宁,龙健,等.喀斯特石漠化综合治理区表层土壤有机碳密度特征及区域差异.土壤通报,2011,42(5):1131-1137.
    [302]张勇,史学正,于东升,等.滇黔桂地区土壤有机碳密度变异的影响因素研究.土壤学报,2009,46(3):526-531.
    [303]杨汉奎.喀斯特荒漠化是一种地质生态灾难.海洋地质与第四纪地质,1995,15(3):137-147.
    [304]王克林,苏以荣,曾馥平,等.西南喀斯特典型生态系统土壤特征与植被适应性恢复研究.农业现代化研究,2008,29(6):641-645.
    [305]李阳兵,王世杰,容丽.关于喀斯特石漠和石漠化概念的讨论.中国沙漠,2004,2(6):689-695.
    [306]广西林业勘测设计院.广西水利资源规划设计调查技术方法.南宁:广西壮族自治区林业局,2009.1-15.
    [307]马姜明,梁士楚,梁月明等.桂林岩溶石山主要灌丛类型地上生物量及分配特征.广西师范大学学报(自然科学版),2009,27(4):95-98.
    [308]朱海燕,刘忠德,钟章成.喀斯特退化生态系统不同恢复阶段土壤质量研究.林业科学研究,2006,19(2):248-252.
    [309]胡忠良,潘根兴,李恋卿,等.贵州喀斯特山区不同植被下土壤C、N、P含量和空间异质性.生态学报,2009,29(8):4187-4195
    [310]吴海勇,彭晚霞,宋同清,等.桂西北喀斯特人为干扰区植被自然恢复与土壤养分变化.水土保持学报,2008,22(4):144-147.
    [311]闫俊华,周传艳,文安邦,等.贵州喀斯特石漠化过程中的土壤有机碳与容重关系.热带亚热带植物学报,2011,19(3):273-278.
    [312]刘忠宽,汪诗平,陈佐忠,等.不同放牧强度草原休牧后土壤养分和植物群落变化特征..生态学报,2006,26(6):2048-2056.
    [313]Watson R T, Nobel I R, Bolin B, et al. Land use, land-use change, and forestry. Cambridge UK:Cambridge University Press,2000.
    [314]Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001:The scientific basis. Cambridge UK:Cambridge University Press,2001.
    [315]林心雄.中国土壤有机质状况及其管理.见:沈善敏编.中国土壤肥力.北京:中国农业出版社,1998.111-153.
    [316]田秀玲,夏婧,夏焕柏,等.贵州省森林生物量及其空间格局.应用生态学报,2011,22(2):287-294.
    [317]黄承标,石化玉,覃文盛,等.三种不同植被恢复模式地上生物量及其营养元素含量研究.森林工程,2004,20(1):9-13.
    [318]Lugo A E, Sanchez M J, Brown S, et al. Land use and organic carbon content of some subtrop ical soils. Plant and Soil,1986,96(2):185-196.
    [319]龙健,邓启琼,江新荣,等.贵州喀斯特石漠化地区土地利用方式对土壤质量恢复能力的影响.生态学报,2005,25(12):3188-3195.
    [320]林明珠,谢世友,林玉石,等.喀斯特山地不同土地利用方式土壤养分特征研究.中国水土保持,2009,9:8-10.
    [321]王骞.仫佬族.乌鲁木齐:新疆美术摄影出版社,2010.1-150.
    [322]仫佬族自治县县志编纂委员会.罗城仫佬族自治县县志.南宁:广西人民出版社,1993.1-585.
    [323]http://wenku.baidu.com/view/befd64cl4028915f804dc2ce.html.
    [324]仫佬族简史编写组.仫佬族简史《仫佬族简史》.北京:民族出版社,2007.
    [325]张声震.壮族历史文化与《壮学丛书》-《壮学丛书》总序.广西民族研究,2003,71(1):38-54.
    [326]胡衡生,黄建清,梁海华.左江壮文化生态保护区环境调查与评价.甘肃联合大学学报(自然科学版),2007,21(6):89-92.
    [327]曾杰丽.壮族民间信仰的和谐生态伦理意蕴.广西民族大学学报(哲学社会科学版),2008,30(6):105-108.
    [328]付广华.人类学视野下的广西多民族和谐共生.桂海论丛,2008,25(2):89-93.
    [329]孟立永,徐洪刚.壮族传统文化的生态伦理意蕴.百色学院学报,2011,24(2):56-59.
    [330]张殿发,欧阳自远,王世杰.中国西南喀斯特地区人口、资源、环境与可持续发展.中国人口资源与环境,2001,11(1):77-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700