坡度尺度效应与转换及其对土壤侵蚀评价影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡度是影响土壤侵蚀的主要地形因子之一。在区域尺度土壤侵蚀研究中,坡度参数一般是通过中低分辨率DEM来提取的。但随着DEM分辨率的降低,其上提取的坡度发生衰减,使之不能有效反映地形与土壤侵蚀的关系,从而降低区域土壤侵蚀模拟精度。本研究针对以上问题,将数字图像处理、数字地形分析和地统计理论有机结合,通过对坡度与分辨率关系的系统分析,认识坡度衰减规律,解释坡度衰减机理,提出坡度理论分布模型,并在此基础上结合直方图匹配原理,推导得出坡度降尺度变换数学模型,在全国范围内给出坡度降尺度变换(将基于90m分辨率SRTM数据计算的坡度数据降尺度变换使其与25m分辨率坡度有相似的统计特征)数学模型关键参数,最后以区域土壤侵蚀定性评价为例,对坡度降尺度变换的实用性做出评估。
     本论文在全国范围内选取60个样区,其中有6个分析样区,用于探索坡度衰减规律和机理,验证坡度理论分布模型和坡度降尺度变换数学模型;有53个验证样区,用于验证全国坡度降尺度变换数学模型关键参数的合理性;有1个土壤侵蚀评价样区,用于对比坡度降尺度变换前后土壤侵蚀评价结果的差异性。论文主要研究结果如下:
     (1)坡度基本统计特征及其随分辨率的变化情况在不同地形类型区存在差异。平均坡度和坡度标准差随分辨率降低而减小,但在不同地形类型区随分辨率变化的程度不同。黄土丘陵沟壑区(LP样区)和南方红壤丘陵区(SE样区)变化最大;东北漫川漫岗丘陵区(NE样区)和陕北风沙过渡区(NS样区)变化最小;华北土石山区(SD样区)变化中等;四川紫色土丘陵区(SC样区)在较高分辨率范围内变化较小,在较低分辨率范围内变化增大。随分辨率降低坡度频率曲线和累积频率曲线向低坡度范围移动,不同地形类型区移动的程度不同。LP样区和SE样区频率曲线随分辨率变化最大,NE样区和NS样区变化最小,SD样区变化中等,SC样区在较高分辨率范围内变化较小,在较低分辨率范围内变化增大。
     (2)通过独立结构变异函数理论模型(Independent Structures Model, ISM)拟合得出坡度各空间频率组分随分辨率降低的变化特征以及不同地形类型区各组分的差异性。随分辨率降低坡度整体变异性减小,相关距离增大;随分辨率降低受影响最大的为空间高频组分,而空间低频组分随分辨率变化较小;在6个分析样区的模拟结果表明,NE样区和NS样区坡度信息在空间低频组分占的比重较大;LP样区和SE样区在空间高频组分占的比重较大;SC样区在空间中频组分占的比重较大;SD样区在各个空间频率组分所占比重居中。以上结论较好地解释了分辨率降低过程中不同地形类型区坡度变化的差异性。
     (3)将高程梯度分析和卡方分布理论结合,完成了坡度理论分布模型的推导,其主要参数为高程梯度p和q的标准差。模型精度取决于样区内部地形是否单一,高程梯度p和q是否符合模型前提假设(即p和q呈正态分布,相互独立,均值为0,方差相等)。将坡度理论分布模型在6个分析样区系列分辨率上进行应用及验证,结果表明本研究提出的坡度理论分布模型可以模拟坡度频率曲线、累积频率曲线、平均值和标准差,在6个分区样区上模型精度较高。
     (4)结合坡度理论分布模型与直方图匹配原理推导得出坡度降尺度变换数学模型,其最重要的参数为高低分辨率高程梯度p和q的标准差。降尺度变换数学模型在6个分析样区模拟效果较好;基于全国25m分辨率Hc-DEM得到全国范围内坡度降尺度变换重要参数(高分辨率高程梯度p和q的标准差)的参考值并在53个验证样区上通过了验证。
     (5)以土壤侵蚀分类分级标准(SL190-2007)所规定的水蚀面蚀评价方法为土壤侵蚀强度评价依据,以安塞县为研究区,基于90m SRTM计算的坡度(以下简称SRTM坡度)、降尺度变换后90m SRTM坡度(以下简称降尺度变换坡度)和25m分辨率坡度分别进行土壤侵蚀强度评价,探讨坡度降尺度变换对区域土壤侵蚀评价的影响,并对比基于三种坡度数据的土壤侵蚀强度评价结果。从图面效果和统计信息来看,基于降尺度变换坡度和基于25m分辨率坡度进行的土壤侵蚀强度评价结果相似,而基于SRTM坡度的土壤侵蚀强度评价结果与前两者有较大差别,其土壤侵蚀强度评价结果偏弱。坡度降尺度变换对区域土壤侵蚀评价是必要的。
Slope gradient is one of the main factors in soil erosion. In the research of regional soilerosion accessment, slope gradient is generally calculated from lower resolution DEM.However, slope gradient becomes smaller with resolution becomes coarser, thus makes itdifficult to show the relationship between slope gradient and soil erosion and makes themodeling result of regional soil erosion poor. In this research, the digital image process,digital terrain analysis and geostatistical analysis were mixed together. We studied therelationship between slope gradient and resolution, explained the reason of slope reductionwith resolution, build a theoretical slope distribution model, got a mathmetial slopedown-scaling model and the key parameter in the model over China(downscale from90mSRTM to25m) and evaluated the change of regional soil erosion accessment result because ofslope down-scaling.
     There are60research sites in this paper. Six of them are called analyse-samples which aredused in study of slope reduction with resolution, validation of theoretical slope distributionmodel and mathmetial slope down-scaling model. Fifty three of them are called downscalingvalidation-samples which are used in validation of parameters of mathmetial slopedown-scaling model over China. One of them are called soil erosion accessment-sampleswhich is used in comparation of soil erosion accessment based on coarser and down-scalingslope. The results of this research are as follows.
     (1)There are some differences between varied terrain types in the change of basic slopestatistics with resolution. Mean slope and slope standard deviation (STD) reduce withresolution becomes coarser. However in different terrin types the change is different. In LoessHilly area (LP sample) and Red Soil Hilly areas (SE sample) the change is most intensive. InRocky Area of Shandong province (SD sample) the change is moderate. In Northeast GentleHilly Black Soil area (NE sample) and Wind Drift Sand area in North Shannxi Province (NSsample) the change is most gentle. In Purple Soil Hilly area in Sichuan province the change is gentle when resolution is finer and is more intensive when resolution is coarser. Frequencyand Cumulate Frequency curves moves to gentle slope with resolution become coarser. Thechange in different terrain types is similar as the change of mean slope and STD of slope.
     (2) Semi-variogram is a useful tool in analyse of terrain structures. Change of slopeinformation in different scale components with resolution and terrain types can be detected.The overall variance of slope reduces and correlation distance becomes larger with resolutionbecomes coaser. The result of ISM model shows that with resolution becomes coarser thechange of high frequency component of slope is most significant and that of low frequencycomponent is small. In NE and NS sample low frequency component of slope is moreimportant than in other samples. However in LP and SE sample high frequency component ofslope is more important than in other samples. In SC sample moderate frequency componentof slope is more important than in other samples. In SD sample the proportion of high, lowand moderate frequency component in overall variance is moderate in the six samples. Theresult well explained the reason for the difference in slope scale effect with resolution indifferent terrain types.
     (3) This paper got a theoretical slope distribution model based on slope gradient of DEMsurface and The chi-square distribution. The main parameter in this model is std of slopegradient p and q. The model efficiency is dependent on whether the terrain type is single inthe study area that is whether p and q is normally and independent with zero mean and eaqualvariance. The model has been used in the six analyse-samples at series of resolutions. Theresult shows that the model used in this paper can model slope frequency and cumulatefrequency curves, mean and std of slope. The model efficiency is high in the sixanalyse-samples.
     (4)Slope down-scaling mathematical model was got based on theoretical slope distributionmodel and histogram matching method and applied in the six analyse-samples. The mostimportant parameter in the slope down-scaling mathematical model in this paper is the std ofp and q at high resolution. The paper offers the std of p and q at resolution of25m based on25m Hc-DEM all over China and the parameter was validated at the53downscalingvalidation-samples.
     (5) In this paper the method showed in Standards for classification and gradation of soilerosion (SL-190-2007) was used as the method of soil erosion assessment. The study area isthe county of Ansai. In order to know the influence of slope-downing to soil erosionassessment, the slope based on90m SRTM (SRTM slope for short) was downscaled throughthe slope down-scaling mathematical model to25m. Then soil erosion grade was calculatedbased on SRTM slope,25m slope and the downscaled slope. The result shows that the erosion grade result is similar based on25m slope and the downscaled slope. However there isdifference between erosion grade result based on SRTM slope and the other two slopesurfaces, the erosion grade result based on SRTM is relatively gentle. The slope downscalingprocess in regional soil erosion assessment is essential.
引文
[1] Oldeman, L. R., Hakkeling, R. T. A., and Sombroek, W. G. World Map of the Status ofHuman-Induced Soil Degradation. An Explanatory Note [M]. Wageningen, TheNetherlands: UUEP and ISRIC,1991.34.
    [2] Oldeman, L. R., Hakkeling, R. T. A., and Sombroek, W. G. The global extent of soildegradation [M]. In: Soil Resilience and Sustainable Land Use [M], Greenland, D. J.and Szabolcs, I.,(Editors). Wallingford: CAB International,1994.99-118.
    [3] Reich, P., Eswaran, H., and Beinroth, F. Global Dimensions of Vulnerability to Windand Water Erosion [C]. In: The10th International Soil Conservation OrganizationMeeting-Sustaining the Global farm. Purdue University and the USDA-ARS NationalSoil Erosion Research Laboratory.1999.
    [4]李锐.中国主要水蚀区土壤侵蚀过程与调控研究[J].水土保持通报,2011,31(5):1-6.
    [5]李锐,上官周平,刘宝元,等.近60年我国土壤侵蚀科学研究进展[J].中国水土保持科学,2009,7(5):1-6.
    [6]郭廷辅.我国水土保持工作现状,问题和对策[J].地理研究,1995,14(4):1-7.
    [7]杨勤科.1:1500万中国土壤侵蚀图[M]. In:中华人民共和国自然地图集(第二版)[M],《中华人民共和国自然地图集》编辑委员会, Editor北京:中国地图出版社,1999.
    [8]朱显谟.黄土高原水蚀的主要类型及其有关因素[J].水土保持通报,1981(4):13-18.
    [9] Moore, I. D., Grayson, R. B., and Landson, A. R. Digital Terrain Modelling: a Reviewof Hydrological, Geomorphological, and Biological Applications [J]. HydrologicalProcesses,1991,5(1):3-30.
    [10] Wilson, J. P. and Gannalt, J. C. Terrain Analysis, the principle and application [M].New York: John Wiley&Sons, Inc.,2000.400.
    [11] Cook, H. L. The nature and controlling variables of the water erosion process [J]. SoilScience Society ofAmerican Proceedings,1936(1):60-64.
    [12] Musgrave, G. W. The quantitative evaluation of factors in water erosion: A firstapproximation [J]. Journal of Soil and Water Conservation,1947(2):133-138.
    [13] Smith, D. D. Factors Affecting Sheet and Rill Erosion [J]. Transactions, AmericanGeophysical Union,1957,38(6):889-896.
    [14]陈永宗.黄河中游黄土丘陵地区坡地的侵蚀发育[M].地理集刊,北京:科学出版社,1976.
    [15]杨勤科,赵牡丹,刘咏梅,等. DEM与区域土壤侵蚀地形因子研究[J].地理信息世界,2009,7(1):25-31.
    [16]赵牡丹.基于DEM的区域尺度水土流失地形因子研究[D].陕西,杨陵:中国科学院水利部水土保持研究所,2007.
    [17] Flanagan, D. C. and Nearing, M. A. USDA-Water Erosion Prediction Project:Hillslope Profile and Watershed Model Documentation [R]. In: NSERL Report No.10
    [R]. West Lafayette, Indiana: USDA-ARS National Soil Erosion Research Laboratory,1995.
    [18] Morgan, R. P. C., Quinton, J. N., Smith, R. E., et al. The European soil erosion model(EUROSEM): documentation and user guide [M]. Bedford, United Kingdom: SilsoeCollege, Cranfield University,1998.
    [19] de Roo, A. P. J., Offermans, R. J. E., and Cremers, N. H. D. T. LISEM: A Single-EventPhysically Based Hydrological and soil Erosion Model for Drainage Basins. II:Sensitivity analysis, validation and application [J]. Hydrological Processes,1996,10(8):1119-1126.
    [20] Jetten, V. LISEM user manual, version2.x. Draft version January2002[M]. UtrechtUniversity, The Netherlands: Utrecht Centre for Environment and LandscapeDynamics,2002.48.
    [21]杨勤科,李锐. LISEM--一个基于GIS的土壤侵蚀预报模型[J].水土保持通报,1998,18(4):82-89.
    [22] Renard, K. G., Foster, G. R., Weesies, G. A., et al. Predicting Soil Erosion by Water. AGuide to Conservation Planning with the Revised Universal Soil Loss Equation(RUSLE)[M]. Washington: U.S. Department of Agriculture,1997.
    [23] Fu, B. J., Zhao, W. W., Chen, L. D., et al. Assessment of soil erosion at largewatershed scale using RUSLE and GIS: a case study in the Loess Plateau of China [J].land degradation&development,2005,16(1):73-85.
    [24] Yang, D., Kanae, S., Oki, T., et al. Global potential soil erosion with reference to landuse and climate changes [J]. Hydrological Processes,2003,17(14):2913-2928.
    [25] Beven, K. Linking Parameters Across Scales-Subgrid Parameterizations and ScaleDependent Hydrological Models [J]. Hydrological Processes,1995,9(5-6):507-525.
    [26] Vázqueza, R. F. and Feyen, J. Assessment of the effects of DEM gridding on thepredictions of basin runoff using MIKE SHE and a modelling resolution of600m [J].Journal of Hydrology,2007,334(1-2):73-87.
    [27] Wolock, D. M. and McCabe, G. J. Differences in topographic characteristics computedfrom100-m and1000-m resolution digital elevation model data [J]. HydrologicalProcesses,2000(14):987-1002.
    [28] Yang, Q. K., David, J., Li, R., et al. Re-scaling lower resolution slope by histogrammatching [M]. In: Advances in Digital Terrain Analysis [M], Zhou, Q., Lees, B. G.,and Tang, G. A.,(Editors). New York, USA: Springer,2008.193-210.
    [29]汤国安,赵牡丹,李天文,等. DEM提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(6):824-830.
    [30]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001,21(1):57-59.
    [31]汤国安,杨玮莹,秦鸿儒,等. GIS技术在黄土高原退耕还林草工程中的应用[J].水土保持通报,2002,22(5):46-50.
    [32]陈述彭,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [33]黄杏元,马劲松,汤勤.地理信息系统概论[M].北京:高等教育出版社,2001.275.
    [34]周启明,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [35] Wilson, J. P. Digital terrain modeling [J]. Geomorphology,2012,137(1):107-121.
    [36] Hengl, T. and Reuter, H. Geomorphometry Concepts, Software, Applications [M]. ed.AmsterdamBoston: Elsevier,2009.
    [37] Iwahashi, J. and Pike, R. J. Automated classifications of topography from DEMs by anunsupervised nested-means algorithm and a three-part geometric signature [J].Geomorphology,2007,86(3-4):409-440.
    [38] Moore, I. D., Gessler, P. E., Nielsen, G. A., et al. Soil Attribute Prediction UsingTerrain Analysis [J]. Soil Science Society of America Journal,1993,57(2):443-452.
    [39] Pennock, D. J. Terrain attributes, landform segmentation, and soil redistributsion [J].Soil and Tillage Research,2003,69(1-2):15-26.
    [40] Pennock, D. J. Multi-site assessment of cultivation-induced soil change using revisedlandform segmentation procedures [J]. Canadian Journal of Soil Science,2003,83(5):565--580.
    [41] Pennock, D. J., Anderson, D. W., and de Jong, E. Landscape-scale changes inindicators of soil quality due to cultivation in Saskatchewan, Canada [J]. Geoderma,1994,64(1-2):1-19.
    [42] Pennock, D. J., Zebarth, B. J., and de Jong, E. Landform Classification and SoilDistribution in Hummocky Terrain, Saskatchewan, Canada [J]. Geoderma,1987,40(3-4):297-315.
    [43] Reuter, H. I. Analyzing Digital Elevation Models using Relief Analysis within ArcInfo[M]. Müncheberg, Germany: Department of Soil Landscape Research, ZALF,2003.
    [44]陈志明.论中国地貌图的研制原则、内容与方法--以1:4000000全国地貌图为例[J].地理学报,1993,48(2):105-113.
    [45] Miller, C. L. and Laflamme, R. A. The Digital Terrain Model-theory and Application[J]. Photogrammeteric Engineering,1958,24(3):433-442.
    [46] Hutchinson, M. F. and Gallant, J. C. Digital elevation models and representation ofterrain shape [M]. In: Terrain Analysis, the principle and application [M], Wilson, J. P.and Gallant, J. C.,(Editors). New York: John Wiley&Sons, Inc.,2000.29-50.
    [47] Hutchinson, M. F. and Gallant, J. C. Terrain Analysis: Principles and Application [M].In: Digital elevation models and representation of terrain shape [M]New York: JohnWiley&Sons.Inc,2000.
    [48]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [49]胡鹏,白轶多,胡海.数字高程模型生成中的高程序同构[J].武汉大学学报(信息科学版),2009,34(3):352-357.
    [50]胡鹏,黄雪莲,吴艳兰,等. DEM若干理论问题思考[J].哈尔滨工业大学学报,2006,38(12):2143-2147.
    [51]胡鹏,杨传勇,吴艳兰,等.新数字高程模型——理论、方法、标准和应用[M].北京:测绘出版社,2007.
    [52] Moore, I. D., Turner, A. K., Wilson, J. P., et al. GIS and land surface-subsurfacemodeling [M]. In: Environmental Modelling with GIS [M], Goodchild, M. F., Parks, B.O., and Steyaert, L. T.,(Editors). New York: Oxford University Press,1993.196-230.
    [53] de Jong, S. M., Paracchini, M. L., Bertolo, F., et al. Regional assessment of soilerosion using the distributed model SEMMED and remotely sensed data [J]. CATENA,1999,37(3):291-308.
    [54] Kirkby, M. J. From plot to continent: reconciling fine and coarse scale erosion models[C]. In: Sustaining the Global FarmSelected papers from the10th International SoilConservation Organization. Purdue University and the USDA-ARS National SoilErosion Research Laboratory.2001.
    [55]冷疏影,冯仁国,李锐,等.土壤侵蚀与水土保持科学重点研究领域与问题[J].水土保持学报,2004,18(1):2-6.
    [56]李锐,杨勤科.区域水土流失快速调查与管理信息系统研究[M].郑州:黄河水利出版社,2000.
    [57]王礼先,张有实,李锐,等.关于我国水土保持科学技术的重点研究领域[J].中国水土保持科学,2005,3(1):1-6.
    [58]李锐,杨勤科,赵永安.水土流失动态监测与评价研究现状与问题[J].中国水土保持,1999(11):31-33.
    [59]杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].水土保持通报,1998,18(5):13-18.
    [60]杨勤科,李锐,曹明明.区域土壤侵蚀定量研究的国内外进展[J].地球科学进展,2006,21(8):849-856.
    [61] Zachar, D. Soil Erosion [M]. Oxford, New York: Elsevier Scientific PublishingCompany,1982.
    [62]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报,1955,12(1):15-21.
    [63]中国科学院-水利电力部水利水电科学研究院水文研究所.中国水文图集[M].北京:水利水电科学研究院水文研究所,1963.
    [64]中华人民共和国水利部.全国水土流失公告[R].北京2000.1-16.
    [65] Blaszczynski, J. ASTM STP1126. Regional soil loss prediction utilizing theRUSLE/GIS interface [M]. In: Geographic Information Systems(GIS) andmapping—practices and standards [M], Johnson, A. I., Pettersson, C. B., and Fulton, J.L.,(Editors). Philadelphia, P. A.: American Society for Testing and Materials,1992.122-131.
    [66] Brazier, R. E., Rowan, J. S., Anthony, S. G., et al.“MIRSED” towards anMIRapproach to modellinghillslopesoilerosion at the nationalscale [J]. CATENA,2001,42(1):59-79.
    [67] Lu, H., Gallant, J., Prosser, I. P., et al. Prediction of Sheet and Rill Erosion Over theAustralian Continent, Incorporating Monthly Soil Loss Distribution [M]. Canberra,Australia: CSIRO Land and Water Technical Report,2001.
    [68] Batjes, N. H. Global assessment of land vulnerability to water erosion on a one halfdegree by one half degree grid [J]. Land Degradation&Development,,1996,7(4):353-365.
    [69] Kirkby, M. J., Abrahart, R., McMahon, M. D., et al. MEDALUS soil erosion modelsfor global change [J]. Geomorphology,1998,24(1):35-49.
    [70]周佩华.2000年中国水土流失趋势预测与防治对策[M].中国科学院水土保持研究所集刊,陕西,杨凌:中国科学院水土保持研究所,1988.
    [71]卜兆宏,孙金庄,周伏建,等.水土流失的定量遥感方法及其应用研究[J].土壤学报,1997,34(3):235-245.
    [72]谢红霞.延河流域土壤侵蚀时空变化及水土保持环境效应评价研究[D].陕西.西安:陕西师范大学,2008.
    [73]胡良军,李锐,杨勤科.基于GIS的区域水土流失评价研究[J].土壤学报.,2001,38(2):167-175.
    [74]杨勤科,李锐,曹明明.区域土壤侵蚀定量研究的国内外进展[J].地球科学进展,2006,21(9):31-38.
    [75]杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].水土保持通报,1998,1(5):14-17.
    [76]杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土保持,2006,18(2):20-23.
    [77] Zingg, A. W. Degree and length of land slope as it affects soil loss in runoff [J].Agricultural Engineering,1940,21(1):59-64.
    [78] McCool, D. K., Foster, G. R., Mutchler, C. K., et al. Revised slope length factor for theuniversal soil loss equation [J]. Transactions of the ASAE,1989,32(5):1571-1576.
    [79] McCool, D. K., Foster, G. R., Mutchler, C. K., et al. Slope length and steepness factors(LS)[M]. In: A Guide to conservation planning with the Revised Universal Soil LossEquation (RUSLE), USDA Agric. Handb. No703,101-104(Chapter4)[M], Renard,K. G., Foster, G. R., and Weesies, G. A.,(Editors). Washington: U.S. Department ofAgriculture,1997.
    [80] Moore, I. D. and Burch, G. J. Modelling Erosion and Deposition: Topographic Effects[J]. Transactions of the ASAE,1986,29(6):1624-1630.
    [81] Moore, I. D. and Burch, G. J. Physical basis of the length-slope factor in the UniversalSoil Loss Equation [J]. Soil Science Society of America Journal,1986,50(5):1294-1298.
    [82] Moore, I. D. and Wilson, J. P. Length-slope factors for the Revised Universal SoilLoss Equation: Simplified method of estimation [J]. Journal of Soil and WaterConservation,1992,47(5):423-428.
    [83] Williams, J. R. and Berndt, H. D. Determining the universal soil loss equation'slength-slope factor for watersheds [M]. In: Soil Erosion: Prediction and Control [M],Foster, G. R., Editor Lowa, US: Soil Conservation Society of American,1997.217-225.
    [84] Lal, R. Soil degradative effects of slope length and tillage methods on alfisols inwestern Nigeria. I. Runoff, erosion and crop response [J]. land degradation&development,1997,8(3):201-219.
    [85] Wilson, J. P. Estimating the topographic factor in the universal soil loss equation forwatersheds [J]. Journal of Soil and Water Conservation,1986,41(3):179-184.
    [86]黄秉维.陕甘地区土壤侵蚀的因素和方式[J].地理学报,1953,19(2):163-186.
    [87]唐克丽,张科利,雷阿林.黄土丘陵区退耕上限坡度的研究论证[J].科学通报,1998,43(2):200-203.
    [88]陈永宗,景可,蔡国强.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [89]刘宝元,朱显谟,周佩华,等.黄土高原土壤侵蚀垂直分带性研究[M].中国科学院西北水土保持研究所集刊,杨凌,陕西:中国科学院西北水土保持研究所,1988.5-8.
    [90]郑粉莉,康绍忠.黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J].地理学报,1998,53(5):422-428.
    [91]杨勤科,李锐,徐涛,等.区域水土流失过程及其定量描述的初步研究[J].亚热带水土流失研究,2006,18(2):20-23.
    [92]水利部水土保持司.水土保持监测技术规程(SL277-2002)[M].北京:中国水利水电出版社,2002.
    [93]杨勤科,李锐,王占礼.区域水土流失监测与评价指标体系研究[J].水土保持通报,2000,20(2):74-77.
    [94]金争平,赵焕勋,和泰,等.皇甫川区小流域土壤侵蚀量预报方程研究[J].水土保持学报,1991,5(1):8-18.
    [95]范瑞瑜.黄河中游地区小流域土壤流失量计算方程的研究[J].中国水土保持,1985(2):12-18.
    [96]江忠善,宋文径.黄河中游黄土丘陵沟壑区小流域产沙量计算[M].北京:光华出版社,1980.63-72.
    [97]牟金泽,孟庆枚.陕北部分中小流域输沙量计算[J].人民黄河,1983(4):35-37.
    [98]尹国康,陈钦峦.黄土高原小流域特性指标与产沙统计模式[J].地理学报,1989,44(1):32-46.
    [99]承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1984.
    [100]陆中臣,贾绍凤,黄克新,等.流域地貌系统[M].大连:大连出版社,1991.
    [101]孙立达,孙保平,陈禹,等.西吉县黄土丘陵沟壑区小流域土壤流失量预报方程[J].自然资源学报,1988,3(2):141-153.
    [102]牟金泽,熊贵枢.陕北小流域产沙量预报及水土保持措施拦沙计算[M]. In:第一次河流泥沙国际学术讨论会论文集[M]北京:光华出版社,1980.4-10.
    [103] Liu, B. Y., Zhang, K. L., and Xie, Y. A empirical soil loss equation [C]. In:Proceedings of12th ISCO conference: Process of soil Erosion and Its EnvironmentEffect. Beijing: Tsinghua press.2002.
    [104] Wischmeier, W. H. and Smith, D. D. Predicting rainfall-erosion losses from croplandeast of the Rocky Mountains: guide for selection of practices for soil and waterconservation [M]. Washington: USDA,1978.
    [105] Foster, G. R. and Wischmeier, W. H. Evaluating Irregular Slopes for Soil LossPrediction [J]. Transactions of the ASAE (American Society of AgriculturalEngineers),1974,17(2):305-309.
    [106] Griffin, M. L., Beasley, D. B., Fletcher, J. J., et al. Estimating soil loss ontopographically nonuniformed field and farm units [J]. Journal of Soil and WaterConservation,1988,43(4):326-331.
    [107] Moore, I. D. and Wilson, J. P. Reply to "comment on Length-slope factors for therevised universal soil loss equation, Simplified method of estimation" by George R.Foster [J]. Journal of Soil and Water Conservation,1994,49(5):174-180.
    [108] Renard, K. G. and Ferreira, V. A. RUSLE model description and database sensitivity[J]. Journal of environmental quality,1993,22(3):458-466.
    [109] SL190-2007.土壤侵蚀分类分级标准[J].2007.
    [110]刘善建.天水水土流失测验的初步分析[J].科学通报,1953(12):59-65.
    [111]汤国安.基于DEM的黄土高原地面坡谱研究[R].[R].中国地理学会2003年年会大会:华中师范大学,2003.
    [112]刘新华.区域水土流失地形因子分析与提取研究[D].陕西,杨陵:中国科学院水利部水土保持研究所,2001.
    [113]朱永清,李占斌,崔灵周,等.基于GIS地貌形态特征分形信息维数与等高距关系研究[J].水土保持学报,2005,19(1):105-113.
    [114]朱永清,李占斌,鲁克新,等.地貌形态特征分形信息维数与像元尺度关系研究[J].水利学报,2005,36(3):333-338.
    [115]唐新明,李莉,季小燕,等.全国七大江河流域重点防范区1∶1万数字高程模型(DEM)数据库的建立[J].测绘通报,2002,19(6):19-22.
    [116]王东华,吉建培,刘建军,等.论国家1:50000数字高程模型数据库建设[J].地理信息世界,2003,2(1):12-15.
    [117]王东华,刘建军,商瑶玲,等.全国1:25万数字高程模型数据库的设计与建库[J].测绘通报,2001,10(1):27-28.
    [118]杨勤科, McVicar, T. R., van Niel, T. G.,等. ANUDEM和TIN两种建立DEM方法的对比研究[J].水土保持通报,2006,26(6):84-88.
    [119]赵帮元,汤国安,马安利,等.不同地貌类型区1:25万比例尺DEM的建立方法[J].水土保持通报,2002,22(2):45-48.
    [120]周买春,黎子浩, Jayawardena, A. W.数值地形图的生成及其水文地貌特征评价[J].水利学报,2002,2(2):71-74.
    [121]刘鹏举,赵仁亮,朱金兆,等.保持地貌特征的数字高程模型生成方法研究[J].中国矿业大学学报,2006,35(4):521-525.
    [122] Gold, C. M. and Dakowicz, M. Digital elevation models from contour lines [J]. TheGIM International Journal,2003,17(1):56-59.
    [123] Hutchinson, M. F. ANUDEM version5.1user guide [M]. Canberra: The AustralianNational University,2004.
    [124]杨勤科, McVicar, T. R.,李领涛,等. ANUDEM--专业化数字高程模型插值算法及其特点[J].干旱地区农业研究,2006,24(3):36-41.
    [125] Hutchinson, M. F. New procedure for gridding elevation and stream line data withautomatic removal of spurious pits [J]. Journal of Hydrology,1989,106(3):211-232.
    [126] Clarke, S. and Burnett, K. Comparison of digital elevation models for aquatic datadevelopment [J]. Photogrammetric Engineering and Remote Sensing,2003,69(12):1367-1375.
    [127] Kiss, R. Determination of drainage network in digital elevation models, utilities andlimitations [J]. Journal of Hungarian Geomathematics,2004,2:16-29.
    [128] Underwood, J. and Crystal, R. E. Hydrologically enhanced, high-resolution DEMs [J].Geospatial Solutions,2002,14(1):8-14.
    [129] Hutchinson, M. F., Stein, J. A., and Stein, J. L. Upgrade of the9second Australiandigital elevation model [M]. Canberra: Australian National University,2001.
    [130] Yang, Q. K., van Niel, T. G., McVicar, T. R., et al. Developing a digital elevationmodel using ANUDEM for the Coarse sandy hilly catchments of the loess plateau,China [M]. Canberra, Australia: Csiro Publishing,2005.
    [131]张彩霞,杨勤科,段建军.一种高质量的数字高程模型(DEM)建立方法——ANUDEM法[J].中国农学通报,2005,21(12):411-415.
    [132]张彩霞,杨勤科,段建军.用数字地形图和ANUDEM建立高分辨率DEM方法研究[J].水利学报,2006,37(8):1009-1014.
    [133]邬伦.地理信息系统--原理方法和应用[M].北京:科学出版社,2000.
    [134] UCGIS. Research priorities for geographic information science [J]. Cartography andGeographic Information Systems,1993,23(3).
    [135] Hagget, P. Scale Components in geographical problems [M]. In: Frontiers inGeographical Teaching [M], Chorley, R. J. and Hagget, P.,(Editors). London:Methuen&Company Limited,1963.
    [136] Quattrochi, D. A. and Goodchild, M. F. Scale in Remote Sensing and GIS [M]. BocaRaton, FL.: Lewis Publishers,1997.
    [137] Buttenfield, B. P. and Mcmaster, R. B. Map Generalization:Making Rules forKnowledge Representation [M]. New York: Longmont Scientific and Technical,1991.
    [138] Jelinski, D. E. and Wu, J. The modifiable areal unit problem and implications forlandscape ecology [J]. Landscape Ecology,1996,11(3):129-140.
    [139] Goodwin, B. and Fahrig, L. Spatial Scaling and Animal Population Dynamics [M]. In:Ecological Scale Theory and Applicaions [M], Peterson, D. L. and Parker, T. V.,(Editors). New York: Columbia University Press,1998.
    [140] Goodchild, M. F. Metrics of scale in remote sensing and GIS [J]. International Journalof Applied Earth Observation and Geoinformation,2001,3(2):114-120.
    [141]刘新华,张晓萍,杨勤科,等.不同尺度下影响水土流失地形因子指标的分析与选取[J].西北农林科技大学学报,2004,32(6):107-111.
    [142] Zevenbergen, L. W. and Thorne, C. R. Quantitative analysis of land surfacetopography [J]. Earth Surface Processes and Landforms,1987,12(1):47-56.
    [143]杨勤科,贾大韦,李锐,等.基于DEM的坡度研究——现状与展望[J].水土保持通报,2007,27(1):146-150.
    [144]刘学军,王叶飞,曹志东,等.基于DEM的坡度坡向误差空间分布特征研究[J].测绘通报,2004,12(1):11-13.
    [145] Chang, K. T. and Tsai, B. W. The Effect of DEM Resolution on Slope and AspectMapping [J]. Cartography and Geographic Information Systems,1991,18(1):69-77.
    [146] Quinn, P., Beven, K., Chevallier, P., et al. The prediction of hillslope flow paths fordistributed hydrological modelling using digital terrain models [J]. HydrologicalProcesses,1991,5(1):59-79.
    [147] Panuska, J. C., Moore, I. D., and Kramer, L. A. Terrain analysis: Integration into theagricultural nonpoint source (AGNPS) pollution model [J]. Journal of Soil and WaterConservation,1991,46(1):59-64.
    [148] Wolock, D. M. and Price, C. V. Effects of digital elevation model map scale and dataresolution on a topography based watershed model [J]. Water Resources Research,1994,30(11):3041-3052.
    [149] Zhang, W. and Montgomery, D. R. Digital elevation model grid size, landscaperepresentation, and hydrologic simulations [J]. Water Resources Research,1994,30(4):1019-1028.
    [150] Mendicino, G. and Sole, A. The information content theory for the estimation of thetopographic index distribution used in TOPMODEL [J]. Hydrological Processes,1997,11(9):1099-1114.
    [151] Yin, Z. Y. and Wang, X. H. A Cross-Scale Comparison of Drainage BasinCharacteristics Derived from Digital Elevation Models [J]. Earth Surface Processesand Landforms,1999,24(6):557-562.
    [152] Walker, J. P. and Willgoose, G. R. On the effect of digital elevation model accuracy onhydrology and geomorphology [J]. Water Resources Research,1999,35(7):2259-2268.
    [153] Zhang, X. Y., Drake, N. A., Wainwright, J., et al. Comparison of slope estimates fromlow resolution DEMs:scaling issues and a fractal method for their solution [J]. EarthSurface Processes and Landforms,1999,24(9):763-779.
    [154] Chaplot, V., Walter, C., and Curmi, P. Improving soil hydromorphy predictionaccording to DEM resolution and available pedological data [J]. Geoderma,2000,97(3-4):405-422.
    [155] Molnar, D. K. and Julien, P. Y. Grid-size effects on surface runoff modeling [J].Journal of Hydrologic Engineering,2000,5(1):8-16.
    [156] Thompson, J. A., Bell, J. C., and Butler, C. A. Digital elevation model resolution:effects on terrain attribute calculation and quantitative soil-landscape modeling [J].Geoderma,2001,100(1-2):67-89.
    [157] Armstrong, R. N. and Martz, L. W. Topographic Parameterization in ContinentalHydrology: a Study in Scale [J]. Hydrological Processes,2003,17(18):3763-3781.
    [158]汤国安,龚健雅,陈正江,等.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2001,30(4):361-365.
    [159]陈楠,林宗坚,李成名,等.1∶10000及1∶50000比例尺DEM信息容量的比较——以陕北韭园沟流域为例[J].测绘科学,2004,29(3):39-41.
    [160]刘学军,龚健雅,周启鸣,等. DEM结构特征对坡度坡向的影响分析[J].地理与地理信息科学,2004,20(6):1-5.
    [161]任希岩,张雪松,郝芳华,等. DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-4.
    [162]郝振纯,池宸星,王玲,等. DEM空间分辨率的初步分析[J].地球科学进展,2005,20(5):499-504.
    [163] Liu, Y. B., Yi, Y., Batelaan, O., et al. Assessing grid size effects on runoff and flowresponse using a GIS-based hydrologic model [C]. In: International Conference onGeoinformatics. Toronto, Canada: Ryerson University, Department of CivilEngineering.2005.
    [164]毕华兴,谭秀英,李笑吟.基于DEM的数字地形分析[J].北京林业大学学报,2005,27(2):49-53.
    [165] Pradhan, N. R., Tachikawa, Y., and Takara, K. A downscaling method of topographicindex distribution for matching the scales of model application and parameteridentification [J]. Hydrological Processes,2006,20(6):1385-1405.
    [166] S rensen, R. and Seibert, J. Effects of DEM resolution on the calculation oftopographical indices TWI and its components [J]. Journal of Hydrolog,2007,347(1-2):79-89.
    [167]师维娟.基于DEM和GIS方法的坡度变换方法研究[D].陕西,杨凌:西北农林科技大学,2007.
    [168] Wu, W., Fan, Y., Wang, Z., et al. Assessing effects of digital elevation modelresolutions on soil-landscape correlations in a hilly area [J]. Agriculture, Ecosystems&Environment,2008,126(3-4):209-216.
    [169]张彩霞,杨勤科,段建军.高分辨率数字高程模型的构建方法[J].水利学报,2006,37(8):1009-1014.
    [170] Klinkenberg, B. and Goodchild, M. F. The fractal properties of topography: acomparison of methods [J]. Earth Surface Processes and Landforms,1992,17(3):217-234.
    [171] Andrale, R. and Abrahams, A. D. Fractal techniques and surface roughness of talusslopes [J]. Earth Surface Processes and Landforms,1989,14(3):197-209.
    [172]汤国安,杨勤科,张勇,等.不同比例尺DEM提取地面坡度的精度研究——以在黄土丘陵沟壑区的试验为例[J].水土保持通报,2001,21(1):53-56.
    [173]陈燕,齐清文, and汤国安.黄土高原坡度转换图谱研究[J].干旱地区农业研究,2004,22(3):180-185.
    [174]陈燕,汤国安,齐清文.不同空间尺度DEM坡度转换图谱分析[J].华侨大学学报(自然科学版),2004,25(1):79-82.
    [175]张勇,汤国安,彭釮.数字高程模型地形描述误差的量化模拟[J].山地学报,2003,21(2):252-256.
    [176]郭兰勤,杨勤科,胡洁,等.基于分形的中低分辨率坡度降尺度变换方法研究[J].西北农林科技大学学报(自然科学版),2011,39(12):173-180.
    [177] Smith, B. and Sandwell, D. Accuracy and resolution of shuttle radar topographymission data [J]. Geophysical Research Letters,2003,30(9):201-204.
    [178] Hirano, A., Welch, R., and Lang, H. Mapping from ASTER stereo image data:DEMvalidation and accuracy assessment [J]. ISPRS Journal of Photogrammetry&RemoteSensing,2003,57(5):356-370.
    [179] Cowan, D. and Cooper, G. The Shuttle Radar Topography Mission? a new source ofnear-global digital elevation data [J]. ASEG Extended,2004(1-4):334-340.
    [180] Bernhard, R., Michael, E., and Achim, R. The Shuttle Radar Topography Mission-Anew class of Digital Elevation Models acquired by spaceborne radar [J]. ISPRSJournal of Photogrammetry&Remote Sensing,2003,57:241-262.
    [181] Homer, C., Dewitz, J., Fry, J., et al. Completion of the2001National Land CoverDatabase for the Counterminous United States [J]. Photogrammetric Engineering andRemote Sensing,2007,73(4):337-341.
    [182]国家测绘局.基础地理信息数字产品1∶10000,1∶50000数字高程模型(CH/T1008-2001)[M].北京:测绘出版社,2001.
    [183]杨勤科, McVicar, T. R., van Niel, T. G.,等.用ANUDEM建立水文地貌关系正确DEM的方法研究[J].测绘科学,2006,31(6):155-157.
    [184]杨勤科,师维娟, McVicar, T. R.,等.水文地貌关系正确DEM的建立方法[J].中国水土保持科学,2007,5(4):1-6.
    [185] Yang, Q. K., McVicar, T. R., van Niel, T. G., et al. Improving terrain representation ofa digital elevation model by reducing source data errors and optimising interpolationalgorithm parameters: an example in the Loess Plateau, China [J]. InternationalJournal of Applied Earth Observation and Geoinformation,2007(9):235-246.
    [186] Sharpnack, D. A. and Akin, G. An algorithm for computing slope and aspect fromelevations [J]. Photogrammetric Engineering,1969,35(3):247-248.
    [187] Skidmore, A. K. A Comparison of Techniques for Calculating Gradient and Aspectfrom a Gridded Digital Elevation Model [J]. International Journal of GeographicalInformation Systems,1989,3(4):323-334.
    [188] Dunn, M. and Hickey, R. The Effect of Slope Algorithms on Slope Estimates within aGIS [J]. Cartography and Geographic Information Science,1998,27(1):9-15.
    [189] Warren, S. D., Hohmann, M. G., Auerswald, K., et al. An evaluation of methods todetermine slope using digital elevation data [J]. CATENA,2004,58(3):215-233.
    [190] Skidmore, A. K. Evolution of Methods for Estimating Slope Gradient and Aspect fromDigital Elevation Models [M]. In: Classics from IJGIS: twenty years of theInternational journal of geographical information science and systems [M], Fisher, P.,Editor London: Taylor and Fracis Group,2007.111-118.
    [191] Horn, B. K. P. Hill shading and the reflectance map [J]. Proceedings of the IEEE,1981,69(1):14-47.
    [192] Unwin, D. J. Introductory spatial analysis [M]. London: Routledge Kegan&Paul,1981.
    [193] Burrough, P. A. Principles of Geographical Information Systems for Land ResourcesAssessment [M]. Oxford: Clarendon Press,1986.
    [194] Hutchinson, M. F. A locally adaptive approach to the interpolation of digital elevationmodels [C]. In: Third Conference/Workshop on Integrating GIS and EnvironmentalModeling. Santa Barbara: NCGIA: University of California.1996.
    [195]杨勤科,张彩霞,李领涛,等.基于信息含量分析法确定DEM分辨率的方法研究[J].长江科学院院报,2006,23(5):23-26.
    [196]林丽惠.一种改进的颜色直方图相似性度量算法[J].武夷学院学报,2009,28(2):58-61.
    [197] Webster, R. and Oliver, M. A. Geostatistics for Environmental Scientists [M]. NewYork: John Wiley&Sons, Inc.,2007.
    [198]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [199] Peter, F. First experiments in viewshed uncertainty: simulating fuzzy viewsheds [J].Photogrammetric Engineering and Remote Sensing,1992,58(3):345-352.
    [200] Peter, F. Improved modeling of elevation error with geostatistics [J]. GeoInformatica,1998,2(3):215-233.
    [201] Kyriakidis, P. C., Shortridge, A. M., and Goodchild, M. F. Geostatistics for conflationand accuracy assessment of digital elevation models [J]. International Journal ofGeographical Information Science,1999,13(7):677-708.
    [202] Holmes, K. W., Chadwick, O. A., and Kyriakidis, P. C. Error in a USGS30m digitalelevation model and its impact on digital terrain modeling [J]. Journal of Hydrology,2000,233(1-4):154-173.
    [203] Oksanen, J. and Sarjakoski, T. Uncovering the statistical and spatial characteristics offine toposcale DEM error [J]. International Journal of Geographical InformationScience,2006,20(4):345-356.
    [204] Abedini, M. J. and Shaghaghian, M. R. Exploring scaling laws in surface topography[J]. Chaos, Solitons&Fractals,2009,42(4):2373-2383.
    [205] Matheron, G. Principles of geostatistics [J]. Economic Geology,1963,58:1246-1266.
    [206] Goovaerts, P. Geostatistics for Natural Resources Evaluation [M]. New York: OxfordUniversity Press,1997.483.
    [207] Oksanen, J. and Sarjakoski, T. Error propagation of DEM-based surface derivatives [J].Computers&Geosciences,2005,31(8):1015-1027.
    [208] Serra, J. Image analysis and mathematical morphology [M]. Orlando, USA: AcademicPress,1982.610.
    [209] Gonzalez, R. C. and Woods, R. E. Digital Image Processing [M]. Beijing: PublishingHouse of Electonics Industry,2010.
    [210] Shary, P. A., Sharaya, L. S., and Mitusov, A. V. Fundamental quantitative methods ofland surface analysis [J]. Geoderma,2002,107(1-2):1-32.
    [211] Evans, I. S. An integrated system of terrain analysis and slope mapping: Final Reporton U.S. Army Grant DA-ERO-591-73-g0040[M]. University of Durham, England:Department of Geography,1979.
    [212]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700