北碚区菜地土壤铅、镉全量与有效态含量分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,土壤污染越来越严重,其中尤以重金属污染问题最严重。土壤被重金属污染后,重金属元素将通过食物链富集到人体,对人体健康造成危害,所以在蔬菜种植区选取中种植区土壤环境是否满足健康蔬菜的生产是最基本的一个条件。为了保证蔬菜质量、保障居民身体健康,本文对北碚区菜地土壤中铅和镉全量、有效态量进行了测定,对全量特征进行了分析,采用不同标准对菜地土壤铅、镉的环境质量做了评价,对研究区菜地土壤有效态含量进行了分析,并对菜地规划区内不同土地利用方式下土壤的铅、镉含量进行了研究,结果表明:
     (1)研究区菜地土壤铅含量平均值为43.92 mg/kg,变异系数为37.3%;镉含量平均值为0.212mg/kg,变异系数为28.3%。在研究区内若以乡镇为统计单元,全铅含量为三圣镇>槽上蔬菜基地>柳荫镇>天府镇>复兴镇>东阳镇>澄江镇>静观镇,全镉含量为天府镇>复兴镇>三圣镇>东阳镇=静观镇>澄江镇>柳荫镇>槽上蔬菜基地。从新规划菜地和原有菜地来看,全铅含量是新规划菜地略大于原有菜地,全镉含量是原有菜地大于新规划菜地。土壤类型和距离公路距离对研究区菜地土壤全铅含量影响显著,对全镉含量没有显著影响。通过相关分析表明研究区菜地土壤全铅含量与土壤有机质、黏粒和pH值有明显的相关关系,而全镉含量只与有机质含量有极显著关系。
     (2)从研究区菜地土壤铅、镉的整体累积状况来看,铅、镉的累积指数都大于1,研究区内菜地土壤铅、镉都有不同程度的累积;从不同程度累积指数分布来看,铅主要分布在重度累积和轻度累积,镉主要分布在轻度累积和中度累积。地质累积指数表明,研究区土壤都不同程度的受到铅、镉污染,且研究区菜地土壤铅的污染程度要大于镉的。单项污染指数法表明,研究区及各乡镇的菜地土壤在铅含量水平上、镉含量水平上完全满足无公害蔬菜的生产,基本满足绿色蔬菜的生产;综合污染指数法表明,在无公害标准下研究区及各乡镇的菜地土壤未受到铅、镉的综合污染,在绿色标准下污染指数都处于警戒限。从潜在生态危害指数来看,研究区及各乡镇的菜地土壤铅、镉的潜在生态风险是铅处于低等,镉处于中等;从总的潜在生态危害指数来看研究区及各乡镇的菜地土壤在铅、镉的作用下处于轻度生态危害。
     从原有菜地和新规划菜地来看,新规划菜地与原有菜地土壤全铅、全镉含量在平均含量上都满足无公害、绿色蔬菜的生产;但以地质累积指数评价结果看出,其Igeo值都大于0,整体上新规划菜地和原有菜地土壤都受到了一定的铅、镉污染,且原有菜地土壤的镉污染要比新规划菜地的严重;新规划菜地和原有菜地土壤在绿色蔬菜产地标准要求下其PN值小于1大于0.7,处于污染的警戒限,这说明在综合作用的影响下,两类土壤有污染的趋势;而在无公害标准下其PN值小于0.7,这说明在此标准下两类土壤未受到铅、镉的污染。从总的潜在生态危害指数来看新规划和原有菜地土壤在铅、镉的作用下都处于轻度生态危害。
     (3)研究区菜地土壤铅、镉有效态平均含量为3.114,0.051 mg/kg,都显著低于重庆市土壤环境背景值,其变异系数分别为30.4%,38.9%;生物有效性系数分别为7.7%,25.1%,从生物有效性系数来看,研究区菜地土壤镉的潜在生态风险要大于铅的。研究区菜地土壤铅、镉有效态与全量之间相关性呈极显著,铅、镉全量是决定有效态含量的主要因素;同时,铅、镉全量和有效态含量的变化趋势也不完全一致,铅、镉全量值较大有效态含量不一定较大,在生态风险表征时要结合有效态含量进行分析。通过相关分析发现,研究区菜地土壤pH对有效态镉有显著影响,砂粒、黏粒和有机质对有效态铅含量有显著影响;土壤类型对铅、镉有效态含量也有影响,紫色土有效态铅含量明显小于石灰土,而有效态镉含量是紫色土大于石灰土;在人类活动中交通对有效态铅含量有明显影响。
     (4)通过SPSS描述统计与方差分析表明,菜地规划区内前期不同土地利用方下土壤镉全量、有效态含量、生物有效性系数有不同程度的差异,土地利用方式对其有不同程度的影响;3种土地利用方式中土壤铅全量是混作地>水田>原有菜地,镉全量是原有菜地>水田>混作地;土壤有效态铅含量是水田>混作地>原有菜地,有效态镉含量是原有菜地>混作地>水田。土壤铅生物有效性系数是水田>原有菜地>混作地,镉生物有效性系数的混作地>原有菜地>水田。对本区不同土地利用方式下土壤铅、镉全量与有效态含量差异的影响因素分析发现,车辆废气、肥料的施用的差异是影响全量差异的可能因素;土壤pH值差异、铅镉全量差异是影响有效态的可能因素。生物有效性系数主要受铅、镉全量与有效态含量影响,同时还受其他因素的影响。以重庆市土壤铅、镉背景值为标准,通过地质累积指数法计算得出,研究区菜地规划区土内壤铅、镉受轻度污染,其中混作地与水田土壤铅污染程度较原有菜地的明显,原有菜地土壤镉污染程度较水田与混作地的明显。
In recent years, soil pollution is becoming more and more serious; especially that the heavy metal pollution is the most serious problems. If the soil was contaminated by heavy metals, the heavy metals will be enriched to the human body through food chain, which could cause harm to human health, so the selected plant area's environment whether meet the health vegetable production is the most fundamental condition in vegetable cultivation area. In order to ensure the quality of vegetables and safeguard the health of residents in Beibei District, this paper will determine the content of lead and cadimium, available volumes in soil. What's more, analyzed the features of total capacity, using different standards of lead, cadmium in vegetable soil environment quality to evaluate, analysis the available content of lead and cadmium on the planning area, and analysis the field soil's lead and cadmium content under different land use patterns. The results showed that:
     (1) The content of lead average levels was 43.92 mg/kg in Beibei District vegetable soil, the coefficient of variation was 37.3%; the content of cadmium levels average was 0.212mg/kg, the coefficient of variation was 28.3%. If using the township as a statistical unit in the research area, the content of lead is that the first is SanSheng town, second is slot vegetable base, third is LiuYin town, forth is TianFu town, fifth is FuXing town, sixth is Dong Yang town, seventh is ChengJiang town, and the last is JingGuan town. The content of cadmium is that he first is TianFu town, second is FuXing town, third is SanSheng town, forth is DongYang town and JingGuan town, fifth is ChenJiang town, sixth is LiuYin town,and the last is slot vegetable base. From the point of the new planning of the vegetable and original vegetable plot, the new planning of the vegetable's content of lead was slightly larger than the original planning of the vegetable vegetable plot, the new planning's total content of cadmium was greater than the original planning of the vegetable. Soil type and distance to highway distance has significant influence to soil total lead content, no significant effect on the content of cadmium, Through the correlation analysis showed that the study area the total content of lead in vegetable soil has significant relationship to soil organic matter, clay and pH value, and the total content of cadmium only has significant relationship with the content of organic matter.
     (2) From the study area of lead, cadmium in Vegetable Soils in the overall cumulative situation, lead, cadmium accumulation index were more than 1, the study area of lead, cadmium in vegetable soils had different accumulation from different degree; cumulative index distribution of lead, mainly distributed in severe and mild cumulative cadmium accumulation, mainly distributed in mild and moderate accumulation accumulation. Geo accumulation index shows, the study area vegetable soil had been different level of lead and cadmium pollution, and the lead pollution was larger than the cadmium.The individual pollution index indicates that, the study area and each towns' vegetable soil fully meet the pollution-free vegetable production in the lead and cadmium level, and basically meet the needs of green food vegetables; comprehensive pollution index method show that, under the lead and cadmium working together the study area vegetable soil and each town's soil were not polluted by the lead and cadmium, but the pollution index were all at the level of alertness. From the point of potential ecological risk index, the study area and each town's vegetable soil potential ecological risk is that, the lead was at the low level, cadmium at the middle level. From the point of the total potential ecological risk index, the study area and each town's vegetanble soil were in the mild ecological hazard under the effect of lead and cadmium.
     From the view point of the original vegetable plantation and the new planning vegetable plantation, the new planning vegetable plantation and the original vegetable soils'average content of lead and cadmium all meet the pollution-free and green vegetable production. But from the point of the geoaccumulation evaluation index results showed that, the Igeo value is greater than 0, the the original vegetable plantation and the new planning vegetable plantation were both affected by the lead and cadmium pollution overall, the original was more serious than the new. Uner the green vegetable production standards, the new and originals' PN value were more than 0.7 and lower than 1, at the alertness level. This showed that under the comprehensive effected, two types of soil were affected by the pollution; but under the no social effects of pollution standsards, the PN value was lower than 0.7. This showed that the two types of soil were without lead and cadmium pollution. From the total potential ecological risk index to see, the new planning and the original vegetable soil were under mild ecological hazard of lead and cadmium.
     (3) The average content of availability lead, cadmium is 3.114,0.051 mg/kg in the study area of vegetable soil, which were significantly lower than the Chongqing soil environmental background values, and its coefficient of variation were 30.4%,38.9%; biological validity coefficients were 7.7%, 25.1%. From the point of biological effectiveness coefficient, the study area vegetable soil cadmium's potential ecological risk was greater than the lead. The study area's vegetable soil content of lead and cadmium had significant correlation whith the full amount, lead and cadmium total value was main factor to determine the effective content, and lead and cadmium content's change trend was not entirely consistent with the available content. The lead and cadmium was larger, but the effective content was not greater. Through correlation analysis found that, the study area soil PH value had a significant effect to cadmium, sand, clay and organic matter had significant effect to lead. The soil type had an impact to lead and cadmium content, the purple soil's lead content was smaller than the lime soil, and the available cadmium content was that, the purple soil greater than the lime soil. From the human activeties, the traffic had obvious effect to the lead content.
     (4) Through the SPSS statistics descriptive and analysis of variance indicated that, under different land using manners, the early planning area cadmium, available and biological validity coefficients had different degrees, land using manner had influence to it. From the three kinds of land using manners, the lead content was mixed cropping land at first, second was paddy field, the last was original vegetable.Cadmium was original vegetable plantation at first, second was mixed cropping, and the last was paddy field.Soil available Pb content was mixed cropping land at first, second was paddy field, and the last was original vegetable plantation.Available cadmium content was original vegetable plantation at first, second was mixed cropping land, and the last was paddy field.Soil lead bioavailability coefficient was paddy field at first, second was original vegetable plantation, and the last was mixed cropping land. The cadmium was original at first, second was mixed, and the last was paddy field.From the analysis of the influence factors to lead, cadmium and effecitive content diversity under different land using manners found that, the diversity of vehicle exhaust and the application of fertilizer was possible factors to the different effective content.Soil PH value difference and lead, cadmium content difference were possible factors to the fifferent effective content.Biological effectiveness coefficient was mainly affected by lead, cadmium and available content, but also influenced by other factors. Uner the standard of Chongqing city soil lead and cadmium background values, through calculation of geo accumulation method showed that, the study area was lightly polluted by lead and cadmium. Mixed and paddy soils pollution degree was apparent than the original vegetable, original vegetable soil cadmium pollution degree was more obvious than the paddy field and mixed cropping.
引文
[1]刘静玲.食品安全与生态风险[M].北京:化学工业出版社,2003
    [2]王慎强,陈怀满.我国土壤环境保护研究的回顾与展望[J].土壤,1999,(5):255-260
    [3]黄进.重庆市主要农地土壤镉、铅区域分布、环境容量及对酸雨的响应[D].西南大学.2005.
    [4]李其林,赵中金,黄昀.重庆市近郊蔬菜基地土壤和蔬菜中重金属的质量现状[J].重庆环境科学.2000.22(6):33-36.
    [5]李其林,黄昀.重庆市近郊区蔬菜地土壤重金属含量变化及污染情况[J].土壤通报.2002.(2):158-160.
    [6]唐书源,张鹏程,赵治书,等.重庆蔬菜的安全质量研究[J].云南地理环境研究.2003,15(4):65-71
    [7]陈玉成,赵中金,孙彭寿,等.重庆市土壤-蔬菜系统中重金属的分布特征及其化学调控研究[J].农业环境科学学报.2003,22(1):44-47.
    [8]李其林,刘光德.重庆市蔬菜地土壤重金属特征研究[J].中国生态农业学报.2005,13(4):142-146.
    [9]李其林,何九江,刘光德,黄昀.菜地土壤和蔬菜中几种重金属的分布特征[J].矿物学报.2004,24(4):373-377.
    [10]张大元.重庆市蔬菜基地土壤环境质量状况及对策措施[J].四川环境.2010,29(3):57-61.
    [11]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社.58-215.
    [12]程红艳.临汾市农业土壤中重金属元素分析与评价[M].北京,中国农业科学出版社.2007:96-199.
    [13]夏增禄.土壤环境容量研究[M].气象出版社.1985
    [14]Doyle, J. J. Effects of low levels of dietary cadmium in animals-a review, J. Qual.,1977,6:111-116.
    [15]Sposito G. Lund, L.J. Chang A.C. Trace metal chemistry in arid-zone field soils amended with sewage sludge:1.Fractionation of Ni, Cu, Zn, Cd, and Pb in solid Phases [J]. Soil Science Society of Ameriea.1982.46 (2):262-264.
    [16]Page, A.L. Fate and effects of trace elements in sewage sludge when applied to agricultural lands, a literature review study, U.S.EPA, NEHC, Cincinnati, Ohio,1974.
    [17]鲁如坤,熊礼明,时正元.关于土壤-作物系统中镉的研究[J].土壤.1992.24(3):129-132.
    [18]张民,龚子同.我国菜园土壤中某些重金属元素的含量与分布[J].土壤学报,1996,33(1):85-93
    [19]陶俊.重庆市大气TSP中重金属分布特征[J].重庆环境科学,2003,25(12):15-19.
    [20]陈怀满.环境土壤学[M].科学出版社,2005,217-219.
    [21]Anthony Cappi. Methy Mercury Contamination and Emission to the Atmosphere from Soil Amended with Municipal Sewage Sludge [J].J Environ Qual,1997,26(6):1650-1654.
    [22]鲁如坤.我国磷矿磷肥中镉的含量及其对生态环境影响的评价[J].土壤学报,1992,29(2):152-157.
    [23]何振立.污染及有益元素的化学平衡[M].北京:中国环境科学出版社,1998.
    [24]谭晓冬.商品有机肥中重金属含量状况调查[J].农业环境与发展,2006,(1):50-51.
    [25]褚卫红,石亚辉.农用地膜在农业生产中的作用、影响及对策[J].内蒙古农业科技,2007(7):142-143.
    [26]覃志英,黄兆勇,陈广林等.食品重金属污染的研究进展[J].广西预防医学.2003,9(10):5-8.
    [27]张国印,王丽英,孙世友,等.土壤的重金属污染及其防治[J].河北农业科学.2003.7(增刊):59-63
    [28]冯恭衍.宝山区菜区土壤重金属污染的环境质量评价[J].上海农学院学.1993,11(1):35-42.
    [29]汪雅谷,王玮.上海地区主要蔬菜中重金属元素含量背景水平[J].农业环境保护,1994,13(1):34-39.
    [30]戴军,刘腾辉.广州菜地生态环境的污染特征[J].土壤通报.1995.26(3):102-104.
    [31]付玉华,李艳金.沈阳市郊区蔬菜污染调查[J].农业环境保护,1999,18(1):36-37.
    [32]庞奖励,黄春长,孙根年,等.西安污灌区土壤重金属含量及对西红柿影响研究[J].土壤与环境,2001,10(2):94-97.
    [33]冯明祥,王佩圣,王继青等.青岛郊区果园土壤重金属和农药污染研究[J].中国果树,2002,6(1):24-26.
    [34]张超兰,白厚义.南宁市郊部分菜区土壤和蔬菜重金属污染评价[J].广西农业科学,2001(9):201-205.
    [35]马往校.西安市郊区蔬菜中重金属污染分析与评价[J].农业环境保护,2000,19(2):96-98.
    [36]何腾兵,董玲玲,刘元生贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J].水土保持学报,2006,20(6):157-162.
    [37]肖厚军,李剑,闫献芳.贵阳市郊区菜地土壤铅含量及影响因素研究[J].农业环境科学学报,2008,27(1):174-177.
    [38]王春苗,石中山,杨剑虹,等.重庆土壤铅含量污染评价及其影响因素分析[J].广西农业科学.2009,40,(9):1172-1176.
    [39]焦文涛,蒋新,余贵芬.土壤有机质对镉在土壤中吸附-解吸行为的影响[J].环境化学,2005,249(5):545-549.
    [40]Bradl H B. Adsorption of heavy metal ions on soils and soils constituents [J]. J.Colloid Inter-face Sci.,2004,277:1-18.
    [41]Naidu R, Bolan N S, Kookana R S, et al. Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils [J]. Euro. J. Soil Sci.,1994,45:419-429.
    [42]王江平.入世后高浓度磷肥中镉的问题[J].磷肥与复肥,2002,17(5):11-15.
    [43]谭晓冬.商品有机肥中重金属含量状况调查[J].农业环境与发展,2006,(1):50-51.
    [44]李波,林玉锁.公路两侧农田土壤铅污染及对农产品质量安全的影响[J].环境监测管理与技术,2005,17(1):11-14.
    [45]李风平,娄翼来,李琪.沈阳南部沿城乡梯度土壤铅时空分布研究[J].土壤通报,2008,39(4):935-937.
    [46]靳治国,施婉君,高扬.不同土地利用方式下土壤重金属分布规律及其生物活性变化[J].水土保持学报,2009,23(3):74-77.
    [47]郑袁明,陈同斌,陈煌,等.北京市不同土地利用方式下土壤铅的积累[J].地理学 报,2005,60(5):791-797.
    [48]郑袁明,罗金发,陈同斌,等.北京市不同土地利用类型的土壤镉含量特征[J].地理研究,2005,25(4):542-548.
    [49]白玲玉,曾希柏,李莲芳,等.不同农业利用方式下土壤重金属累积的影响及原因分析[J].中国农业科学,2010,43(1):96-104.
    [50]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:446-555.
    [51]S AUVE S, COOKN, HENDERSHOTW H, et al. L inking plant tissue concentrations and soil copper pools in urban contaminated s oils [J]. Environmental Pollution,1996,94 (2):153-157.
    [52]BA IZE D, TERCE M. Les elements traces metalliques dam's les sols [M]. Paris, France: Institut National de Recherche Agronomique,2002:137-154.
    [53]MCLAUGHL I N M J, Z ARCI NAS B A, STEVENS D P, et al. Soil testing for heavy metals [J]. Commune Soil Sci Plant A2nal,2000,31 (11-14):1661-1700.
    [54]BRUN L A, MA I LLET J, R I CHARTE J, et al. Relationships between extractable copper, soil properties and copper up take by wild plants in vineyard s oils [J]. Environmental Pollution,1998, 102(2/3):151-161.
    [55]徐亚平,刘凤枝,蔡彦明,等.土壤中铅镉有效态提取剂的选择[J].监测分析.2005:46-48.
    [56]郑江,王灵,乌鲁木齐市蔬菜基地土壤有效态铅的空间变异特征[J].安徽农业科学,2011,39(1):104-105.
    [57]王灵,钱翌,吕爱华.乌鲁木齐市蔬菜基地土壤有效态重金属的空间变异特征[C].中国环境科学学会学术年会论文集(2009):1179-1185.
    [58]张庆利,史学正,黄标.南京城郊蔬菜基地土壤有效态铅、锌、铜和镉的空间分异及其驱动因子研究[J].土壤,2005,37(1):41-47.
    [59]周文鳞,李仁英,岳海燕.南京江北地区菜地土壤有效态重金属的含量及空间分异特征[J].农业环境科学学报,2010,29(3):451-457.
    [60]肖军,秦志伟,赵景波.农田土壤化肥污染及对策[J].环境保护科学,2005(5):32-34.
    [61]钟晓兰,周生路,李江涛,等.土壤有效态Cd、Cu、Pb的分布特征及影响因素研究[J].地理科学.2010,30(2):254-260.
    [62]钟晓兰,周生路,赵其国,等.长江三角洲地区土壤重金属生物有效性研究-以江苏昆山市为例[J].土壤学报.2008,45(2):240-248.
    [63]潘根兴,高建芹,刘世梁.活化率指示苏南土壤环境中重金属污染冲击初探[J].南京农业大学学报,1999,22(2):46-49.
    [64]朱维晃,杨元根,毕华,等.海南土壤中Zn、Pb、Cu、Cd四种重金属含量及其生物有效性的研究[J].矿物学报,2004,24(3):239-244.
    [65]Forster U. Lecture Notes in Earth Sciences (Contaminated Sediments) [M]. Berlin: Springer2Verlag,1989:107-109.
    [66]谭婷,王昌全.成都平原土壤铅污染及其评价[J].长江流域资源与环境,2005,14(1):71-75.
    [67]黄国锋,吴启堂,容天雨,等.无公害蔬菜生产基地环境质量评价[J].环境科学研究,1999,12(4):53-56.
    [68]LARS H. An ecological risk index for aquatic pollution control a sediment logical approach [J]. Water Research,1980,14:975-1001.
    [69]贾振邦,梁涛,林建枝,等.香港河流重金属污染及潜在生态危害研究[J].北京大学学报(自然科学版),1997,33(4):485-492.
    [70]李章平,陈玉成,杨学春.重庆市主城区土壤重金属的潜在生态危害评价[J].西南农业大学学报(自然科学版).2006,28(2):227-230.
    [71]缪天成,王蕙琪.环境背景值研究[J].环境科学,1990,10(4):255-262.
    [72]重庆市北碚区地方志编篡委员会.北碚自然地理[M].重庆:西南师范大学出版社,1986:145-184.
    [73]北碚区土地利用总体规划(2006-2020年)之前期专题研究—北磅区城乡结构与布局研究.
    [74]鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999.
    [75]徐亚平,刘凤枝,蔡彦明,等.土壤铅、镉有效态提取剂的选择[J].农业环境与发展,2005,22(4):46-48.
    [76]曾路生,高岩,李俊良,等.寿光大棚菜地酸化与土壤养分变化关系研究[J].水土保持学报,2010(8):157-161.
    [77]李粉茹,于群英,邹长明.设施菜地土壤pH值、酶活性和氮磷养分含量的变化[J].农业工程学报,2009,25(1):217-222.
    [78]范庆锋,张玉龙,陈重.保护地蔬菜栽培对土壤盐分积累及pH值的影响[J].水土保持学报,2009,23(1):103-106.
    [79]古巧珍,杨学云,孙本华,等.日光温室蔬菜地土壤主要养分含量及其累积特征分析[J].西北农林科技大学学报:自然科学版,2008,36(3):129-134.
    [80]范庆锋,张玉龙,陈重,等.保护地土壤酸度特征及酸化机制研究[J].土壤学报,2009,46(3):466-471.
    [81]黄昌勇,主编.土壤学[M].北京:中国农业出版社,2000.
    [82]黄巧云.土壤学[M].北京:中国农业出版社,2006.
    [83][法]H.奥贝尔.土壤中的微量元素[M].北京:科学出版社,1982.
    [84]何腾兵,董玲玲,刘元生,等.贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究[J].水土保持学报,2009,20(6):157-162.
    [85]李天杰,赵烨,张科利,等.土壤地理学(第三版)[M].高等教育出版社,2004.
    [86]张金萍,张保华,秦耀辰.土壤重金属复合污染及其影响因素分析[J].河南大学学报(自然科学版),2009,39(6):613-615.
    [87]李法虎.土壤物理化学[M]北京:化学工业出版社,2006.
    [88]Vaezi A R, Sadeghi S H R, Bahrami H A, et al. Modeling the U SLE K2 factor for calcareous soils in northwestern Iran1 Geomorphology,2008,97(3-4),414-423.
    [89]杨梅.重庆市耕地土壤的重金属空间变异性研究—地统计学方法[D].重庆:西南大学,2005.
    [90]李波,林玉锁.公路两侧农田土壤铅污染及对农产品质量安全的影响[J].环境监测管理与技术,2005,17(1):11-14.
    [91]张乃明,段永蕙,毛昆明.土壤环境保护[M].北京:中国农业科学技术出版社,2002:114-116.
    [92]邢光熹,朱建国.土壤微量元素和稀土元素化学[M].北京:科学出版社,2002:45-48.
    [93]王孝堂.土壤酸度对重金属形态分配的影响[J].土壤学报,1991,28(1):103-107.
    [94]成春奇.黏土对重金属污染物容纳阻滞能力研[J].水文地质工程地质,2001(6):12-14.
    [95]杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环境,2005,14(1):102-107.
    [96]Chip A, Lena M A. Concentration, pH, and surface charge effects on Cadmium and Lead sorption in three tropical soils [J]. Environ Qual.,2002,31(4):581-589.
    [97]李军,张玉龙,陈维新.有机质对土壤铅吸附特性的影响[J].沈阳农业大学学报,1992,23(专辑):38-42.
    [98]Bolton K A, Evans L J. Cadmium adsorption capacity of selected Ontario soils [J]. Can. J. S oil Sci.1996,76:183-189.
    [99]Temminghoff E J M, Van der Zee S E A T M, DeHaan F A M.Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter [J]. Environ. Sci.Technol.1997,31:1109-1115.
    [100]Swift R S, Rate a W, McLaren R G. Interactions of copper and cadmium with soil humid substances [M]. Abstract, International Society of Soil Science Working Group MO, First Workshop, Ed-mouton, Alberta, Canada,1992.
    [101]Yuan G, Lvkulich L M. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties [J].Commune. Soil Sci. Plant Anal.1997,28:571-587.
    [102]曾清如,周细红,杨仁斌,等.不同来源重金属在土壤中的形态分布差异[J].农村生态环境,1994,10(3):48-51.
    [103]孟昭福,张增强,张一平.几种污泥中重金属生物有效性及影响因素研究[J].农业环境科学学报,2004,23(1):115-118.
    [104]Yang Jin-ling, Zhang Gan-lin. Quantitative relationship between land use and phosphorus discharge in subtropical hilly regions of China [J]. Pedosphere,2003,13(1):67-74.
    [105]马群,赵庚星.集约农区不同土地利用方式对土壤养分状况的影响[J].自然资源学报,2010,25(11):1834-1844.
    [106]Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J].Science of the Total Environment.,2003,311(1/3):205-219.
    [107]Zhou C Y, Wong M K, Koh L L, et al.Soil lead and other metal levels in industrial residential and nature reserve areas in Singapore[J].Environmental Monitoring and Assessment,1997,44:605-615.
    [108]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002:79-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700