LiBr-H_2O双吸收热变换器热力过程的模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,保护人类环境和回收生产排放的废弃能量对于人们来说越来越重要。吸收式热泵技术是解决这两大难题的最为有效的手段之一,它节能的同时又实现了环保。特别是应用溴化锂/水溶液作为工质的第Ⅱ类吸收式热泵(AHT),应用极为广泛。这种节能装置的应用,不仅大量以水或蒸汽存在的废热得以重新利用,而且向环境排放的热污染也得到了降低。单级吸收式热变换器已经获得较为广泛的工业应用,但由于其温升只有30℃左右,在一些需要大温升的场合,其应用受到限制,双吸收热变换器(DAHT)是一种可实现60℃以上的温升的新型吸收热变换器。近年来受到人们极大关注。
     本文以热力学第一、第二定律为基础,通过建立系统的质量守恒、热量守恒方程,并利用工质的热力学性能数据,对双吸收热变换器(DAHT)的热力循环过程和经济性能进行了理论分析和性能优化。并编译了一系列描述和模拟其溶液热力学循环的计算机程序和子程序,利用该计算机程序模拟和优化的计算数据结果,做了一系列的分析图表。同时,运用这些运算结果,讨论了在各种工作条件下,系统的操作参数,如:冷凝温度(T_C)、蒸发温度(T_E)、吸收温度(T_(AB))和发生温度(T_G)对性能系数(COP),(火用)效率(ECOP),新性能参数(COP·ΔT)、新(?)参数(ECOP·ΔT)和(火用)指标(EI)等的影响规律。
     最后,用约束条件下N维极值的复形调优法对该DAHT热力过程的总经济收益(EP)进行调优,经济性能分析结果表明,当系统的操作条件为:冷凝温度在20.35℃,蒸发温度在73.05℃,吸收温度在129.52℃,总收益达最佳。
It becomes more and more important to reuse industrial waste energy and to protect human environment now. The technology of absorption heat transformer (AHT) is one of the most effective ways to simutenaeously solve these two proposed problems especially using lithium bromide-water solution as working fluid. Not only can a large quantity of waste heat in the form of hot water or steam be reused, but also the thermal pollution discharged to the enviroment will decrease if this saving energy device is applied. The single AHT has been applied widely in the past years. Due to its temperature-upgrade is only about 30C, its application is limited in some cases which need large temperature-upgrade. Double AHT (DAHT) is a new type of AHT which can realize more than 60C temperature-upgrade. As a result, much more attention is payed to the later one in very recent years.
    In this paper, based on the first and the second law of thermodynamics, the thermodynamic circuit process performance as well as the economic benefit of the double absorption heat transformer (DAHT) is analyzed and optimized theoretically in detail by introducing a set of mass conservation, heat conservation equations and some thermodynamic data of the lithium bromide-water solution. Furthermore, in order to simulate and optimize both the thermodynamic performance and economic profit of the DAHT, a coumputer program and its subroutines describing and simulating the solution thermodynamic circuit of the DAHT are coded. The simulating and optimizing results caculated by the computer programs are illustrated graphically in a series of analytical diagrams. At the same time, these results are used to discuss, under various working conditions, the influence of the change of some operating parameters such as the temperature of condenser (7c), evaporator (Te), absorber (Tab), generator (Tg) on the coefficient of per
    formance (COP), the exergy coefficient of performance (ECOP), the new coefficient of performance (COP-AT), the new exergy coefficient of performance (ECOP T) and the index of exergy (El). The laws of their change also have been demonstrated.
    Finally, the total economic profit (EP) of the thermodynamic precess of this type of DAHT is optimized by using a restricting complex method of N dimensions. The optimizing results caculated are presented in a table. Consequently, when Tc is 20.35C, TE is 73.05C and Tab is 129.52C, the total economic profit will attain the optimal value.
引文
[1] B. HUA, Q. YIN, Q.L. CHEN.. PROCTTDINGS The First Joint China/Japan Chemical Engineering Symposium(CJCES). Beijing, China: 2000. 360~366
    [2] 任连伟,陈嘉宾,李松平.吸收式热泵在工业上的应用.制冷技术,1998,1:25~32
    [3] 钟理,严益群,谭盈科.水/二甘醇两级升温吸收式热泵的性能模拟.Energy Research and Information,1997,V13(3):30~34
    [4] 李巍,梁爱民,周淑芬.吸收式热泵回收凝聚过程废热的中试研究.节能技术,2002,20(1):24~28
    [5] 陆震.吸收式热泵国际最新动态.制冷技术,1996,4:5~9
    [6] RCG/Hagler, Bailly, Imc. "Opportunities for Industrial Chemical Heat Pumps in Process Industries". Final Report Prepared for the US DOE Office of Industrial Technologies, 1990
    [7] 耿惠彬,戴永庆,蔡小荣.从第7届国际吸收式热泵会议看吸收式技术的研究与开发.Refrigeration and Air-Conditioning,2003,V3(4):1~9
    [8] 王以清.溴化锂吸收式热泵的研究及应用.能源技术,2000,3:177~179
    [9] Barragan R R M, Arellano G V M, Heard C L. Performance Study of a Double-Absorption Water/Calcium Chloride Heat Transformer. International Journal of Energy Research, 1998, 22:791~803
    [10] 皱盛欧.吸收式热泵的设计和应用.化工装备技术,1994,15(2):14~19
    [11] 范林,陆震,曹卫华.吸收式热泵技术的新发展.节能技术,1998,6:33~36
    [12] 陈松,杜垲.吸收式热泵初步分析与研究.制冷技术,2003,3:12~16
    [13] Keay D A. Heat Pump Research and Development in USA. J Heat Recovery System, 1983, 3(3): 165
    [14] 李辰砂,梁吉,李淞平等.利用吸收式热泵回收工业废热技术.化工装备技术,2001,22(1):20~26
    [15] 隋军,李淞平,袁一.工业环保与节能的有效手段—吸收式热泵技术.化工进展,2001,6:46~49
    [16] 倪军,吴燕.国际吸收式热泵会议双良唱主角.制冷技术,2002,4:61~62
    [17] 路昌海,丁玮,陈文刚,谢华臣.利用吸收式热泵回收含油污水余热.机电设备,2003,3:18~22
    [18] 张忠军.吸收式热泵在SBS 凝聚工序的应用.石化技术,2000,7(3):143~148
    [19] 张松友,王松兰.升温型吸收式热泵在合成橡胶凝聚装置的应用.北京石油化工学院学报,2002,V10(3): 49~52
    [20] 陈天择,严子浚.高温吸收式热泵的生态学准则优化.热能动力工程,1997,12(1):23~25
    [21] 尹娟,史琳,朱明善,韩礼钟.二次提升型吸收式变热器热力性能分析.清华大学学报(自然科学版),2000,40(10):88~91
    [22] 尹娟,史琳,王鑫,朱明善.双效吸收式变热器热力性能分析.流体机械,2000,28(8):50~53
    [23] Juan Yin, Lin Shi, Ming-Shan Zhu, Li-Zhong Han. Performance Analysis of An Absorption Heat Transformer with Different Working Fluid Combinations. Applied Energy, 2000, 67:281~292
    [24] Eisa M.A. R, Holland F.A. Thermodynamic Design Data for Absorption Heat Transformers-Part
    
    I Operating on Water-lithium Bromide. J. Heat Recovery Systems, 1986, 6(5): 421~432
    [25] Rivera W, Best R, et al. Thermodynamic Study of Advanced Absorption Heat Transformers-Part I Single and Two Stage Configurations with Heat Exchangers. Heat Recovery Systems CHP, 1994, 14 (2) : 173~184
    [26] Rivera W, Best R, et al. Thermodynamic Study of Advanced Absorption Heat Transformers-Part Ⅱ Double Absorption Configurations. Heat Recovery Systems CHP, 1994, 14 (2) : 185~193
    [27] J. Yin, L. Shi, X. Wang, M.S. Zhu. Performance Analysis of Double Heat Transformer. Journal of Fluid and Mechanics (Chinese) , 2000, 8:50~53
    [28] J. Yin, L. Shi, M.S. Zhu, L.Z. Han. Performance Analysis. of The Two Stage Heat Transformer. Journal of Tsinghua University (Chinese), 2000, 40(10): 88~91
    [29] Pereira D. Optimal Working Conditions for an Absorption Heat Transformer Analysis of The H_2O/LiBr Theoretical Cycle. Heat Recovery Systems CHP, 1989, 9 (6) : 521~532
    [30] Ciambelli P, Tufano V. The Upgrading of Waster Heat by Means of Water/sulfuric Acid Absorption Heat Transformers. Heat Recovery Systems CHP, 1987, 7(6): 517~524
    [31] P. Fournier-Bidoz T. Kashiwagi. Simulation of A New Absorption Temperature Amplifier Using A TFE-E181 pair for Low-level Temperature Upgrading ASHRAE Transactions. Research, V97(1): 156~162
    [32] A. Genssle, K. Stephan. Analysis of The Process Characteristics of An Absorption Heat Transformer with Compact Heat Exchangers and The Mixture TFE-E181. Int. J. Therm. Sci., 2000, 39: 30~38
    [33] A. Kawada, M. Otake, M. Toyofuku, Absorption Heat Pump Using TFE-E181. Proceedings of The Conference: Environment-Friendly Technologies for The 21st Century Tokyo, Japan, 1991. 121~126
    [34] A. Coronas, M. Valles, S.K. Chaudhari, K.R. Patil. Absorption Heat Pump with The TFE-E181 and TFE-H_2O-E181. Applied Thermal Engineering, 1996, 16(4): 335~345
    [35] M. M. Talbi, B. A new Exergy Analysis: An Absorption Refrigerator Using Lithium Bromide and Water As The Working Fluids. Applied Thermal Engineering, 2000, 20:619~630
    [36] Masaru Ishida, Jun Ji. Graphical Exergy Study on Single Absorption Heat Transformer. Applied Thermal Engineering, 1999, 19: 1191~1206
    [37] 戴永庆等.溴化锂吸收式制冷技术及应用.北京:机械工业出版社,1996.50~51
    [38] 赵宗昌,阎雪峰,沙庆云,李凇平.第二类LiBr-H_2O吸收式热泵热力循环分析.节能技术,2002,V20(6):5~9
    [39] 钟理,严益群,谭盈科.吸收式热泵对水/丙三醇、水/二甘醇双组分混合工质沸腾传热性能.能源研究与信息,1998,14(3):31~35
    [40] 刘代俊,党洁修.H_2SO_4-H_2O体系增温型吸收式热泵的热力学分析.节能技术,1994,5:2~8
    [41] Izquierd M, et al. New Working Media for Absorption Heat Pump[J]. Int Energy Research, 1990, 14:281~291
    [42] Benneni N, et al. Heat Recovery Systems & CHP[J], 1989, 9(2): 257~263
    
    
    [43] Grossman G, et al. ,4 SHRAE[J]. 1988, 89(113): 240~248
    [44] Martz WL, et al. Local Composition Modelling of The Thermodynamic Properties Refrigerant and Oil Mixtures[J]. Int J Refrig, 1996, 19(1): 25
    [45] 钟理,谭盈科.水/二甘醇高温吸收式热泵的(火用)分析及实验研究.Refrigeration,2000,V19(1):12~17
    [46] 钟理.水/乙二醇高温吸收式热泵循环的热力分析及实验研究.Science & Technology in Chemical Industry,2000,8(2):4~8
    [47] Ahrens. F.W. Heat Pump modeling, simulation and design. Proc. Nato advanced Study Institute on Heat Pump Fundamentals, 1980, 1983, 12:155~91
    [48] Hiller, C. C. & Glickman, L. R. Improving Heat-pump Performance Via Compressor Capacity Control-analysis and Test. Volumes Ⅰ and Ⅱ, 1976
    [49] Ellison, R. D. & Creswick, F. A. A Computer Simulation of Steady-state Performance of Air-to-air Heat Pumps. USA, 1978
    [50] Ellison, R. D. & Rice C.K. ORNL Heat Pump Model Update-May 1979 Department lr Energy, Oak Ridge National Laboratory, Tennessee USA, 1979
    [51] Rice, C.K., Fischer, S. K., Ellison, R. D., & Jackson, W.L. Design optimization of conventional heat pumps: Application to steady-state heating efficiency. ASHRAE Trans., 1981, 87(1): 1037~54
    [52] De Bruin, M. A., Van der Jagt, M. F. G. & Machielsen, C. H. M.. Simulation of A Compression Refrigerator System. Proc. 1978 United Kingdom Simulation Council Conf. Computer Simulation Chester UK, 1978, 4:4~6 IPC Science and Technology Press Guildford UK, 1978, 35~46
    [53] Parise, J. A.R.. Theoretical and experimental analysis of a diesel engine driven heat pump. PhD Thesis, Department of Mechanical Engineering ,The University of Manchester Institute of Science and Technology, Manchesteer UK 1983
    [54] Mamah, S. N., Adefila, S. S., Arinze, E. A.. First law thermodynamic evaluation and simulation of ammonia-water absorption heat pump systems. Energy Conversion and Management, 1994, v35 (8) : 737~750
    [55] G. Grossman, M. Wilk. Advanced modular simulation of absorption systems. Int. J.Refrig., 1994, V17(4): 231~244
    [56] Bulgan, Ahmet T.. Energy. Conversion ,Management, 1995, v36(2): 135~143
    [57] W. Rivera, M. J. Cardoso, R. J.. Romero Single-stage and Advanced Absorption Heat Transformers Operating with Lithium Bromide Mixtures Used to Increase Solar Pond's Temperature. Solar Energy Materials & Solar Cells, 2001, 70.. 321~333
    [58] 余夕志,杨景昌.双升温型吸收热泵的操作性能及应用.大氮肥,1999,4
    [59] C. Z. Zhuo, C. H. M. Machielsen. Performance of High-temperature Absorption Heat Transformers Using Alkitrate As The Working Pair. Applied Thermal Engineering, 1996, V16(3): 255~262
    [60] Lin Shi, Juan Yin, Xin Wang, Ming-Shan Zhu. Study On A New Ejection-absorption Heat Transformer. Applied Energy, 2001, 68:161~171
    
    
    [61] Zongchang Zhao, Fangwei Zhou, Xiaodong Zhang, Songping Li. The Thermodynamic Performance of A New Solution Cycle in Double Absorption Heat Transformer Using Water/lithium Bromide As The Working Fluids. Int. J. Refrig, 2003, 17(3): 231~243
    [62] G. Grossman and M. Wilk. Advanced Modular Simulation of Absorption System. Int. J. Refrig., 1994, v17:231~243
    [63] Ch. Mostofizadeh, C. Kulick. Use of A New Type of Heat Transformer in Process Industry. Applied Thermal Fngineering, 1998, 18:857~874
    [64] 刘光启,马连湘,刘杰.化学化工物性数据手册.青岛化工学院:化学工业出版社,2002
    [65] 刘光启,马连湘,邢有志.化工物性算图手册.青岛化工学院:化学工业出版社,2002
    [66] M.R. Patterson, H.P. Blanco. Numerical Fits of Properties of Lithium-bromide Water Solutions. ASHRAE Transactions, 1988, 94(2): 2059~2077
    [67] M. M. Talbi, B. Agnew. Exergy Analysis: An Absorption Refrigerator Using Lithium-bromide and Water As The Working Fluids. Applied Thermal Engineering, 2000, 20(7): 619~630
    [68] D. W. Sun. Thermodynamic Design Data and Optimum Design Maps for Absorption Refrigeration Systems. Applied Thermal Engineering, 1997, 17(3): 211~221
    [69] 赵宗昌,周方伟,李淞平.TFE-E181双吸收热变换器热力过程分析.大连理工大学学报,2003,5:604~608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700